(完整word版)第一讲加法原理和乘法原理(练习题)
小学奥数 加法原理 乘法原理 知识点+例题+练习 (分类全面)
![小学奥数 加法原理 乘法原理 知识点+例题+练习 (分类全面)](https://img.taocdn.com/s3/m/f53a569567ec102de3bd8903.png)
例4、在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。
问:共有多少种不同的放法?
例5、要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果?
巩固、在左下图中,从A点沿实线走最短路径到B点,共有多少条不同路线?
巩固、左下图是某街区的道路图,C点和D点正在修路不能通过,那么从A点到B 点的最短路线有多少条?
例6、有10根火柴,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法?。
小学数学 加乘原理综合应用 完整版教案 例题+练习+答案
![小学数学 加乘原理综合应用 完整版教案 例题+练习+答案](https://img.taocdn.com/s3/m/a6fc93a714791711cd79179a.png)
加乘原理在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....来完成,这....的独立步骤几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.例题精讲第一板块、简单加乘原理综合应用【例题1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有2+3=5种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有3×2=6种方法.【巩固】从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?从北京转道上海到广州一共有3×3=9种方法,从北京转道武汉到广州一共也有3×3=9种方法供选择,从北京直接去广州有2种方法,所以一共有9+9+2=20种方法.【例题2】从智慧学校到王明家有3条路可走,从王明家到张老师家有2条路可走,从智慧学校到张老师家有3条路可走,那么从智慧学校到张老师家共有多少种走法?根据乘法原理,经过王明家到张老师家的走法一共有3×2=6种方法,从智慧学校直接去张老师家一共有3条路可走,根据加法原理,一共有6+3=9种走法.【巩固】如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?丁丙乙甲从甲地到丙地有两种方法:第一类,从甲地经过乙地到丙地,根据乘法原理,走法一共有4×2=8种方法,;第二类,从甲地经过丁地到丙地,一共有3×3=9种方法.根据加法原理,一共有8+9=17种走法.【例题3】如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点A 出发,沿棱爬行,要求恰好经过每一个顶点一次.问共有多少种不同的走法?F E DCBA走完6个顶点,有5个步骤,可分为两大类:①第二次走C 点:就是意味着从A 点出发,我们要先走F ,D ,E ,B 中间的一点,再经过C 点,但之后只能走D ,B 点,最后选择后面两点.有4×1×2×1×1=8种(从F 到C 的话,是不能到E 的);②第二次不走C :有4×2×2×2×1=32种(同理,F 不能到E);共计:8+32=40种.【巩固】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47.【例题4】某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多少种不同的信号?(6级)由于每次可挂一面、二面或三面旗子,我们可以根据旗杆上旗子的面数分三类考虑:第一类第一类,可以从四种颜色中任选一种,有4种表示法;第二类,要分两步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法.根据乘法原理,共有4×3=12种表示法;第三类,要分三步完成:第一步,第一面旗子可以从四种颜色中选一种,有4种选法;第二步,第二面旗子可从剩下的三种中选一种,有3种选法;第三步,第三面旗子可从剩下的两种颜色中选一种,有2种选法.根据乘法原理,共有4×3×2=24种表示法.根据加法原理,一共可以表示出4+12+24=40种不同的信号.【巩固】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号?分3种情况:⑴取出一面,有5种信号;⑵取出两面:可以表示5×4=20种信号;⑶取出三面:可以表示:5×4×3=60种信号;由加法原理,一共可以表示:5+20+60=85种信号.第三类,三种颜色:4×3×2=24所以,根据加法原理,一共可以表示2+36+24=62种不同的信号.(二)白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种.【例题5】小红和小明举行象棋比赛,按比赛规定,谁先胜头两局谁赢,如果没有胜头两局,谁先胜三局谁赢.共有种可能的情况.小红和小明如果有谁胜了头两局,则胜者赢,此时共2种情况;如果没有人胜头两局,即头两局中两人各胜一局,则最少再进行两局、最多再进行三局,必有一人胜三局,如果只需再进行两局,则这两局的胜者为同一人,对此共有2×2=4种情况;如果还需进行三局,则后三局中有一人胜两局,另一人只胜一局,且这一局不能为最后一局,只能为第三局或第四局,此时共有2×2×2=8种情况,所以共有2+4+8=14种情况.【巩固】过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么,妈妈送出这5件礼物共有种方法.若将遥控汽车给小强,则学习机要给小玉,此时另外3个孩子在剩余5件礼物中任选3件,有5×4×3=60种方法;若将遥控车给小玉,则智力拼图要给小强,此时也有60种方法;若遥控车既不给小强、也不给小玉,则智力拼图要给小强,学习机要给小玉,此时仍然有60种方法.所以共有60+60+60=180种方法.【例题6】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?可以分三种情况来考虑:⑴3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有3×2×1=6种不同的排列,此时有6×2=12种订法.⑵3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.⑶3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+1=19种.【巩固】玩具厂生产一种玩具棒,共4节,用红、黄、蓝三种颜色给每节涂色.这家厂共可生产________种颜色不同的玩具棒.每节有3种涂法,共有涂法3×3×3×3=81(种).但上述81种涂法中,有些涂法属于重复计算,这是因为有些游戏棒倒过来放时的颜色与顺着放时的颜色一样,却被我们当做两种颜色计算了两次.可以发现只有游戏棒的颜色关于中点对称时才没有被重复计算,关于中点对称的游戏棒有3×3×1×1=9(种).故玩具棒最多有(81+9)÷2=45种不同的颜色.【例题7】奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由5个字母a、b、c、d、e组成,并且所有的单词都有着如下的规律,⑴字母e不打头,⑵单词中每个字母a后边必然紧跟着字母b,⑶c 和d不会出现在同一个字母之中,那么由四个字母构成的单词一共有多少种?分为三种:第一种:有两个a的情况只有abab1种第二种,有一个a的情况,又分3类第一类,在第一个位置,则b在第二个位置,后边的排列有4×4=16种,减去c、d同时出现的两种,总共有14种,第二类,在第二个位置,则b在第三个位置,总共有3×4-2=10种.第三类,在第三个位置,则b在第四个位置,总共有3×4-2=10种.第三种,没有a的情况:分别计算没有c的情况:2×3×3×3=54种.没有d的情况:2×3×3×3=54种.没有c、d的情况:1×2×2×2=8种.由容斥原理得到一共有54+54-8=100种.所以,根据加法原理,一共有1+14+10+10+100=135种.【巩固】从6名运动员中选出4人参加4×100接力赛,求满足下列条件的参赛方案各有多少种:⑴甲不能跑第一棒和第四棒;⑵甲不能跑第一棒,乙不能跑第二棒⑴先确定第一棒和第四棒,第一棒是除甲以外的任何人,有5种选择,第四棒有4种选择,剩下的四人中随意选择2个人跑第二、第三棒,有4×3=12种,由乘法原理,共有:5×4×12=240种参赛方案⑵先不考虑甲乙的特殊要求,从6名队员中随意选择4人参赛,有6×5×4×3=360种选择.