固体物理 讲习题参考答案
固体物理教程答案
固体物理教程答案【篇一:黄昆固体物理课后习题答案4】>思考题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量?l/l与x射线衍射测定的晶格常数相对变化量?a/a存在差异,是何原因?[解答]la.3.kcl晶体生长时,在kcl溶液中加入适量的cacl2溶液,生长的kcl晶体的质量密度比理论值小,是何原因?[解答]2?2??由于ca离子的半径(0.99a)比k离子的半径(1.33a)小得不是太多, 所以caoo离子难以进入kcl晶体的间隙位置, 而只能取代k占据k离子的位置. 但ca一价, 为了保持电中性(最小能量的约束), 占据k离子的一个ca?2???2?比k高?将引起相邻的一个k?变成空位. 也就是说, 加入的cacl2越多, k?空位就越多. 又因为ca的原子量(40.08)?与k的原子量(39.102)相近, 所以在kcl溶液中加入适量的cacl2溶液引起k空位, 将导致kcl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移,会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]??由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, ab离子晶体的热缺陷对导电的贡献只取决于它们的迁移率?. 设正离子空位附近的离子和填隙离子的?a??a?ea?vi振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为v????e?和ai, 负离子空位附近的离子和填隙离子的振动频率分别为bv和bi, 负离子空位附近e?e?的离子和填隙离子跳过的势垒高度分别bv为bi, 则由(4.47)矢可得?a??vea2?a?vkbte?e?av/kbt,i?a??iea2?a?kbtea2?b?ve?eai?/kbt, ?b??vkbtea2?b?ie?e?bv/kbt, ?b??ikbte?ebi?/kbt.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可e?e?以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即avai,????????eb?eb???vi. 由问题1.已知, 所以有avai, bvbi. 另外, 由于a和b的离子半e??eb??a???b?径不同, 质量不同, 所以一般a, .?a???a???b???b?ivi也就是说, 一般v. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数1d2??02ae?(u2?e2)/kbt2,空位机构自扩散系数1d1??01ae?(u1?e1)/kbt2.自扩散系数主要决定于指数因子, 由问题4.和8.已知, u1u2,e1e2, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是n1/n, 平均来说, 填隙原子要跳n/n1步才遇到一个空位并与之复合. 所以一个填隙原子平均花费n1(u1?e2)/kbtt??2?en1?02的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间 1n2?21(u1?u2?e2)/kbt????epn1n2?02.由以上两式得ntn21.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, ?eu2/kbt??它才扩散一步, 所需等待的时间是?1. 但它相邻的一个原子成为空位的几率是n1/n, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间n1(u1?e1)/kbtt??1?en1?01.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成11d??0a2e??/kbt??0a2e?n0?/rt22.可以看出, 自扩散系数与原子的振动频率?0, 晶体结构(晶格常数a), 激活能(n0?)三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? [解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间?后变成填隙原子, 又平均花费时间n?2n1后被空位复合重新进入正常晶格位置, 其中?2是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间nt????2n1.因为所以填隙原子自扩散系数近似反比于?. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间?, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么? [解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.??17.ab离子晶体的导电机构有几种?