余角与补角公开课课件
合集下载
余角和补角 课件(共16张PPT)
课堂小结
余角和补角的定义 定义:两个角的和等于90°(直角),就说这两个角互为余
角,简称互余.如果两个角的和等于180°(平角),就说这两个 角互为补角,简称互补.
余角和补角都是相互的,不能说哪一个角是余角或补角.
请同学们比较互余与互补的概念,说说它们的区别和共同之处.
区别 互余是两个角的和是90°(直角), 互补是两个角的和是180°(平角).
3 1
获取新知
2 1
两个角的和等于90°(直角),就说这两个角互为余角,简称互余. 如图,∠1+∠2=90°,那么∠1是∠2的余角,∠2也是∠1的余角.
4 3
如果两个角的和等于180°(平角),就说这两个角互为补角,简称互补. 如图,∠3+∠4=180°,那么∠3是∠4的补角,∠4也是∠3的补角.
【分析】因为∠1+∠2=180°,∠2+∠3=180°, 所以∠3=∠1=50°.故选A.
同角的补 角相等.
随堂演练
1. 已知∠A=55°,则它的余角是( B )
A.25°
B.35° C.45°
D.55°
2.如果两个角互补,那么这两个角( D为钝角 D.均为直角,或一个为锐角,另一个为钝角
3.若一个锐角和它的余角相等,则它的补角为( C )
A.75°
B.120°
C.135°
D.150°
4. 如图,在三角形ABC中,∠C=90°,点D,E 分别在边AC、AB上,若∠B=∠ADE,则下列 结论正确的是( C ) A.∠A和∠B互为补角. B.∠B和∠ADE互为补角. C.∠A和∠ADE互为余角. D.∠AED和∠DEB互为余角.
1
3
2
同角的余角相等.
探究: 已知∠1与∠2互余,∠3与∠4互余,如果∠1=∠3, 那么∠2与∠4相等吗?为什么?
《余角和补角》公开课省公开课获奖课件说课比赛一等奖课件
B
小结
两角间旳 数量 关系
互余
互补
1 2 90 1 2 180 (1 90 2) (1 180 2)
相应 图形
性质
同角或等角旳 余角相等
同角或等角旳 补角相等
注意点
1 互余、互补是两角之间旳数量关系,只 与他们旳度数和有关,与位置无关。
2 互余、互补概念中旳角是成对出现旳。
3 角 旳余角是90 ,补角是180 ,
同一种锐角旳补角比余90角。大 90 。
4 只有锐角才有余角。
5 同角旳余角(补角)相等; 等角旳余角(补角)相等。
E
西 C
F
北 D 45° 45°
O
B南
(1)正东,正南,正西,正北 射线OA OB OC OD
H(2)西北方向:_射__线__O_E___ 西南方向:_射__线__O_F____ 东 A
45° 27°37′ (90 x)°
∠α旳补角
175° 135° 117°37′ ( 180-x)°
已知一种角旳补角是它旳3倍,这个角是多度?
解:设这个角为x°, 则这个角旳补角是(180-x)° 由题意得180-x=3x 解得 x = 45 则这个角旳度数为45°
变式训练: 已知一种角旳补角是这个角旳余角旳4倍,求这个 角旳度数
图中给出旳各角,那些互为余角?
10o
30o
50o
60o
40o
80o
2、两个角旳和等于180°(平角),就说这两个角互为 补角,简称互补,即其中一种角是另一种旳补角。
2 1
几何语言表达为: 假如∠1+∠2=180°,那么∠1与∠2互为补角
∠1=180° -∠2
图中给出旳各角,那些互为补角?
余角和补角 公开课精品课件
(3)图中给出的各角中,哪些互为余角? 哪些互为补角?
理解运用
(1)已知∠1与∠2,∠3都互为补角。 那么∠2和∠3的大小有什么关系?
由∠1与∠2和∠3都互为补角, 那么∠2=180º-∠1,
∠3=180º-∠1, 所以∠2=∠3。
(2)已知∠1与∠2互补,∠3与∠4互补。若 ∠1=∠3,那么∠2和∠4相等吗?为什么?