考虑若甲跑第一棒,其余5人随意选择3人参赛,对应5×4×3=60种选择,考虑若乙跑第二棒,也对应5×4×3=60种选择,但是从360种中减去两个60种的时候,重复减了一次甲跑第一棒且乙跑第二棒的情况,这种情况下,对应于第一棒第二棒已确定只需从剩下的4人选择2人参赛的4×3=12种方案,所以,一共有360-60×2+12=252种不同参赛方案.第二板块、加乘原理与数字问题【例题1】由数字1,2,3可以组成多少个没有重复数字的数?因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有3×2=6个;⑶组成三位数:与组成二位数道理相同,有3×2=6个三位数;所以,根据加法原理,一共可组成3+6+6=15个数.【巩固】用数字0,1,2,3,4可以组成多少个小于1000的自然数?小于1000的自然数有三类.第一类是0和一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个,共有5+20+100=125个.【例题2】由数字0,1,3,9可以组成多少个无重复数字的自然数?满足条件的数可以分为4类:一位、二位、三位、四位数.第一类,组成0和一位数,有4个(0不是一位数,最小的一位数是1);第二类,组成二位数,有3×3=9个;第三类,组成三位数,有3×3×2=18个;第四类,组成四位数,有3×3×2×1=18个.由加法原理,一共可以组成4+9+18+18=49个数.【巩固】用数码0,1,2,3,4,可以组成多少个小于1000的没有重复数字的自然数?分为三类,一位数时,0和一位数共有5个;二位数时,为4×4=16个,三位数时,为:4×4×3=48个,由加法原理,一共可以组成5+16+48=69个小于1000的没有重复数字的自然数.【例题3】用0~9这十个数字可组成多少个无重复数字的四位数.无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.(方法一)分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法;第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法;由乘法原理,共有满足条件的四位数9×9×8×7=4536个.(方法二)组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个;第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.由加法原理,共有满足条件的四位数3024+1512=4536个.【巩固】用0,1,2,3四个数码可以组成多少个没有重复数字的四位偶数?分为两类:个位数字为0的有3×2=6个,个位数字为 2的有2×2=4个,由加法原理,一共有:6+4=10个没有重复数字的四位偶数.【例题4】某人忘记了自己的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择.第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次.【巩固】从1到500的所有自然数中,不含有数字4的自然数有多少个?从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.所以一共有8+8×9+3×9×9+1=324个不含4的自然数.【例题5】从1到100的所有自然数中,不含有数字4的自然数有多少个?从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有个不含4的8+8×9+1=81自然数.【巩固】从1到300的所有自然数中,不含有数字2的自然数有多少个?从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含2的有1、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2;三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300;根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.【例题6】自然数8336,8545,8782有一些共同特征,每个数都是以8开头的四位数,且每个数中恰好有两个数字相同.这样的数共有多少个?两个相同的数字是8时,另一个8有3个位置可选,其余两个位置有9×8=72种填法,有3×9×8=216个数;两个相同的数字不是8时,相同的数字有9种选法,不同的数字有8种选法,并有3个位置可放,有9×8×3=216个数.由加法原理,共有3×9×8+9×8×3=432个数.【巩固】在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?若相同的数是1,则另一个1可以出现在个、十、百位中的任一个位置上,剩下的两个位置分别有9个和8个数可选,有3×9×8=216个;若相同的数是2,有3×8=24个;同理,相同的数是0,3,4,5,6,7,8,9时,各有 24个,所以,符合题意的数共有216+9×24=432个【例题7】用数字1,2组成一个八位数,其中至少连续四位都是1的有多少个?将4个1看成一个整体,其余4个数有5种情况:4个2、3个2、2个2、1个2和没有2;①4个2时,4个1可以有5种插法;②3个2时,3个2和1个1共有4种排法,每一种排法有4种插法,共有4×4=16种;③2个2时,2个2和2个1共有6种排法,每一种排法有3种插法,共有6×3=18种;④1个2时,1个2和3个1共有4种排法,每一种排法有2种插法,共有4×2=8种;⑤没有2时,只有1种;所以,总共有:5+16+18+8+1=48个.答:至少连续四位都是1的有48个.【巩固】七位数的各位数字之和为60,这样的七位数一共有多少个?七位数数字之和最多可以为9×7=63.63-60=3.七位数的可能数字组合为:①9,9,9,9,9,9,6.第一种情况只需要确定6的位置即可.所以有6种情况.②9,9,9,9,9,8,7.第二种情况只需要确定8和7的位置,数字即确定.8有7个位置,7有6个位置.所以第二种情况可以组成的7位数有7×6=42个.③9,9,9,9,8,8,8,第三种情况,3个8的位置确定即7位数也确定.三个8的位置放置共有7×6×5=210种.三个相同的8放置会产生3×2×1=6种重复的放置方式.所以3个8和4个9组成的不同的七位数共有210÷6=35种.所以数字和为60的七位数共有35+42+7=84.【例题8】从自然数1~40中任意选取两个数,使得所选取的两个数的和能被4整除,有多少种取法?2个数的和能被4整除,可以根据被4除的余数分为两类:第一类:余数分别为0,0.1~40中能被4整除的数共有40÷4=10(个),10个中选2个,有10×9÷2=45(种)取法;第二类:余数分别为1,3.1~40中被4除余1,余3的数也分别都有10个,有10×10=100(种)取法;第三类:余数分别为2,2.同第一类,有45种取法.根据加法原理,共有45+100+45=190(种)取法.【巩固】在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有多少种不同的取法?两个数的和是3的倍数有两种情况,或者两个数都是3的倍数,或有1个除以3余1,另一个除以3余2.1~10中能被3整除的有3个数,取两个有3种取法;除以3余1的有4个数,除以3余2的有3个数,各取1个有3×4=12种取法.根据加法原理,共有取法:3+12=15种.【例题9】1到60这60个自然数中,选取两个数,使它们的乘积是被5除余2的偶数,问,一共有多少种选法?两个数的乘积被5除余2有两类情况,一类是两个数被5除分别余1和2,另一类是两个数被5除分别余3和4,只要两个乘数中有一个是偶数就能使乘积也为偶数.1到60这60个自然数中,被5除余1、2、3、4的偶数各有6个,被5除余1、2、3、4的奇数也各有6个,所以符合条件的选取方式一共有(6×6+6×6+6×6+6×6)+(6×6+6×6)=216种.【巩固】一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”.例如1331,7,202都是回文数,而220则不是回文数.问:从一位到六位的回文数一共有多少个?其中的第1996个数是多少? 我们将回文数分为一位、二位、三位、…、六位来逐组计算.所有的一位数均是“回文数”,即有9个;在二位数中,必须为aa形式的,即有9个(因为首位不能为0,下同);在三位数中,必须为aba(a、b可相同,在本题中,不同的字母代表的数可以相同)形式的,即有9×10 =90个;在四位数中,必须为abba形式的,即有9×10个;在五位数中,必须为abcda形式的,即有9×10×10=900个;在六位数中,必须为abccba形式的,即有9×10×10=900个.所以共有9 + 9 + 90 + 90 + 900 + 900 = 1998个,最大的为999999,其次为998899,再次为997799.