[解答]??离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. ab离子晶体??????中有4种缺陷: a填隙离子, b填隙离子, a空位, b空位. 也就是说, ab离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变n?2n?1,????成了空位. ab离子晶体中, a空位附近都是负离子, b空位附近都是正离子. 由此可知, a空位的移动实际是负离子的移动, b空位的移动实际是正离子的移动. 因此, 在外电场作用下, a填隙离子和b空位的漂移方向与外电场方向一致, 而b填隙离子和?????a?空位的漂移方向与外电场方向相反.【篇二:黄昆版固体物理课后习题解答】>黄昆原著韩汝琦改编(陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
(整理)固体物理课后习题与答案
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
固体物理习题答案PPT课件
5 解: A2 b c,B 2 c a,C 2 a b
V c
V c
V c
V A (B C ) (2)3( b c )[ c ( a ) ( a b )] V c
A (B C )(A C )B (A B )C
6解:当 KCl 取 ZnS 结构时,晶体总相互作用
能为 utotN(zeRR q2)
已知:N=6.023*1023/mol, ρ=0.326埃,αZnS=1.6381,(见P103) 为NaCl结构时,Zλ=2.05*10-8erg, Z=6 当为ZnS 结构时,Z=4, Zλ=(4/6)*2.05*10-8erg
设ZnS 结构时,其晶格常数与NaCl结构相同, (为原子最近邻距离)
即 a=6.294埃(见P20,图20配位数为6,参见表10,表11, a=2*1.33+1.81=6.2埃),31/2a/4=2.72埃(为原子最近邻距
离)
u to 6 . 0 t 1 2 2 [ 3 0 6 4 2 2 . 0 1 5 8 e 0 0 2 . 3 . 7 2 2 1 . 6 6 2 . ( 3 7 4 . 8 1 8 2 1 8 0 1 0 e 1 5 0 0 ) 3 ] s 1 u . 8 K 5/ m 3 C
第二章 习题答案
3解:
(c)衍射先只出现在同时满足以下二个方程的方
向上:(1)acosθ1=nλ,(2) bcosθ2=mλ
(
a,b
为二个方向矢量)
所以在二个锥面的交线上出现衍射极大。当底板
//原子面时,衍射花样为二个锥面的交线与底板
的交点。
(d)反射式低能电子衍射(LEED)中,只有表面 层原子参与衍射,故为二维衍射,衍射点的周期 大小与晶体表面原子排列方向上周期大小成反比。
固体物理参考答案(前七章)
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理课后习题答案
(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理 课后答案
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,6π; (2)体心立方, ;83π(3)面心立方,;62π(4)六角密积,;62π(5)金刚石结构,;163π[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433aVra==面1.2 简立方晶胞晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433aVra==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa图1.3 体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=a a .(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5 六角晶胞 图 1.6 正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a == 晶胞体积 V = 222360sin ca ca =, 一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=ca a .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的原子相切,因为,8 3r a=晶胞体积3aV=,一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa.2.在立方晶胞中,画出(102),(021),(122-),和(201-)晶面。
固体物理8-9讲习题参考答案
习题8.1 单原子线型晶格:考虑一个纵波,在原子质量为M 、晶格常数为a 和最近邻力常数为C 的单原子线型晶格中传播。