理解定义
1.定义中的“互为”是什么意思?
即每一个角都是另一个角的余角(补角)
2.把下图中∠1与∠ADF分离并多次变换位置,如图, 这两角还是互为补角吗?
D
F
1
A
(1)若∠1与∠2互补,则∠1+∠2=__1_8_0_°_。
(2)∠1=90º-∠2,则∠1与∠2的关 系为__互__为__余__角___。
做一做
(1)若∠1与∠2互余,∠2与∠3互余, 则_∠__1__=_∠__3___,根据是_同_角_的_余_角_相_等_ 。
(2)若∠3与∠4互补,∠6与∠5互补,且 ∠3=∠6, 则_∠__4__=_∠__5___,根据是___ 等_角_的_补_角_相_等_。
例1如图,A,O,B在同一直线上,射线OD 和射线OE分别平分∠AOC和∠BOC,图中哪 些角互为余角?
D 45°北40° B
O
●
60°
10°
● A东
C
南
巩固练习
(1)一个角是70º39′,求它的余角和补角。 它的余角是90º-70º39′=19º21′, 它的补角是180º-70º39′=109º21′。
(2)∠α的补角是它的3倍,∠α是多少度? 由180º- ∠α=3 ∠α, 解得∠α=45º。
有时以正北、正南方向为基准,描述物 体运动的方向。
余角和补角 公开课精品课件
A C
1
α
O2
B
1α
2
β
(2)图中∠D α的余角∠1,∠2的大小有什么关系? 为什么? 因因为为1=19=090- -;; 2=29=09-0-
所 又因以 为∠α1 =∠=β2 所以1=2
(3) 这一结论用文字怎么叙述?
同 (等) 角的余角相等
(2) 动手画一画
解: 设这个角的度数为x度,
由题意得: (180- x)+20=3x
解得 x 50 答:这个角为50
2.已知 :一个角的补角加上20后等于这个角 余角 的3倍。
求: 这个角
设这个角的度数为x度 (180-x) 20 3(90 x)
(1) 动手画一画: 已知∠α(如图),请利用三角 板画的∠α的余角
已知∠α(如图),
请利用三角板画的∠α的补角
C
A
α
O2
B
1
D
4
3
同 (等) 角的补角相等
[来源:]
推导性质
已知∠1与∠2互补,∠3 与∠4互补。若∠1=∠3, 说说∠2和∠4有什么关系?
2 1
4 3
由∠1与∠2互补,∴ ∠2= 180°- ∠1 由∠3与∠4互补,∴ ∠4= 180°- ∠3 又因为∠1=∠3, 180°- ∠1=180°- ∠3 所以∠2=∠4
4.∠A与∠B互补,∠B与∠C互补,∠C=80°,则∠A的度数是 ________. 【解析】因为同角的补角相等,所以∠A=∠C=80°. 答案:80°
5.∠A的余角和它的补角之比是1∶3,求∠A的度数. 【解析】设∠A的度数为x°,则180-x=3(90-x), 解得x=45.所以∠A的度数是45°.
补角和余角PPT课件.ppt
补角和余角
练习
若∠α+∠β=90°,∠β+∠γ=90°,则
∠α与∠γ的关系是( C )
A.互余 B.互补 C.相等 D.∠α=90°+∠γ
补角和余角
练习
如图,直线AB,CD交于点O,因为∠1 +∠3=180°,∠2+∠3=180°,所以 ∠1=∠2的依据是( C ) A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
补角和余角
二、互角为余角
1、定义: 如果两个角的和等于一个_直__角__,就说 这两个角互为余角,简称互余,其中一 个角是另一个角的余角.
补角和余角
一、互角为补角
2、数学1= _9_0_°_-_∠__2___ ∠2= _9_0_°_-_∠__1___
补角和余角
回顾
上节课学习了哪些知识? 一、角的大小比较 二、角的和与差 三、角的平分线
补角和余角
一、互角为补角
1、定义: 如果两个角的和等于一个_平__角__,就说 这两个角互为补角,简称互补,其中一 个角是另一个角的补角.