而第1996个数为倒数第3个数,即为997799.所以,从一位到六位的回文数一共有1998个,其中的第1996个数是997799.【例题10】如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.因为要求“填在黑格里的数比它旁边的两个数都大”,所以填入黑格中的数不能够太小,否则就不满足条件.通过枚举法可知填入黑格里的数只有两类:第一类,填在黑格里的数是5和4;第二类,填在黑格里的数是5和3.接下来就根据这两类进行计数:第一类,填在黑格里的数是5和4时,分为以下几步:第一步,第一个黑格可从5和4中任选一个,有2种选法;第二步,第二个黑格可从5和4中剩下的一个数选择,只有1种选法;第三步,第一个白格可从1,2,3中任意选一个,有3种选法.第四步,第二个白格从1,2,3剩下的两个数中任选一个,有2种选法;第五步,最后一个白格只有1种选法.根据乘法原理,一共有(2×1)×(3×2×1)=12种.第二类,填在黑格里的数是5和3时,黑格中有两种填法,此时白格也有两种填法,根据乘法原理,不同的填法有2×2=4种.所以,根据加法原理,不同的填法共有12+4=16种.【巩固】在如图所示1×5的格子中填入1,2,3,4,5,6,7,8中的五个数,要求填入的数各不相同,并且填在黑格里的数比它旁边的两个数都大.共有种不同的填法.如果取出来的五个数是1、2、3、4、5,则共有不同填法16种.从8个数中选出5个数,共有8×7×6÷(3×2×1)=56中选法,所以共16×56=896种.【例题11】从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有种选法.由于要求选出的数中不存在某个自然数是另一个自然数的2倍,可以先根据2倍关系将1~12进行如下分组:(1,2,4,8);(3,4,12);(5,10);(7);(9);(11).由于第一组最多可选出2个数,第二组最多可选出2个数,其余四组最多各可选出1个数,所以最多可选出8个数.现在要求选出7个数,所以恰好有一组选出的数比它最多可选出的数少一个.⑴如果是第一组少一个,也就是说第一组选1个,第二组选2个,其余四组各选1个,此时有4×1×2×1×1×1=8种选法;⑵如果是第二组少一个,也就是说第一组选2个,其余五组各选一个,此时第一组有3种选法,根据乘法原理,有3×3×2×1×1×1=18种选法;⑶如果是第三组少一个,也就是说第一组选2个,第二组选2个,第三组不选,其余三组各选1个,有3×1×1×1×1×1=3种选法;⑷如果是第四、五、六组中的某一组少一个,由于这三组地位相同,所以各有3×1×2×1×1×1=6种选法.根据加法原理,共有8+18+3+6×3=47种不同的选法.【巩固】从1到999这999个自然数中有个数的各位数字之和能被4整除.由于在一个数的前面写上几个0不影响这个数的各位数字之和,所以可以将1到999中的一位数和两位数的前面补上两个或一个0,使之成为一个三位数.现在相当于要求001到999中各位数字之和能被4整除的数的个数.一个数除以4的余数可能为0,1,2,3,0~9中除以4余0的数有3个,除以4余1的也有3个,除以4余2和3的各有2个.三个数的和要能被4整除,必须要求它们除以4的余数的和能被4整除,余数的情况有如下5种:0+0+0;0+1+3;0+2+2;1+1+2;2+3+3.⑴如果是0+0+0,即3个数除以4的余数都是0,则每位上都有3种选择,共有3×3×3=27种可能,但是注意到其中也包含了000这个数,应予排除,所以此时共有27-1=26个;⑵如果是0+1+3,即3个数除以4的余数分别为0,1,3,而在3个位置上的排列有3×2×1=6种,所以此时有3×3×2×6=108个;⑶如果是0+2+2,即3个数除以4的余数分别为0,2,2,在3个位置上的排列有3种,所以此时有3×2×2×3=36个;⑷如果是1+1+2,即3个数除以4的余数分别为1,1,2,在3个位置上的排列有3种,所以此时有3×3×2×3=54个;⑸如果是2+3+3,即3个数除以4的余数分别为2,3,3,在3个位置上的排列有3种,此时有2×2×2×3=24个.根据加法原理,共有26+108+36+54+24=248.【例题12】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18种不同的情形.【巩固】有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?要使两个数字之和为奇数,只要这两个数字的奇偶性不同,即这两个数字一个为奇数,另一个为偶数,由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现偶数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.【例题13】有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这两个骰子,向上一面点数之和为偶数的情形有多少种?方法一:要使两个骰子的点数之和为偶数,只要这两个点数的奇偶性相同,可以分为两步:第一步第一个骰子随意掷有6种可能的点数;第二步当第一个骰子的点数确定了以后,第二个骰子的点数只能是与第一个骰子的点数相同奇偶性的3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6×3=18(种).方法二:要使两个骰子点数之和为偶数,只要这两个点数的奇偶性相同,所以,可以分为两类:第一类:两个数字同为奇数.有3×3=9(种)不同的情形.第二类:两个数字同为偶数.类似第一类,也有3×3=9(种)不同的情形.根据加法原理,向上一面点数之和为偶数的情形共有9+9=18(种).方法三:随意掷两个骰子,总共有6×6=36(种)不同的情形.因为两个骰子点数之和为奇数与偶数的可能性是一样的,所以,点数之和为偶数的情形有36÷2=18(种).【巩固】有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.随意掷这三个骰子,向上一面点数之和为偶数的情形有多少种?方法一:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.可以分为三步:第一步,第一个骰子随意掷有6种可能的点数;第二步,当第一个骰子的点数确定了以后,第二个骰子的点数还是奇数偶数都有可能所有也有6种可能的点数;第三步,当前两个骰子的点数即奇偶性都确定了之后第三个骰子点数的奇偶性就确定了所以只有3种可能的点数.根据乘法原理,向上一面的点数之和为偶数的情形有6×6×3=108(种).方法二:要使三个点数之和为偶数,有两种情况,三个点数都为偶数,或者一个点数为偶数另外两个点数为奇数.所以,要分两大类来考虑:第一类:三个点数同为偶数.由于掷骰子可认为是一个一个地掷.每掷一个骰子出现偶数点数都有3种可能.由乘法原理,这类共有3×3×3=27(种)不同的情形.。
加法原理与乘法原理练习题(详解)
![加法原理与乘法原理练习题(详解)](https://img.taocdn.com/s3/m/c1d6b10848d7c1c709a14525.png)
加法原理与乘法原理1.一个礼堂有4个门,若从一个门进,从任一门出,共有不同走法( ) A.8种B.12种 C.16种 D.24种答案 C2.从集合A={0,1,2,3,4}中任取三个数作为二次函数y=ax2+bx+c的系数a,b,c.则可构成不同的二次函数的个数是( )A.48 B.59 C.60 D.100 答案 A3.某电话局的电话号码为168~×××××,若后面的五位数字是由6或8组成的,则这样的电话号码一共有( )A.20个 B.25个 C.32个 D.60个答案 C4.在2、3、5、7、11这五个数字中,任取两个数字组成分数,其中假分数的个数为( )A.20 B.10 C.5 D.24 答案 B5.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( )A.8种 B.15种 C.125种 D.243种答案 D6.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种 B.18种 C.12种 D.6种答案 B7.已知异面直线a,b上分别有5个点和8个点,则经过这13个点可以确定不同的平面个数为( )A.40 B.13 C.10 D.16 答案 B8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有( )A.336种 B.120种 C.24种 D.18种答案 A9.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.10种 B.20种 C.25种 D.32种答案 D10.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( ) A.14 B.23 C.48 D.120 答案 C11.