(a) 试证该波的总能量为22111()22s s s s s du E M C u u dt + =+∑∑−其中求和指标s 遍历所有的原子。
(b) 将u s 代入这个表达式,证明每个原子的时间平均总能量为2222111(1cos )422M u C ka M ωω+−=u 其中最后一步采用了一维布拉伐晶格的色散关系式。
解:(a )第s 个原子的位移为cos()s u u t ska ω=−(1)动能为212s du M dt ,晶体的总动能为212s s du dt =∑T M 。
晶体的总势能为''()ss ss RφΦ=∑,其中'ss R 为s ,s’原子间的距离,'''ss ss s s R r u u =+−,'ss r 为s ,s’原子间的平衡距离。
将φ展开,只取简谐近似,得:''2'''1()()()2ss ss ss s s 'R r u φφφ=+−u ,其中''2''''2'()ss ss ss ss ss R R φφ=∂= ∂R r 为力常数。
若只考虑最近邻原子的作用,则总位能为8.2 连续介质弹性波的波动方程:证明对于长波长,一维布拉伐格子晶体的运动方程22()s p s p s pd u M C u u dt +=−∑ 约化为连续介质弹性波的波动方程:2222u u t x υ2∂∂=∂∂,其中υ为声速。
(见讲义)8.3 孔氏异常(Kohn anomaly) 在立方晶体中,沿[100]、[110]、[111]方向传播的格波,整个原子平面作同位相的运动,其位移方向平行或垂直于波矢方向。
可用一单一坐标u s 来描述平面s 离开平衡位置的位移。
固体物理习题解答参考答案晶体结构
r
( )
。由 R 所定义的也是一个点阵常数为
r
r r r ( i 2 的 SC 点阵,但相对于上面一个 SC 点阵位移了一个矢量 + j + k ) ,
这个点正好位于体心位置。 上面两个 SC 点阵穿套起来正好是一个 bcc 点阵,故 ni 或全为奇数,或全为偶数所定义的是一个 bcc 点阵。 (2)若
体心立方晶格原胞基矢 a1 = (−i + j + k ) a2 = (i − j + k ) a3 = (i + j − k ) 体心立方晶格原胞体积 倒格子基矢:
r
a 2
r
r
r r
ห้องสมุดไป่ตู้
a r 2
r
r r
a r 2
r
r
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由 为基矢构成的格子为体心立方格子。
(2) 体心立方(书P3,图1-3)
r 取 原 子 球 相 切 时 的 半 径 ( 体 对 角 线 的 1/4 ) , r= 3a / 4 ,n=2, V = a 3 所 以
ρ=
n 4π r 3 3 = 3π / 8 V
(3) 面心立方(书P4,图1-7)
r 取 原 子 球 相 切 时 的 半 径 ( 面 对 角 线 的 1/4 ) r= 2a / 4 ,n=4, V = a 3 , 所 以
则由 ε = AxT ε Ax 得
固体物理第1.参考答案与解析
第一章 参考答案1体心立方格子和面心立方格子互为正倒格子,试证明之。
证:体心立方格子的固体物理学原胞(Primitive cell )的三个基矢是)(2),(2),(2321→→→→→→→→→→→→-+=+-=++-=k j i a a k j i a a k j i a a ⎪⎪⎪⎭⎪⎪⎪⎬⎫+=+=+==⨯⋅=ΩΩ⨯=Ω⨯=Ω⨯=→→→→→→→→→→→→→→→→→→→→→)(2)(2)(22122,2:3213321213132321j i a b i k a b k j ab aa a a a ab a a b a a b ππππππ定义它们是倒点阵面心立方的三个基矢。
2 对六角密堆积结构固体物理学原胞基矢如→→→→→→→→=+-=+=kc a ja i a a j a i a a 321232232求倒格子基矢。
解:;,213→→→⊥a a a→→→→→→→→+-=+===ja i a a ja i a a a a a 2322322121)33(32)32(22332123213→→→→→→→→→→→→+=+Ω=Ω⨯==⨯⋅=Ω=j i aac a i ac j a a b ca aa a a kc a πππ ⎪⎭⎫ ⎝⎛+-=Ω⎪⎭⎫ ⎝⎛⨯=→→→→→j i a a a b 3332/2132ππ→→→→=Ω⎪⎭⎫⎝⎛⨯=kc a a b ππ2/22133求解简单立方中晶面指数为(hkl)的晶面簇间距。
解:正格子基矢是 →→→→→→===k a c j a b i a a ,,令 为相应的倒基矢→→→***,,c b a21222***,,3***)()()(2222)(222-→→→→→→→→→→→→→→→→→⎥⎦⎤⎢⎣⎡++==++=++==⨯⋅=Ω===a l a k ahK d kl a j k a i h a c l b k a h K a c b a kac j ab i aa hklnkl l k h πππππππ4 试证明六角密集结构中c/a=如图所示,ABC 分别表示六角密排结构中三个原子,D 表示中心的原子。
固体物理习题及解答
固体物理习题及解答⼀、填空题1. 晶格常数为a 的⽴⽅晶系 (hkl)晶⾯族的晶⾯间距为a该(hkl)晶⾯族的倒格⼦⽮量hkl G 为 k al j a k i a h πππ222++ 。