补角和余角
一、互角为补角
2、数学符号语言表达: ∵∠1与∠2互补 ∴ ∠1+ ∠2=180°
补角和余角
课时小结
这节课学习了哪些知识? 一、互为补角的定义 二、互为余角的定义 三、补角和余角的性质
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
补角和余角
三、补角和角余角的性质
如图,∠1=∠3,∠1与∠2互补,∠3与∠4互补,那 么∠2与∠4有什么关系?
解:∵∠1与∠2互补,∴∠2 = 180°- _∠__1_. ∵∠3与∠4互补,∴∠4 = 180 ° -_∠__3_ . 又因为∠ 1= ∠ 3,所以∠___2_=_∠__4_.
余角和补角公开课PPT课件
能力提升
3、一个角的补角和它的余角的3倍的
和等于周角的
11 12
,求这个角?
解:设一个角为x 则这个角的补角为
,(180°-x) 余角为(90°-x)
(,180°-x)+3(。90°-x)=360°×
11 12
解得 x=30°
所以这个角是30°
点拨 方程思想
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
11
1
你能参加吗?
入场方式 只能和一个舞伴两人一起参加。 温馨提示:如何寻找舞伴? 入场券拼起来是一个直角(90°) 或平角(180°)。
2
余角和补角
3
余角:
2 1
如果两个角的 和为9 0 ,就说这两个角互为余角。
补角:
1
2
如果两个角的 和为1 8 0 ,就说这两个角互为补角。
字形巧记
轻松过关
10
谢谢聆听难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
1、帮 找朋友
的余角的补角
80
10
100
45
45
135
(锐角) 90 180
自主尝试 2、50°的余角的补角是多少?(C ) A.40° B.130° C.140° D.150°
分析: 50°的余角:90°- 50°=40°
40°的补角:180°-40°=140°
余角和补角(57张PPT)数学
13
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.
解
归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
14
15
16
17
9.一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是________.
24°28′
解析 设这个角为x°,则它的余角为90°-x°,补角为180°-x°,根据题意,得180°-x°+10°=3×(90°-x°),解得x=40,40°-15°32′=24°28′.
14
15
16
17
解析 ∵OM平分∠AOC,ON平分∠BOC,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
∴∠MOC与∠NOC互余,∠MOA与∠NOC互余,∠MOC与∠NOB互余,∠MOA与∠NOB互余,故选A.
14.如图,∠AOB与∠COD都是直角,∠AOD=140°21′,则∠COB=________°.若∠AOD=α,则∠COB=__________.
解 如图所示,∠BOC与∠BOC′即为所求;
(2)在(1)的条件下,若OP是∠AOC的角平分线,直接写出∠AOP的度数(不需要计算过程).
解 ∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=15°,∴∠AOC=90°或60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.
解 当∠AOD=α时,∠DOE=90°.
解
归纳总结 本题考查了余角和补角以及角平分线的定义;熟练掌握两个角的互余和互补关系是解决问题的关键.
例2 (教材例2变式训练)一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为________.
人教版《余角和补角》实用ppt课件
16
(2) 如图(2)所示,直线 MN 与 PQ 相交于点 E,∠1与
∠2相等吗?为什么? 解:(2) 相等.
因为点 M,E,N 在同一条直线上,
所以∠MEN=180°,即∠2+∠PEN= 180°.
因为点 P,E,Q 在同一条直线上, 所以∠PEQ=180°,即∠l +∠PEN= 180°,
所以∠1=∠2.
两个角互余或互补是两个角之间的数量关系,与它们的位置无关,只与角的度数有关.
角是多少度? 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB
的度数.
一个角的补角与这个角的余角的和比平角少30°,这个角为( )
因为点 M,E,N 在同一条直线上,
解:设这个角的度数是 x. 因为∠AOD +∠BOD=∠AOB = 180°,
(2) 图中互补的角有几对?各是哪些? 同理∠AOD和∠BOE,
(2) 图中互补的角有几对?各是哪些?