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种 B.12种 C.24种 D.30种答案 C12.从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得________个偶数.答案 413.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.答案1214.动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种?15.用五种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色.(1)共有多少种不同的涂色方法?(2)若要求相邻(有公共边)的区域不同色,则共有多少种不同的涂色方法?解析(1)由于1至4知,不同的涂色方法有54=625种.(2)第一类,1号区域与3号区域同色时,有5×4×4=80种涂法,第二类,1号区域与3号区域异色时,有5×4×3×3=180种涂法.依据分类加法计数原理知,不同的涂色方法有80+180=260(种).16.用0,1,…,9这十个数字,可以组成多少个.(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?(4)小于500,且末位数字是8或9的无重复数字的三位整数?(5)小于100的无重复数字的自然数?解析由于0不可在最高位,因此应对它进行单独考虑.(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步乘法计数原理知,符合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,符合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字可有9种选择,个位数字有8种选择,由分步乘法计数原理知,符合题意的三位数共有4×9×8=288(个).(4)百位数字只有4种选择,个位数字只有2种选择,十位数字可有8种选择,由分步乘法计数原理知,符合题意的三位数共有4×2×8=64(个).(5)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,符合题意的两位数共有9×9=81(个).由分类加法计数原理知,符合题意的自然数共有10+81=91(个).17.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系第一、第二象限中的不同点的个数有( )A.18个 B.16个 C.14个 D.10个答案 C18.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落可能性共有( )A .6种B .36种C .63种D .64种 答案 C19.已知互不相同的集合A 、B 满足A ∪B ={a ,b },则符合条件的A ,B 的组数共有________种. 答案 920.已知a ,b ∈{0,1,2,…,9},若满足|a -b |≤1,则称a ,b “心有灵犀”.则a ,b “心有灵犀”的情形共有( )A .9种B .16种C .20种D .28种 答案 D21.(2012·广东)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19答案 D 22.把10个苹果分成三堆,要求每堆至少有1个,最多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种 答案 A23.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .8 答案 D24.若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有________种不同情况(没有并列冠军)? 答案 5325.有1元、2元、5元、10元、50元、100元人民币各一张,则由这6张人民币可组成________种不同的币值. 答案 6326.三边长均为整数,且最大边长为11的三角形共有________个.答案 3627.设椭圆x 2m +y 2n=1的焦点在y 轴上,m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆个数为________. 答案 2028.如图所示,在连接正八边形的三个顶点而成的三角形中与正八边形有公共边的三角形有________个.答案40欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
加乘原理练习题
![加乘原理练习题](https://img.taocdn.com/s3/m/627dc154a9956bec0975f46527d3240c8447a1ca.png)
加乘原理练习题一、填空题1.“IMO”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出种不同颜色搭配的“IMO”.2.H市的电话号码有七个数字,其中第一个数字不为0,也不为1.这个城市、数字不重复的电话号码共有个.3.这是一个棋盘,将一个白子和一个黑子放在棋盘线的交叉点上,但不能在同一条棋盘线上,共种不同的放法.4.电影院有六个门,其中A、B、C、D门只供退场时作出口,甲、乙门作为入口也作为出口.共有种不同的进出路线.5.将3封信投到4个邮筒中,一个邮筒最多投一封信,有种不同的投法.6.两人见面要握一次手,照这样的规定,五人见面共握次手.7.有四张卡片,上面分别写有0,1,2,4四个数字,从中任意抽出三张卡片组成三位数.这些卡片共可组成个不同的三位数.8.圆周上有A、B、C、D、E、F、G、H8个点,每任意三点为顶点作三角形.这样共可作出个不同的三角形?9.用1,2,3这三个数字可以组成多少个不同的三位数.如果按从小到大的顺序排列,213是第个数.10.一排房有四个房间,在四个房间中住着甲、乙、丙三人,规定每个房间只许住一人,并且只允许两个人住的房间挨在一起.第三个人的房间必须和前两个人隔开,有种住法.二、解答题11.在一次晚会上男宾与每一个人握手,女宾不与女宾握手,如果有8对夫妻参加晚会,那么这16人共握手多少次?12.20名运动员进行乒乓球球比赛,每两名运动员都要比赛一场,每场比赛3局2胜,全部比赛结束后,所有各局比赛最高得分为25:23,那么,至少有多少局的比分是相同的?13.下面五张卡片上分别写有数字:可以用它们组成许多不同的五位数,求所有这些五位数的平均数.14.有一种用六位数表示日期的方法,如:890817表示的是1989年8月17日,也就是从左到右第一、二位数表示年,第三、四位数表示月,第五、六位数表示日.如果用这种方法表示1991年的日期,那么全年中六个数字都不相同的日期共有多少天?———————————————答案——————————————————————1.60.先写I,有5种方法;再写M,有4种方法;最后写O,有3种方法.一共有5×4×3=60方法.2.483840.先排首位,有8种方法.再依次排后面六位,依次有9,8,7,6,5,4种方法.故一共有8×9×8×7×6×5×4=483840数字不同的电话号码.3.72.先排黑子,它可以放在任一格,有12种放法.再排白子,它与黑子不能在同一行,也不能在同一列,只有6种方法.一共有12×6=72放法.4.12.先选入口,有2种方法,再选出口,有6种方法,一共有12种方法.5.24.第一封信有4种投法,第二封信有3种投法,第三封信有2种投法,共有4×3×2=24投法.6.10.每一人要握4次手,五人共握4×5=20,但在上述计算中,每次握手都被计算了2次,故实际上握手次数为20÷2=10.7.18.先排百位,有3种方法;再排十位,也有3种方法;最后排个位,有2种方法,一共有3×3×2=18方法.即可以组成18个不同的三位数.8.56.选第一个顶点,有8种方法;选第二个顶点,有7种方法;选第三个顶点,有6种方法.共有8×7×6选法.但在上述计算中,每个三角形都被计算了6次,故实际上有÷6=56三角形.9.6,3.排百位、十位、个位依次有3种、2种、1种方法,故一共有3×2×1=6方法,即可以组成6个不同三位数.它们依次为123,132,213,231,312,321.故213是第3个数.10.12.三个人住四个房间,一共有4×3×2=24种不同住法.其中三人挨着的有×2=12,故符合题意的住法有24-12=12.11.如果16人都互相握手应握.其中应减去女宾间的握手次数,还应减去夫妻间的握手次数8次,即共握手120-28-8=84.12.20名运动员共要赛,每场最少打2局,故比赛局数不少于190×2=380.而最高分为25:23,这样就会有25:23,24:22,23:21,22:20以及21:0至21:19这24种情况,故至少有局比分相同.13.当首数为1时,2有4个位置可放,3有3个位置可放,其余为0,共有4×3=12个不同的数.在12个数中0,0,2,3在各个数位上都出现了3次,故12个数之和为:×10000+×1111=136665.当首位为2或3时,用以上方法可求得和为253332和369999,平均数为÷36=21111.14.显然第一、二位为9和1.这样一来第三位不能是1,只能是0.第五位不能是0,1,只能是2.第4位有6种排法,第6位有5种排,故一共有6×5=30排法,即全年中六个数字都不同的日期共有30天.加法、乘法原理练习题1、李苹从A城到B城,可以乘火车,也可以乘汽车,还可以乘飞机。