2. 晶体结构可看成是将基元按相同的⽅式放置在具有三维平移周期性的晶格的每个格点构成。
3. 晶体结构按晶胞形状对称性可划分为 7 ⼤晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。
4. 体⼼⽴⽅(bcc )晶格的结构因⼦为 []{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l k h 。
5. 与正格⼦晶列[hkl]垂直的倒格⼦晶⾯的晶⾯指数为 (hkl) ,与正格⼦晶⾯(hkl )垂直的倒格⼦晶列的晶列指数为 [hkl] 。
6. 由N 个晶胞常数为a 的晶胞所构成的⼀维晶格,其第⼀布⾥渊区边界宽度为a /2π,电⼦波⽮的允许值为 Na /2π的整数倍。
7. 对于体积为V,并具有N 个电⼦的⾦属, 其波⽮空间中每⼀个波⽮所占的体积为 ()V /23π,费⽶波⽮为 3/123?=V N k F π。
8. 按经典统计理论,N 个⾃由电⼦系统的⽐热应为 B Nk 23,⽽根据量⼦统计得到的⾦属三维电⼦⽓的⽐热为 F B T T Nk /22,⽐经典值⼩了约两个数量级。
9.在晶体的周期性势场中,电⼦能带在布⾥渊区边界将出现带隙,这是因为电⼦⾏波在该处受到布拉格反射变成驻波⽽导致的结果。
10. 对晶格常数为a 的简单⽴⽅晶体,与正格⽮R =a i +2a j +2a k 正交的倒格⼦晶⾯族的⾯指数为 (122) , 其⾯间距为 .11. 铁磁相变属于典型的⼆级相变,在居⾥温度附近,⾃由能连续变化,但其⼀阶导数(⽐热)不连续。
13.等径圆球的最密堆积⽅式有六⽅密堆(hcp )和⾯⼼⽴⽅密堆(fcc )两种⽅式,两者的空间占据率皆为74%。
14. ⾯⼼⽴⽅(fcc )晶格的倒格⼦为体⼼⽴⽅(bcc )晶格;⾯⼼⽴⽅(fcc )晶格的第⼀布⾥渊区为截⾓⼋⾯体。
固体物理(胡安)第二版课后习题答案__完整版_校核版
固体物理(胡安)第⼆版课后习题答案__完整版_校核版Word 版完整版校核版第⼀章晶体的结构及其对称性1.1⽯墨层中的碳原⼦排列成如图所⽰的六⾓⽹状结构,试问它是简单还是复式格⼦。
为什么?作出这⼀结构所对应的两维点阵和初基元胞。
解:⽯墨层中原⼦排成的六⾓⽹状结构是复式格⼦。
因为如图点A 和点B 的格点在晶格结构中所处的地位不同,并不完全等价,平移A →B,平移后晶格结构不能完全复原所以是复式格⼦。
1.2在正交直⾓坐标系中,若⽮量k l j l i l R l321 ,i ,j ,k 为单位向量。
3,2,1 i l i 为整数。
问下列情况属于什么点阵?(a )当i l为全奇或全偶时;(b )当i l之和为偶数时。
解: 112233123l R l a l a l a l i l j l kr r r r r r r...2,1,0,,321 l l l 当l 为全奇或全偶时为⾯⼼⽴⽅结构点阵,当321l l l 之和为偶数时是⾯⼼⽴⽅结构 1.3 在上题中若321l l l 奇数位上有负离⼦,321l l l 偶数位上有正离⼦,问这⼀离⼦晶体属于什么结构?解:是离⼦晶体,属于氯化钠结构。
1.4 (a )分别证明,⾯⼼⽴⽅(fcc )和体⼼⽴⽅(bcc )点阵的惯⽤初基元胞三基⽮间夹⾓相等,对fcc 为,对bcc 为(b )在⾦刚⽯结构中,作任意原⼦与其四个最近邻原⼦的连线。
证明任意两条线之间夹⾓θ均为'1cos 109273arc o '1cos 109273arco解:(1)对于⾯⼼⽴⽅ 12a a j k r r r 22a a i k r r r32a a i j r r r13222a a a a r r r1212121602a a COS a a a a o r rr r2323231602a a COS a a a a o r rr r1360COS a a o r r(2)对于体⼼⽴⽅ 12a a i j k r r r r 22a a i j k r r r r32a a i j k r r r r12332a a a a r r r12'12121129273a a COS a a a a o r rr r'1313131129273a a COS a a a a o r rr r r r'2312927COS a a o r r(3)对于⾦刚⽯晶胞134a i j k rr r r234a i j k r r r r2212122122314934a COS a r rr r1.5 证明:在六⾓晶系中密勒指数为(h,k,l )的晶⾯族间距为212222234c l a k hk h d证明: a b a r r元胞基⽮的体积a ai r rcos60cos301322b a i j ai ajo o r r r r rc ck r r20033022200a a a a c c倒格⼦基⽮ )33(2][2j i a c b ajaa c b334][2k c b a c2][2倒格⽮:***hkl G ha kb lc r r r r晶⾯间距***222cl b k a h Gd hklhkl2222222222ha kb lch a k b l c hk a b kl b c hl a cr r r r r r r r r 22423a a r 22423b a r 222c cr 2223a b ar r 0b c r r 0a cr r 122222222122222242424242333343hkld h k l hk a a a a h k kl l a c1.6 证明:底⼼正交的倒点阵仍为底⼼正交的。