由题意,得( 解:设这个角的度数是 x.
锐角的补角比它的余角大_____.
180°-x)-3(90°-
x)=10°,
如图,OD,OE 分别平分∠AOC,∠BOC,A,O,B 三点在同一条直线上,OF 为 OD 的反向延长线,请分别写出∠AOD 的余角和
将一张长方形纸片,沿一个角折叠后,折痕与长方形的边形成了4个角.
∠1与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?
因为∠AOB=90°,所以∠1 +∠BOC=90°.
(2) 图中互补的角有几对?各是哪些?
15 24 o 如图所示,点 O 为直线 AB 上一点,∠AOC=∠DOE=90°.
(2) 如图(2)所示,直线 MN 与 PQ 相交于点 E,∠1与
∠2相等吗?为什么? 解:(2) 相等.
因为点 M,E,N 在同一条直线上,
所以∠MEN=180°,即∠2+∠PEN= 180°.
因为点 P,E,Q 在同一条直线上, 所以∠PEQ=180°,即∠l +∠PEN= 180°,
所以∠1=∠2.
两个角互余或互补是两个角之间的数量关系,与它们的位置无关,只与角的度数有关.
角是多少度? 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB
的度数.
一个角的补角与这个角的余角的和比平角少30°,这个角为( )
因为点 M,E,N 在同一条直线上,
解:设这个角的度数是 x. 因为∠AOD +∠BOD=∠AOB = 180°,
(2) 图中互补的角有几对?各是哪些? 同理∠AOD和∠BOE,
(2) 图中互补的角有几对?各是哪些?
由题意,得( 解:设这个角的度数是 x.
锐角的补角比它的余角大_____.
180°-x)-3(90°-
x)=10°,
如图,OD,OE 分别平分∠AOC,∠BOC,A,O,B 三点在同一条直线上,OF 为 OD 的反向延长线,请分别写出∠AOD 的余角和
将一张长方形纸片,沿一个角折叠后,折痕与长方形的边形成了4个角.
∠1与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?
因为∠AOB=90°,所以∠1 +∠BOC=90°.
(2) 图中互补的角有几对?各是哪些?
15 24 o 如图所示,点 O 为直线 AB 上一点,∠AOC=∠DOE=90°.
余角和补角ppt课件
综合素养训练
(2)若∠ AOE 与∠ DOB 互补,求∠ DOE的度数.
解:因为∠AOE+∠AOC=180°,
∠AOE+∠DOB=180°,所以∠AOC=∠BOD.
因为∠BOC+∠AOC=90°,
所以∠BOC+∠BOD=90°.
所以∠EOD=180°-(∠BOC+∠BOD)=90°.
④,∠α + ∠β =180 °,则∠α和∠β 互补.答案:A
综合素养训练
1.[中考·武威] 若∠α =70 °,则∠α的补角的度数是( B )
A.13 0 °
B.110 °
C.30 °
D. 20 °
综合素养训练
2. 如图,一副三角尺按不同的位置摆放,摆放位置中∠α
与∠β 一定相等的图形个数共有( B )
∠2+
(∠1 - ∠2)=
∠1+
∠2 的余角.D 选项是∠2 的余角.
∠2 =9 0 °,故C 选项不是
答案:D
综合应用创新
方法点拨
识别两个角是否互余,只需要计算两个
角的和是否等于90°即可.
综合应用创新
题型
2 利用角平分线的定义探究互余、互补
例 6 [新视角 操作探究题]如图6.3-26,把一张长方形纸片
FG 是∠CFC′的平分线,
所以∠EFB′=
∠BFB′,∠GFC′= ∠CFC′.
因为∠BFC=180°,所以∠GFC′+∠EFB′=
(∠CFC′+
∠BFB′)= ∠CFB= ×180°=90°.
所以∠GFC′与∠EFB′互为余角.
人教版4.3.3 余角和补角公开课课件
解得x=50°,则180°-x=130°.
即∠AOB=50°, ∠AOC=130°.