小学数学《加、乘原理综合运用》练习题 (含答案)
![小学数学《加、乘原理综合运用》练习题 (含答案)](https://img.taocdn.com/s3/m/f397cd14fd0a79563d1e7206.png)
小学数学《加、乘原理综合运用》练习题(含答案)Ⅰ、简单加乘原理综合运用【例1】(★)如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?分析:根据乘法原理,经过乙地到丙地的走法一共有4×2=8种方法,经过丁地到丙地一共有3×3=9种方法,根据加法原理,一共有8+9=17种走法.[前铺]从小红家到小明家有4条路可走,从小明家到小海家有2条路可走,从小红家到小海家有3条路可走,那么从小红家到小海家共有多少种走法?分析:经过小明家到小海家的走法一共有4×2=8种方法,从小红家直接去小海家一共有3条路可走,一共有11种走法.【例2】将5列车停在5条不同的轨道上,其中a车不能停在第一道上,b车不能停在第二道上,那么不同的停车方法共有多少种?分析:对于a车停放的轨道进行分类考虑:当a车排在第二道的时候,其余的四列车没有任何限制,有4×3×2×1=24种停车法;当a车不排在第二道的时候,a车也不能排在第一道,a车有3种停车法,b 不能停在第二道,也不能停在a车已经停放的车道,所以也只有3种停车法,剩下的3辆车可以任意停入剩下的三条轨道,有3×2×1=6种停法,由乘法原理,共有3×3×6=54种停法,最后根据加法原理,一共有24+54=78种不同停车方案.[巩固](★★走进美妙数学花园少年数学邀请赛)如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.分析:填在黑格里的数是5和4时,不同的填法有2!×3!=12(种);填在黑格里的数是5和3时,不同的填法有2×2=4(种).所以,共有不同填法12+4=16(种).Ⅱ、加乘原理与数论【例3】(★★)在所有的三位数中,各位数字之和是19的数共有多少个?分析:三个数字之和是19的共有10种,9,9,1;9,8,2;9,7,3;9,6,4;9,5,5;8,8,3;8,7,4;8,6,5;7,7,5;7,6,6.其中三个数字各不相同的有5种,每种能组成6个不同的三位数;三个数字中有两个相同的有5种,每种能组成3个不同的三位数,所求数共有:6×5+5×3=45(个)[前铺]从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?分析:76个数当中有38个奇数和38个偶数,选取两个数只要是奇偶性质相同就能保证其和为偶数,选取两个奇数的方法有38×37÷2=703种,选取两个偶数的方法有38×37÷2=703种,一共有1406种选取方法.【例4】(★★★)在前100个自然数中取出两个不同的数相加,其和是3的倍数的共有多少种不同的取法?分析:将1~100按照除以3的余数分为3类,(1)余数为1的有1,4,7,…100,一共有34个,(2)余数为2的一共有33个,(3)可以被3整除的一共有33个,取出两个不同的数其和是3的倍数只有两种情况,从(1)(2)类中各取一个数,有34×33=1122(种)取法;从(3)中取两个数,有33×32÷2=528(种)取法,不同取法共有:1122+528=1650(种).[前铺]在1~10这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有种不同的取法.分析:三个不同的数和为3的倍数有四种情况:三个数同余1,三个数同余2,三个数都被3整除,余1余2余0各有1个,三类情况分别有4种、1种、1种、36种,所以一共有42种.【例5】(★★★)有两个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.将两个骰子放到桌面上,向上的一面点数之和为偶数的有多少种情形?分析:要使两个点数之和为偶数,只要这两个点数的奇偶性相同,即这两个点数要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个点数同为奇数.由于放两个骰子可认为是一个一个地放.放第一个骰子时,出现奇数有三种可能,即1,3,5;放第二个骰子,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个点数同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后由加法原理即可求得两个骰子向上面点数之和为偶数的共有3×3+3×3=18种不同的情形.[拓展] 有三个骰子,每个骰子的六个面分别有1、2、3、4、5、6个点.将三个骰子放到桌面上,向上的一面点数之和为奇数的有多少种情形?分析:要使三个点数之和为奇数,有两种情况,三个数都为奇数,或者一个数为奇数另外两个数为偶数所以,要分两大类来考虑.第一类,三个点数同为奇数.由于放骰子可认为是一个一个地放.放第一个骰子时,出现奇数有三种可能,即1,3,5;放第二个骰子,出现奇数也有三种可能,放第三个骰子,出现奇数也有三种可能,由乘法原理,这时共有3×3×3=27种不同的情形.第二类,两个点数为偶数,另一个点数为奇数,类似第一类的讨论方法,奇数的骰子有3种选法,共有3×3×3×3=81种不同情形.最后由加法原理即可求得三个骰子向上面点数之和为偶数的共有3×3×3+3×3×3×3=108种不同的情形.Ⅱ、加乘原理与图论(染色、图形组合)【例6】 用四种颜色对下图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?分析:第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有3×2×2=12(种);当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有3×2×1×1=6(种).所以共有4×3×(2×2+2)=72种不同的涂法[前铺]地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝、绿四种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:第一步:首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有3×2=6种方法,D 剩下2种方法,对该图的染色方法一共有4×(3×3+3×2×2)=84种方法.【例7】 (★★★)一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?分析:方法一:所有的三角形一共可以分为3类,第一类:三角形三个顶点都在圆周上,这样的三角形一共有7×6×5÷(3×2×1)=35种;C BD A第二类:三角形两个顶点在圆周上,这样的三角形一共有7×6÷(2×1)×5=105种;第三类:三角形一个顶点在圆周上,这样的三角形一共有7×5×4÷(2×1)=70种;一共可以画出35+105+70=210种.方法二:不共线的3点可以确定一个三角形,这样任取3点构成的组合数与三角形的个数之间便有了一定的联系,但是要注意去掉其中3点共线的情况.12×11×10÷(3×2×1)-5×4×3÷(3×2×1)=210种.[前铺]直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?分析:画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:(1)在a线上找一个点,有5种选取法,在b线上找两个点,有4×3÷2=6(种),根据乘法原理,一共有:5×6=30(个)三角形(2)在b线上找一个点,有4种选取法,在a线上找两个点,有5×4÷2=10(种),根据乘法原理,一共有:4×10=40(个)三角形根据加法原理,一共可以画出:30+40=70(个)三角形【例8】(★★★★)在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形).分析:由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取3个点,就可以画出一个三角形,如果这三个点其中两点构成的线段小于直径,并且第三个点在被其余两点分割的较小的圆周上,则这三个点构成钝角三角形,这样所有的钝角三角形可分为三类,第一类是长边端点之间仅相隔一个点,这样的三角形有10×1=10个,第二类是长边端点之间相隔两个点,这样的三角形有10×2=20个,第三类是长边端点之间相隔三个点,这样的三角形有10×3=30个,所以一共可以画出60个钝角三角形.