固体物理习题解答-完整版
ρ
π / 6 ≈ 0.52
3π / 8 ≈ 0.68 2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
1/ 2
3a / 4
2a / 4
a/2
2a 3
c ⎛3⎞ 1.2 证明理想的六角密堆积结构(hcp)的轴比 = ⎜ ⎟ 2 ⎝8⎠
ε A ,对六角晶系,绕 x 轴
(即 a 轴)旋转 180 度和绕 z 轴(即 c 轴)旋转 120 度都是对称操作,坐标变换矩阵分别为
⎛1 0 0⎞ ⎜ ⎟ Ax = ⎜ 0 − 1 0 ⎟ ⎜0 0 1⎟ ⎝ ⎠
⎛ −1/ 2 ⎜ Az = ⎜ − 3 / 2 ⎜ ⎜ 0 ⎝
3 / 2 0⎞ ⎟ −1/ 2 0⎟ ⎟ 0 1⎟ ⎠
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤
面指数越简单的晶面,其晶面的间距越大 晶面上格点的密度越大,这样的晶面越容易解理 1.7 写出体心立方和面心立方晶格结构中,最近邻和次近邻的原子数,若立方边长为a,写 出最近邻和次近邻原子间距 解 简立方 最近邻数 最近邻间距 次近邻数 次近邻间距 6 a 12 面心立方 12 体心立方 8
固体物理学习题解答
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理课后习题答案
固体物理课后习题答案固体物理课后习题答案固体物理是物理学中的一个重要分支,研究物质的结构和性质。
它涉及到晶体学、电子结构、磁性、声学等多个方面。
在学习固体物理的过程中,课后习题是巩固知识、提高能力的重要途径。
下面是一些固体物理课后习题的答案,供大家参考。
1. 问题:什么是晶体?晶体的特点是什么?答案:晶体是由周期性排列的原子、离子或分子组成的固体。
晶体的特点包括:- 长程有序性:晶体的原子、离子或分子按照一定的规则排列,形成周期性的结构。
- 均匀性:晶体的结构在宏观和微观尺度上都是均匀的。
- 可预测性:晶体的结构可以通过晶体学方法进行研究和预测。
- 具有特定的物理性质:晶体的结构和周期性排列导致了其特定的物理性质,如光学性质、电学性质等。
2. 问题:什么是晶体的晶格常数?答案:晶体的晶格常数是指晶体中原子、离子或分子排列的周期性重复单位的尺寸。
晶格常数可以用来描述晶体的结构和性质。
在晶体学中,晶格常数通常用晶格常数矢量a、b、c表示,它们分别表示晶格沿着三个坐标轴的长度。
3. 问题:什么是布拉维格子?答案:布拉维格子是指晶体中的离散的点阵结构,用来描述晶体的对称性。
布拉维格子的点阵可以通过晶体的晶格常数和晶体的对称操作得到。
布拉维格子的对称性决定了晶体的物理性质,如晶体的能带结构和声子谱。
4. 问题:什么是声子?声子与固体的性质有什么关系?答案:声子是固体中的一种元激发,它代表了晶格振动的量子。
声子的能量和动量由固体的结构和性质决定。
声子的存在对固体的性质有重要影响,如导热性、电导性等。
声子的研究可以揭示固体的热力学和动力学性质。
5. 问题:什么是费米面?费米面与固体的导电性有什么关系?答案:费米面是描述固体中电子分布的一个表面,它代表了能量最高的占据态和能量最低的未占据态之间的边界。
费米面的形状和位置由固体的电子结构决定。
费米面的性质与固体的导电性密切相关。
在导电体中,费米面与导电性能直接相关,如费米面的形状和移动可以解释固体的电导率和磁性等性质。
固体物理 讲习题参考答案
θ = 0o , 60o , 90o ,120o ,180o
因此晶体的宏观对称操作只能是旋转以上五种角度,其转轴分别称为 1,6,4,3,2 重旋转对称轴。
ε1 0 0
1 0 0
取对称操作为绕
x
轴转
180
度, T
=
0
−1
0
代入上式,有
0 0 −1
(ε )
=
ε xx 0
0 ε yy
0
ε
yz
0 ε zy ε zz
−1 0 0
再取对称操作为绕
y
轴转
180
度, T
=
0 0
1 0
−01 代入上式,有
(ε )
=
ε xx 0
0 ε yy
0
0
0 0 ε zz
1 8
)
∆
(0
1 4
0)
Σ
(
1 8
1 8
0)
Λ
(
1 8
1 8
1 8
)
第四讲
4.1.倒格子矢量为 Kh = h1b1 + h2 b2 + h3 b3,证明布里渊区边界方程为:
2k
⋅ Kh
−
1 2
Kh
2
=0
证明此方程就是波在晶体中(h1h2h3) 晶面族上发生全反射的布喇格方程。
证:布里渊区边界垂直且平分倒格矢 K h ,故该边界面上任一矢量满足
此处a0是玻尔半径。
证明形状因子是
固体物理教程答案