C
M
B N
D
O
A
观察与思考
∠α ∠α的余角 5° 85° 32° 58° 45° 45° 77° 13° 62°23′ 27°37′ x°(0<x<90) (90-x)°
∠α的补角 175° 148° 135° 103° 117°37′ (180-x)°
C E
B
练一练
如图,已知∠AOB=90°, ∠AOC= ∠BOD,则与
∠AOC互余的角有__________________. ∠BOC 和 ∠AODA C D O B来自三 方位角互动探究
观看下列视频,议一议其中蕴含的数学知识.
八大方位
E
北 D
45° 45°
H
正东:射线 OA 正南:射线 OB 正西:射线 OC 正北:射线 OD
若∠MON=40°,试求∠AOC与∠AOB的度数.
解:设∠AOB=x, M 因为∠AOC与∠AOB互补, C 则∠AOC=180°-x. 因为OM,ON分别为∠AOC, ∠AOB的平分线, D O 1 1 所以∠AOM= (180 - x) ,∠AOM= x . 2 2 B N
A
1 1 所以 (180 - x) x 40 , 2 2
观察可得结论: 锐角的补角比它的余角大_____. 90°
二 余角和补角的性质
思考:∠1 与∠2,∠3都互为补角, ∠2 与∠3 的大小有什么关系?
1
2
3
∠2=180°-∠1
=∠3=180°-∠1
结论: 同角 (等角) 的补角相等.
类似地,可以得到: 同角 (等角) 的余角相等.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/9
8
三、开动脑筋
如图两堵墙围一个 角 AOB,但人不能进入 围墙,我们如何去测这个角的大小呢?
A
动动脑
C
B O
2021/3/9
9
2021/3/9
10
开动脑筋
已知一个角的补角是这个角的余角的4倍, 求这个角的度数。
解:设这个角为x°,那么它的余角为(90-x) °,它 的补角为(180-x) °,则
同角的补角相等
2021/3/9
18
如图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3, 那么∠2与∠4相等吗?为什么?
2
1
3
4
解:∠2与∠4相等。 因为∠1与∠2互补;∠3与∠4互补, 所以∠2=180°-∠1;∠4=180°-∠3, 又因为∠1=∠3, 所以∠2=∠4。
等角的补角相等
这里, 我们用到 了“等量 减等量, 差相等”。
180-x=4(90-x) 解得x=60
答:这个角是60o。
2021/3/9
11
余角和补角的关系
一个锐角的补角比这个角 的余角大 90°。
2021/3/9
12
(三)、例题:
已知一个角的补角是这个角的余角的 3倍,求这个角的度数。
解:设这个角为 x0,则它的余角(是 90 x)0,它的补角是 (180 x)0,
(2)互余、互补的两角是否一定有公共顶点或公共边?
两角互余或互补,只与角的度数有关,与位置无关。
(3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3 互余
(互补)吗?
不能,互余或互补是两个角之间的数量关系。
2021/3/9
4
你问我答
问题: 1、钝角有没有余角? 2、直角有没有补角? 3、∠α的余角可表示为__9_0_°__-__α, 补角可表示为__1_8_0_°__-__α_。
2021/3/9
1
一张长方形纸片,沿一个 角折叠后,折痕与长方形的边 形成了几个角?
∠1与∠2有什么数量关系?
∠1+∠2=90°
∠3与∠4又有什么数量关系 ? ∠3+∠4=180°
1 2
43
2021/3/9
2
1 2
3 4
如果两个角的和为90° (直角),那么称 这两个角 互为余角 ,简称“互余”。
1 2
O
3
(∠1+∠2=90°, ∠2+∠3=90°)
(2)你能发现哪几个角是相等的(直角除外)?
AOC与BOD B
(∠1=∠3)
D
(3)你能用一句话概括以上规律吗?
同角的余角相等
2021/3/9
15
如图,∠1和∠2互余,∠3和∠4互余,若 ∠1=∠3,那么∠2与∠4相等吗?为什么?
解: ∠2与∠4相等
5.画完图后请回答下列问题:
(1)图中有哪几对互补的角?