[拓展]三条平行线上分别有2,4,3个点(下图),已知在不同直线上的任意三个点都不共线.问:以这些点为顶点可以画出多少个不同的三角形?分析:(方法一)本题分三角形的三个顶点在两条直线上和三条直线上两种情况(1)三个顶点在两条直线上,一共有4×3÷2×2+3×2÷2×2+3×2÷2×4+4×3÷2×3+4+3=55(个)(2)三个顶点在三条直线上,由于不同直线上的任意三个点都不共线,所以一共有:2×4×3=24(个)根据加法原理,一共可以画出55+24=79(个)三角形.(方法二)9个点任取三个点有9×8×7÷(3×2×1)=84种取法,其中三个点都在第二条直线上有4种,都在第三条直线上有1种,所以一共可以画出84-4-1=79(个)三角形.Ⅲ、排列组合【例9】(★★)用1、2、3、4、5这五个数字,可以组成多少个比20000大且百位数字不是3的无重复数字的五位数?分析:分两类:(1)把3排在最高位上,其余四个数字可以任意放到其余四个数位上,有4×3×2×1=24种做法,对应24个不同的五位数(2)把2、4、5放在最高位上,有3种选择,百位数上有除最高位和3以外的三种选择,其余的三个数字可以任意放到其余3个数位上,由乘法原理,可以组成3×3×3×2×1=54个不同的五位数由加法原理,可以组成24+54=78个不同的五位数.[前铺]用数字0,1,2,3,4(可重复使用)可以组成多少个小于5000的自然数?分析:小于1000的自然数有三类.第一类是一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个.第四类是四位数,有4×4×3×2=96个,共有5+20+100+96=221个.【例10】(★★★)从1到500的所有自然数中,不含有数字4的自然数有多少个?分析:从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.所以一共有8+8×9+3×9×9+1=324个不含4的自然数.[巩固]从1到100的所有自然数中,不含有数字4的自然数有多少个?分析:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.【例11】(★★★)某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜至少要试多少次?.分析:四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种第一种中,只要考虑6的位置即可,6可以随意选择四个位置,其余位置方1,共有4种选择第二种中,先考虑放2,有4种选择,再考虑5的位置,有3种选择,剩下的位置放1,共有4×3=12种选择,同理,第三、第四、第五种都有12种选择,最后一种与第一种相似,3的位置有四种选择,其余位置放2,共有4种选择.由加法原理,一共可以组成4+12+12+12+12+4=56个不同的四位数,即为确保打开保险柜至少要试56次. [拓展]7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析:首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:7=1+1+1+4,7=1+2+2+2,7=1+1+2+3,其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)(方法二)把七个球排成一行,并用三个“挡板”把它们分成四组,每一组对应一个盒子,则一共有6个位置可以放挡板,从中选择三个,有3620C 种选法.【例12】(★★)红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:(方法一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色:都是蓝色的或者都是白色的,2种可能;(2)两种颜色:(4×3)×3=36(3)三种颜色:4×3×2=24所以,一共可以表示2+36+24=62种不同的信号(方法二)每一个位置都有4种颜色可选,共有4×4×4=64种,但是不能有三红或者三黄,所以减去2种,共有64-2=62种.[拓展] 五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:(方法一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色: 5种可能;(2)两种颜色:(5×4)×3=60(3)三种颜色:5×4×3=60所以,一共可以表示5+60+60=125种不同的信号(方法二)每一个位置都有5种颜色可选,所以共有5×5×5=125种.1. (★例1)从学而思学校到王明家有4条路可走,从王明家到张老师家有2条路可走,从学而思学校到张老师有3条路可走,那么从学而思学校到张老师家共有多少种走法?分析:根据乘法原理,经过王明家到张老师家的走法一共有4×2=8种方法,从学而思学校直接去张老师家一共有3条路可走,根据加法原理,一共有8+3=11种走法.2. (★★★例6)地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选,不同的涂法有3×2×2=12(种);当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D也只有1种颜色可选(与A 相同),不同的涂法有3×2×1×1=6(种).所以共有12+6=18种不同的涂法.3. (★★例7)在一个圆周上均匀分布10个点,以这些点再加上圆心一共11个点为端点,可以画出多少小于直径的线段.分析:由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段一共有45种方法,其中包括5条直径,应当舍去,其余线段的长都小于直径,一共有40种方法 .以圆心为端点的线段一共有10条,所以一共可以画出40+10=50条线段.4. (★★★例8)如图所示分布着9个点,以这9个点为端点能构成多少个三角形?分析:三条线段上各取1点能构成3×3×3=27.如果在一条线段上取两点,在另一条线段上取一点一共C B D A有(3×2)×(3×2÷(2×1))×(3÷1)=54,所以一共有81种.5.(★★★例10)从1到300的所有自然数中,不含有数字2的自然数有多少个?分析:从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含4的有l、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2.三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300.所以根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.。
加法原理和乘法原理讲座例1.试卷
![加法原理和乘法原理讲座例1.试卷](https://img.taocdn.com/s3/m/ec83b5b7f5335a8103d22078.png)
一、加法原理和乘法原理讲座例题1、从4个男生,5个女生中各选一人担任组长,有多少种不同的选法?2、5个文具盒,4支铅笔,3支钢笔,2把直尺,各取一件配成一套学习用具,最多能配多少套不同的学习用具?3、一天上午要上语文、数学、体育各一节课,这半天的三节课有几种不同的排法。
4、有不同的语文书6本,数学书8本,英语书5本,音乐书4本,从中任取一本,共有多少种取法?5、两个木箱内装有不同颜色的球,第一个木箱里装有4个,第二个木箱里装有7个。
(1)从两个木箱里任了一个球,有多少种不同的取法?(2)从两个木箱里各取一个球,有多少种不同的取法?6、从1-9这九个数中,每次取2个数,这两个数的和必须大于10,能有多少种取法?7、在1-100的自然数中,一共有多少个数字?8、在1-100的自然数中,一共有多少个数字1?9、用2、3、5、7四个数字可以组成(1)多少个三位数(2)多少个没有重复数字的三位数10、用1、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?11、用0、2、3、5、7这五个数字可以组成多少个没有重复数字的三位数?12、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,如果一根旗杆上同时最多可以挂3面旗,现有足够的红色和黄色彩旗。
可以表示多少种不同的信号?13、用彩旗表示信号,不同面数,不同颜色,排列顺序不同都示不同的信号,现有红、黄、蓝色的彩旗各一面,可以表示出多少种不同的信号?14、用数字0、1、3、5可以组成多少个两位数?可以组成多少个没有重复数字的两位数?三、最大与最小1、从0、1、2、4、6、8、9这七个数中,选出5个数字组成一个能被5整除,并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的故事书,每天看的页数不同,而且一天中最少看3次,那么看完这本收最多需要几天?3、把自然数1、2、3、4、。