固体物理教程答案【篇一:黄昆固体物理课后习题答案4】>思考题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量?l/l与x射线衍射测定的晶格常数相对变化量?a/a存在差异,是何原因?[解答]la.3.kcl晶体生长时,在kcl溶液中加入适量的cacl2溶液,生长的kcl晶体的质量密度比理论值小,是何原因?[解答]2?2??由于ca离子的半径(0.99a)比k离子的半径(1.33a)小得不是太多, 所以caoo离子难以进入kcl晶体的间隙位置, 而只能取代k占据k离子的位置. 但ca一价, 为了保持电中性(最小能量的约束), 占据k离子的一个ca?2???2?比k高?将引起相邻的一个k?变成空位. 也就是说, 加入的cacl2越多, k?空位就越多. 又因为ca的原子量(40.08)?与k的原子量(39.102)相近, 所以在kcl溶液中加入适量的cacl2溶液引起k空位, 将导致kcl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移,会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]??由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, ab离子晶体的热缺陷对导电的贡献只取决于它们的迁移率?. 设正离子空位附近的离子和填隙离子的?a??a?ea?vi振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为v????e?和ai, 负离子空位附近的离子和填隙离子的振动频率分别为bv和bi, 负离子空位附近e?e?的离子和填隙离子跳过的势垒高度分别bv为bi, 则由(4.47)矢可得?a??vea2?a?vkbte?e?av/kbt,i?a??iea2?a?kbtea2?b?ve?eai?/kbt, ?b??vkbtea2?b?ie?e?bv/kbt, ?b??ikbte?ebi?/kbt.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可e?e?以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即avai,????????eb?eb???vi. 由问题1.已知, 所以有avai, bvbi. 另外, 由于a和b的离子半e??eb??a???b?径不同, 质量不同, 所以一般a, .?a???a???b???b?ivi也就是说, 一般v. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数1d2??02ae?(u2?e2)/kbt2,空位机构自扩散系数1d1??01ae?(u1?e1)/kbt2.自扩散系数主要决定于指数因子, 由问题4.和8.已知, u1u2,e1e2, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是n1/n, 平均来说, 填隙原子要跳n/n1步才遇到一个空位并与之复合. 所以一个填隙原子平均花费n1(u1?e2)/kbtt??2?en1?02的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间 1n2?21(u1?u2?e2)/kbt????epn1n2?02.由以上两式得ntn21.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, ?eu2/kbt??它才扩散一步, 所需等待的时间是?1. 但它相邻的一个原子成为空位的几率是n1/n, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间n1(u1?e1)/kbtt??1?en1?01.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成11d??0a2e??/kbt??0a2e?n0?/rt22.可以看出, 自扩散系数与原子的振动频率?0, 晶体结构(晶格常数a), 激活能(n0?)三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? [解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间?后变成填隙原子, 又平均花费时间n?2n1后被空位复合重新进入正常晶格位置, 其中?2是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间nt????2n1.因为所以填隙原子自扩散系数近似反比于?. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间?, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么? [解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.??17.ab离子晶体的导电机构有几种?[解答]??离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. ab离子晶体??????中有4种缺陷: a填隙离子, b填隙离子, a空位, b空位. 也就是说, ab离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变n?2n?1,????成了空位. ab离子晶体中, a空位附近都是负离子, b空位附近都是正离子. 由此可知, a空位的移动实际是负离子的移动, b空位的移动实际是正离子的移动. 因此, 在外电场作用下, a填隙离子和b空位的漂移方向与外电场方向一致, 而b填隙离子和?????a?空位的漂移方向与外电场方向相反.【篇二:黄昆版固体物理课后习题解答】>黄昆原著韩汝琦改编(陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