1与2, 2与4, 3与4, 1与3
A
(∠1+∠2=180°, ∠2+∠4=180°)
1
C
2
(∠1+∠3=180°, ∠3+∠4=180°)
O 3
4
B
(2)你能发现哪几个角是相等
的? 1=4 , 2=3
D
(3)你能用一句话概括以上规律吗?
2021/3/9
5
判断
1)一个角的余角必为锐角。 2)一个角的补角必为钝角。
(√ )
(× )
3)一个角的补角一定比这个角大。( ×)
4)互余的两个角一定都是锐角,两个锐角一
定互余.
(× )
5)如果∠1=30°,∠2=25°,∠3=35°,那么∠1、 ∠2、∠3这三个角互为余角. ( ×)
2021/3/9
7、如果 A205,B705,那 么 A与 B互 。 为余 ( 角)
8、如果 Ax0, B(90 x)0,那 A 。与 么 B 互 .(余 )
2021/3/9
7
(二)、填表: 45 ° 60° 70025'35'' 90 °
60° 45 ° 30 ° 19034'25'' 不存在 (90 –x) ° 150° 135 ° 120 ° 109034'25'' 90° (180-x) °
2021/3/9
19
性质: 同角或等角的余角相等。 同角或等角的补角相等。
2021/3/920A NhomakorabeaD
1
O
2
如图∠AOB = 90 °
B
∠COD = 90 °
则∠1与∠2是什么关系?
C
答: ∠1 = ∠2
因为∠1+ ∠BOD = 90 °
∠2+ ∠BOD = 90 °
所以∠1 = ∠2 (等角的余角相等)
如果两个角的和为180°(平角),那 么称这两个角 互为补角,简称“互补” 。
2021/3/9
3
提问答疑,理解定义
(1)定义中的“互为”一词如何理解?
如果 ∠1 与∠2互余,那么∠1 的余角是∠2,同样∠2 的余角是∠1 ;如果∠1 与∠2互补,那么∠1 的补角是∠2 , 同样∠2的补角是∠1 。
(∠1=∠E) (同角的余角相等)
2021/3/9
22
2、请认真观察下图,回答下列问题:
(1)图中有哪几对互余的角? C
(∠A+∠B=90°, ∠A+∠2=90°)
根据题意得:
18 x 0 3 (9 0 x )
x45
答:这个角为45 0
2021/3/9
13
四.动手画图,探索性质
1.请你借助直角三角板,在原图上画出∠COB 所有的余角。
A C
2021/3/9
O
B
D
14
三.动手画图,探索性质
2.画完图后请回答下列问题:
A
(1)图中有哪几对互余的角?
C BOC与AOC, BOC与BOD
2021/3/9
21
1、请认真观察下图,回答下列问题:
A
1 B
(1)图中有哪几对互余的角?请用几何语言形式表示: E
(∠A+∠1=90°, ∠1+∠2=90°)
2 C
(∠A+∠E=90°) (∠2+∠E=90°)
(2)图中哪几对角是相等的角(直角除外)?为什么?
D
(∠2=∠A) (同角的余角相等)
6
二.活学活用.加深理解
(一)判断题:
1、90度的角叫余角,180度的角叫补角。 ( )
2、若 12 3900,则 1,2, 3互为(. 余)角
3、如果一个角有补角,那么这个角一定是钝角。( )
4、互补的两个角不可能相等。
( )
5、钝角没有余角,但一定有补角。(
)
6、互余的两个角一定都是锐角,两个锐角一定互余.( )
理由:∵∠1与∠2互余 ∴∠2=90o-∠1 ∵∠3与∠4互余 ∴∠4=90o-∠3
又∵∠1=∠3 ∴∠2=∠4
4 3
1 2
等角的余角相等。
2021/3/9
16
五.动手画图,探索性质
4.请你借助直尺,在原图上画出∠AOB所有的补角并标 上数字。
A
1
C
2
O
B
3
4
D
2021/3/9
17
六.动手画图,探索性质