39、40依次排列,划去65个数,得到的多位数最大是多少?4、把17分成几个自然数的和,再求出这些数的积,要使得积尽可能地大,最大的积是多少?5、把1、2、3、4、5、9填入方框里,要使两个三位数的积最大,怎样填?6、比较下面两个积的大小A=987654321X123456789B=687654321X423456789四、包含与排除1、某班学生,每人至少有乒乓球或羽毛球中的一样,已知有乒乓球的有41人,有羽毛球的33人,两者都有的有22人,这个班共有多少人?2、光明小学四年级一班学生到野外每人都采集到标本,采集到昆虫标本的有29人,采集到植物标本的有31人,两种标本都采集到的有9人,全班共有学生多少人?3、四二班学生在体育课时除2名因病请假的学生名都参加了体育考试,考了短跑的有32人,考了跳远的有26人,两样都考了的11人,那么四二班共有学生多少人?4、在100人中,会下中国象棋的有66人,会下国际象棋的有49人,这两种棋都不会的有19人,两种棋都会下的有几人?5、有100位旅客,其中有10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中,既懂英语,又懂俄语的有多少人?6、某校四年级有学生135人,报名参加体育组的有120人,参加文艺组的有98人。
乘法原理和加法原理练习题
![乘法原理和加法原理练习题](https://img.taocdn.com/s3/m/5f1de5de50e79b89680203d8ce2f0066f53364e3.png)
乘法原理和加法原理练习题乘法原理和加法原理是数学中常用的解决组合问题的方法。
它们可以帮助我们计算不同情况下的总数,从而更好地理解和解决实际生活中的问题。
下面是一些乘法原理和加法原理的练习题,帮助大家更好地掌握这两个原理的应用。
练习题1:某班级有5个男生和6个女生,要选出一名男生和一名女生代表该班参加学校的演讲比赛。
问有多少种不同的选择?解答:根据乘法原理,我们可以将选择男生和选择女生分为两个步骤。
第一步,选择一名男生,有5种选择。
第二步,选择一名女生,有6种选择。
根据乘法原理,两个步骤的选择数相乘,所以总的不同选择数为5 × 6 = 30。
练习题2:某餐馆供应早餐的菜单有3种主食和2种饮料可供选择。
现在小明想选择一种主食和一种饮料作为早餐。
问有多少种不同的选择?解答:同样地,我们可以将选择主食和选择饮料分为两个步骤。
第一步,选择一种主食,有3种选择。
第二步,选择一种饮料,有2种选择。
根据乘法原理,两个步骤的选择数相乘,所以总的不同选择数为3× 2 = 6。
练习题3:小明有红、黄、蓝三种颜色的T恤,他还有黑、白两种颜色的裤子。
如果他想搭配一套T恤和一条裤子,问有多少种不同的搭配方式?解答:同样地,我们可以将选择T恤和选择裤子分为两个步骤。
第一步,选择一种T恤,有3种选择。
第二步,选择一种裤子,有2种选择。
根据乘法原理,两个步骤的选择数相乘,所以总的不同搭配方式数为3 × 2 = 6。
练习题4:小明需要从A、B、C、D、E五个城市中选择两个作为他的旅行目的地。
问有多少种不同的选择方式?解答:根据加法原理,我们可以将选择旅行目的地分为两种情况。
情况一,选择两个不同的城市作为旅行目的地。
这种情况下,我们可以根据排列组合的知识,使用C(5, 2)的方式计算。
C(5, 2)表示从5个城市中选择2个不同的城市的组合数,计算公式为5! / (2! × (5-2)!) = 10。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案47加法、乘法原理(一)
![小学奥数全国推荐四年级奥数通用学案附带练习题解析答案47加法、乘法原理(一)](https://img.taocdn.com/s3/m/2a6babd66e1aff00bed5b9f3f90f76c661374cd7.png)
年级四年级学科奥数版本通用版课程标题加法、乘法原理(一)生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法。
那么,考虑完成这件事所有可能的做法,就要用我们这节课学习的加法原理来解决。
加法原理:完成一件工作共有N类方法。
在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有m n种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+m n种不同方法。
分类时,首先要根据问题的特点确定一个适合于题目的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法。
只有满足这两条基本原则,才可以保证分类计数原理计算正确。
运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数。
加法原理解题三部曲:(1)完成一件事分N类;(2)每类找种数(每类的一种情况必须是能完成该件事);(3)类类相加。
合理分类是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
例1 书架上层放有 6 本不同的数学书,下层放有 5 本不同的语文书。
从中任取一本,共有多少种不同的取法?分析与解:从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6 种取法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5 种取法。
根据加法原理,得到不同的取法的种数是:N=m1+m2=6+5=11。
所以从书架上任取一本书,有11种不同的取法。
例2各数位的数字之和是24的三位数共有多少个?分析与解:个数各个数位上的数字,最大只能是9,24可拆分为:24=9+9+6;24=9+8+7;24=8+8+8。
运用加法原理,把组成的三位数分为三大类:①由9、9、6这三个数字可组成3个三位数:996、969、699;②由9、8、7这三个数字可组成6个三位数:987、978、897、879、798、789;③由8、8、8这三个数字可组成1个三位数:888。
加法原理和乘法原理
![加法原理和乘法原理](https://img.taocdn.com/s3/m/a92cf57fe45c3b3567ec8b7d.png)
加法原理和乘法原理1、加法原理:做一件事情分几类,每一类方法数之和就是完成这件事情的总方法数。
2、乘法原理:做一件事情分几步,每一步方法数之积就是完成这件事情的总方法数。
P29作业1、分四步组成四位数第一步:写好千位上的数,有3种选择(0不能作千位数)(所以一定要先考虑千位)第二步:写好百位上的数,有3种选择第三步:写好十位上的数,有2种选择第四步:写好个位上的数,有1种选择所以共有3×3×2×1=18个2、分三步组成三位数第一步:写好百位上的数,有4种选择(哪一位先考虑都行)第二步:写好十位上的数,有3种选择第三步:写好个位上的数,有2种选择所以共有4×3×2=24个3、分三步组成三位数第一步:写好个位上的数,有2种选择(个位一定是2或4)(所以一定要先考虑个位)第二步:写好十位上的数,有3种选择第三步:写好百位上的数,有2种选择所以共有2×3×2=12个4、分三步完成借书的事情第一步:第一个人来借书有7种选择第二步:第二个人来借书有6种选择第三步:第三个人来借书有5种选择所以共有7×6×5=210种5、分五步组成五位数第一步:写好万位上的数,有5种选择(哪一位先考虑都行)第二步:写好千位上的数,有4种选择第三步:写好百位上的数,有3种选择第四步:写好十位上的数,有2种选择第五步:写好个位上的数,有1种选择所以共有5×4×3×2×1=120个6、分三步完成种菜的任务第一步:第一块田里种菜有4种选择第二步:第一块田里种菜有3种选择第三步:第一块田里种菜有2种选择所以共有4×3×2=24种7、分类完成选书的事情第一类:选语文、数学(这一类在分2步完成,第一步选语文有3种选择,第二步选数学有4种选择,所以一共有3×4=12种)第二类:选数学、外语(同理,有4×5=20种)第三类:选外语、语文(同理,有3×5=15种)一共有12+20+15=47种(分类的要相加)综合列式:3×4+4×5+3×5=47种8、为叙述方便,设五个人为ABCDE,不能坐两端的是A。
小学数学《加、乘原理综合运用》练习题(含答案)
![小学数学《加、乘原理综合运用》练习题(含答案)](https://img.taocdn.com/s3/m/194b8e51bb68a98270fefa16.png)