固体物理学习题解答(完整版)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
固体物理学课后题答案
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)由平衡条件
∂U ∂r
r0
=
mα r m+1
−
nβ r n+1
=
0 ,得
1
平衡间距
r0
=
nβ mα
n−m
(2)将 U(r)理解为晶体中所有其他原子对某一个原子的相互作用
则系统总的内能为对所有原子求和
U
total
2
r0 ∝ q1−n
,
U0
∝
q2 r0
当 q → 2q ,
r0′
=
4−
1 n−1
r0
因为晶格常数 a ∝ r0 ,故晶格常数满足相同的变化规律
n
结合能 W ′ = −U0′ = 4n−1W0
2.3.若一晶体的相互作用能可以表示为
U (r) = − α + β rm rn
试求(1)平衡间距 r0 (2)结合能 W(单个原子的) (3)体弹性模量 (4)若 m=2,n=10,r0=3A,W=4eV,求α,β值。
1.11
证明六角晶体的介电常数张量为
0
ε2
0
0 0 ε2
证
1:六角晶体,设介电常数为
ε ε
xx yx
ε xy ε yy
ε ε
xz yz
,取坐标架如图示
ε zx ε zy ε zz
选电场方向在 x 轴方向,有
Dx ε xx
Dy
0
− sin 60
,可得
ε yy
= ε zz
cos 60
第六讲
2.2.讨论使离子电荷加倍所引起的对 NaCl 晶格常数及结合能得影响。(排斥势看作不变) 解:NaCl 为离子晶体,系统内能可写为
U
=
N (−
A′t 2 r
+
B rn
)
平衡位置由
∂U ∂r
r0
=0
确定,有
(H K L) (001)
G=H2+K2+L2
1
(2)体心立方
(011) 2
(111) 3
(002) 4
(012) 5
(112) 6
(222) 8
(003) (122)
9
(013) 10
(113) 11
几何结构因子 FHKL = f [1 + e−iπ (H +K +L) ]
衍射条件 H+K+L=偶数,由于此限制,在简单立方的列表中去除了 G=1,3,5,9
∴ GBCC = 2, 4, 6,8
(3)面心立方
几何结构因子 FHKL = f [1 + e−iπ (H +K ) + e−iπ (H +L) + e ] −iπ (K +L)
根据上一道题的讨论,衍射条件要求 H,K,L 奇偶性相同
故列表中只取 GFCC = 3, 4,8,11
(4)金刚石
几何结构因子
(k
−
1 2
Kh)⋅
Kh
=
0
即边界方程为
2k
⋅ Kh
−
1 2
Kh
2
=0
3.4.画图作出二维正方格子和二维简单六方晶格的前三个布里渊区。 解:正方格子的倒格子仍是正方格子,六角格子的倒格子仍是六角格子。 首先根据正格子原胞基矢计算倒格子原胞基矢(略),根据倒格子原胞基矢画出倒格子点阵, 然后画出前三个布里渊区。
表示的晶面,如(111),在原系统中为 (H K L) = (2 H ′ 2K ′ 2L′) ,即(222)。尽管对简 单立方而言,不存在消光, H ′ K ′ L′ 可任取正整数值,但 H , K , L 却只能取偶数,这
于前面的结果一致。
4.3.证明对立方晶系进行X 射线粉末衍射照相时,如果衍射面指数为 (H K L), 出现的衍 射线G=H2+K2+L2 的值如下:
第三讲
3.1.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。 证:体心立方基矢取为
a1 a2 a3
= = =
a 2 a 2 a 2
(i + j (−i + (i − j
− k) j +k + k)
)
其中 a 为晶格常数 其倒格子基矢,按定义
b1 =
2π Ω
(a2 × a3 ) =
⇒ ε yx = ε zx = 0
同理,选电场方向在 y 轴、z 轴,绕轴转 180 度为晶体的对称操作,可推出非对角项 为0
ε xy = ε zy = ε xz = ε yz = 0
另,可选电场在图示方向,
E
=
1 2
Eeˆy
+
3 2
Eeˆz
z E
60o y
ε xx
代入
0
0
0
ε yy 0
K: (0,0,0)
(
1 2
,
1 2
,0)
(
1 2
,0,
12 )
( 0,
1 2
,
1 2
)
Cl:
(
1 2
,0,0)
+[K]coord.
8
∑ 几何结构因子 FHKL =
f e−iKh ⋅rj j
=
f (1 + e−iπ H )[1 + e−iπ (H +K ) + e−iπ (H +L) + e ] −iπ (K +L)
简单立方: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, … 体心立方: 2, 4, 6, 8, 10, 12, … 面心立方: 3, 4, 8, 11, 12, … 金刚石: 3, 8, 11, … 解:(1)简单立方
不存在消光, H , K , L 可任取非负整数(但不同时为 0)
=
4π Kh (π a03 )
∞
r exp(−2r / a0 ) sin Khrdr
0
∫ =
4 K h a03
∞ 0
r
exp(−2r
/
a0 )
1 2i
[exp(iKhr) −
exp(−iKhr)]dr
∫ ∫ =
2 iK h a03
∞
[
0
r
exp(iKhr
−
2r
/
a0
)dr
−
∞ 0
r
exp(−iKhr
正方格子的布里渊区
六角格子的布里渊区
3.5 写出体心立方第一布里渊区图上点Γ,H, N, P, ∆,Σ,Λ,F 的倒格子空间坐标。
布里渊区中心用Γ表示,Δ表示<100>轴,Λ表示<111>轴,Σ表示<110>轴。
Γ(0 0 0)
H
(0
1 2
0)
N
(
1 4
1 4
0)
P
(
1 4
1 4
1 4
)
F
(
1 8
3 8
FHKL
=
f
[1
+
−
e
i
π 2
(
H
+
K
+
L)
]
⋅
[面心立方因子]
即除 H,K,L 奇偶性相同外,还须要求(H+K+L)/2 不能为奇数,由此
i)H,K,L 全为奇数
或 ii)H,K,L 全为偶数,且三者之和是 4 的整数倍
4.4 原子氢的形状因子。对于基态的氢原子,(电子)数目密度是
n(r) = (π a03)−1 exp(−2r / a0 )
3 2 Dz 1 2 Dz
=
−
1 4
ε
yy
+
3 4
ε
zz
E
3 4
ε
yy
+
3 4
ε
zz
该操作也为六角晶体的对称操作,根据 D′ = D ,必有 ε yy = ε zz
因此,介电常数张量可写为
ε1 0 0
0
ε2
0
0 0 ε2
证:设想有一个对称轴垂直于平面,平面内晶面的格点可以用 l1 a1 + l2 a2 来描述
绕通过 A 的转轴的任意对称操作,转过角度θ B 点转到 B’点(B’点必有一个格点) A 和 B 两点等价 以通过 B 点的轴顺时针转过θ A 点转到 A’点(A’点必有一个格点)
且有 B ' A ' = n AB (n 为整数)
3.2.证明:倒格子原胞的体积为(2π)3/ Ω ,其中Ω为正格子原胞的体积
证:正格子原胞体积 Ω = a1 ⋅ (a2 × a3 )
倒格子原胞体积
Ω*
=
b1
⋅ (b2
× b3 )
=
b1
⋅[b2
×
2π Ω
(a1
× a2 )]
利用矢量公式 A × (B × C) = ( A ⋅ C) ⋅ B − ( A ⋅ B) ⋅ C
此处a0是玻尔半径。
证明形状因子是
fKh
=
16
/(4
+
K
a2 2
h0
)2
∫ 提示:利用积分公式
∞ 0
xne−α
x dx
=
n! α n+1