小学数学《加、乘原理综合运用》练习题(含答案)Ⅰ、简单加乘原理综合运用【例1】(★)从学而思学校到王明家有4条路可走,从王明家到张老师家有2条路可走,从学而思学校到张老师有3条路可走,那么从学而思学校到张老师家共有多少种走法?分析:根据乘法原理,经过王明家到张老师家的走法一共有4×2=8种方法,从学而思学校直接去张老师家一共有3条路可走,根据加法原理,一共有8+3=11种走法.[拓展一]如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?分析:根据乘法原理,经过乙地到丙地的走法一共有4×2=8种方法,经过丁地到丙地一共有3×3=9种方法,根据加法原理,一共有8+9=17种走法.[拓展二]如下图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.从A点先经过C到B点共有:1×3=3(种)不同的走法.从A点先经过D到B点共有:2×3=6(种)不同的走法.所以,从A点到B点共有:3+6=9(种)不同的走法.【例2】(★★走进美妙数学花园少年数学邀请赛)如图,将1,2,3,4,5分别填入图中1×5的格子中,要求填在黑格里的数比它旁边的两个数都大.共有种不同的填法.分析:填在黑格里的数是5和4时,不同的填法有2!×3!=12(种);填在黑格里的数是5和3时,不同的填法有2×2=4(种).所以,共有不同填法12+4=16(种).[前铺]一个篮球队有五名队员A,B,C,D,E,由于某种原因,E不能做中锋,而其余四个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?分析:先确定做中锋的人选,除E以外的四个人任何一个都可以,其余四人对应四个位置,有4!=24(种)排列,由乘法原理,4×24=96,所以一共有96种不同的站位方法.Ⅱ、加乘原理与数论【例3】(★★)从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?分析:76个数当中有38个奇数和38个偶数,选取两个数只要是奇偶性质相同就能保证其和为偶数,选取两个奇数的方法有38×37÷2=703种,选取两个偶数的方法有38×37÷2=703种,一共有1406种选取方法.[拓展]在3000与8000之间,有多少个数字不重复的偶数?分析:千位必须是3,4,5,6,7中的一个,个位必须是0,2,4,6,8中的一个,分类考虑:个位上是0,2,8时,个位有3种选择,千位可以是3,4,5,6,7,有5种选择,百位、十位可以从剩下的8个数字中选择,由乘法原理,有3×5×8×7=840个;个位是4或6时,千位可以从3,4,5,6,7中除4或6以外的4个数中选择,百位、十位可以从剩下的8个数字中选择,由乘法原理,有2×4×8×7=448个,根据加法原理,一共有:840+448=1288个符合条件的偶数.【例4】(★★)在1~10这10个自然数中,每次取出两个不同的数,使它们的和是3的倍数,共有种不同的取法.分析:两个数的和是3的倍数有两种情况,或者两个数都是3的倍数,或有1个除以3余1,另一个除以3余2.1~10中能被3整除的有3个数,取两个有3种取法;除以3余1的有4个数,除以3余2的有3个数,各取1个有3×4=12种取法.所以共有取法:3+12=15(种).[前铺]用1,2,3,4,5五个数字,不许重复,位数不限,能写出多少3的倍数?分析:按照位数分类考虑:一位数只有1个3;两位数,由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成2×1=2个数字,共可以组成2×4=8个不同的两位数;三位数,由1、2与3,1、3与5,2、3与4,3、4与5四组数字组成,每一组可以组成3×2×1=6个数字,共可以组成6×4=24个不同的三位数;四位数,由1、2、4与5四个数字组成,有 4×3×2×1=24个不同的四位数;五位数,由1、2、3、4与5五个数字组成,有 5×4×3×2×1=120个不同的五位数,由加法原理,一共有1+8+24+24+120=177个满足条件的数.[拓展]在1~10这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有 种不同的取法.分析:三个不同的数和为3的倍数有四种情况:三个数同余1,三个数同余2,三个数都被3整除,余1余2余0各有1个,三类情况分别有4种、1种、1种、36种,所以一共有42种.【例5】 (★★★)有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析:要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18种不同的情形.[巩固]有两个不完全一样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为奇数的有多少种情形?分析:要使两个数字之和为奇数,只要这两个数字的奇偶性不同,即这两个数字一个为奇数,另一个为偶数,由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现偶数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.Ⅲ、加乘原理与图论(染色、图形组合)【例6】 (★★★)地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选,不同的涂法有3×2×2=12(种);当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同),不同的涂法有3×2×1×1=6(种).C BD A所以共有12+6=18种不同的涂法.[前铺]为“学习改变命运”六个字涂色,现在有红、黄、蓝三种颜色,使相邻的字颜色不同,但不是每种颜色都必须要用,问有多少涂色方法?分析:第一个字有3种颜色可选,第二个字有2种颜色可选,第三个字有2种颜色可选,……以此类推,第六个字也有两种颜色可选,所以不同的涂色方法有:3×2×2×2×2×2=96(种)[拓展一]如果有红、黄、蓝、绿四种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?分析:第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有3×2=6种方法,D 剩下2种方法,对该图的染色方法一共有4×(3×3+3×2×2)=84种方法.[拓展二]用四种颜色对下图的A ,B ,C ,D ,E 五个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?分析:第一步给C 上色,有4种选择; 然后对A 染色,A 有3种颜色可选; 当B ,E 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选,不同的涂法有3×2×2=12(种);当B ,E 取不同的颜色时,B 有2种颜色可选,E 仅1种颜色可选,此时D 也只有1种颜色可选(与A 相同),不同的涂法有3×2×1×1=6(种).所以共有4×3×(2×2+2)=72种不同的涂法.思考本题与例题5的关系.【例7】 (★★)在一个圆周上均匀分布10个点,以这些点再加上圆心一共11个点为端点,可以画出多少长度小于直径的线段.分析:由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段一共有45种方法,其中包括5条直径,应当舍去,其余线段的长都小于直径,一共有40种方法 .以圆心为端点的线段一共有10条,所以一共可以画出40+10=50条线段.[拓展]一个半圆周上共有12个点,直径上5个,圆周上7个,以这些点为顶点,可以画出多少个三角形?E D C B A分析:(方法一)所有的三角形一共可以分为3类,第一类:三角形三个顶点都在圆周上,这样的三角形一共有7×6×5÷(3×2×1)=35种;第二类:三角形两个顶点在圆周上,这样的三角形一共有7×6÷(2×1)×5=105种;第三类:三角形一个顶点在圆周上,这样的三角形一共有7×5×4÷(2×1)=70种;一共可以画出35+105+70=210种.(方法二)不共线的3点可以确定一个三角形,这样任取3点构成的组合数与三角形的个数之间便有了一定的联系,但是要注意去掉其中3点共线的情况.12×11×10÷(3×2×1)-5×4×3÷(3×2×1)=210种.【例8】直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个三角形?分析:画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:(1)在a线上找一个点,有5种选取法,在b线上找两个点,有4×3÷2=6(种),根据乘法原理,一共有:5×6=30(个)三角形(2)在b线上找一个点,有4种选取法,在a线上找两个点,有5×4÷2=10(种),根据乘法原理,一共有:4×10=40(个)三角形根据加法原理,一共可以画出:30+40=70(个)三角形[巩固]直线a,b上分别有5个点和4个点,以这些点为顶点可以画出多少个四边形?分析:画四边形需要在每条线上取2个点,在a线上取2个点共有5×4÷2=10(种),在b线上取2个点共有4×3÷2=6(种),根据乘法原理,一共可以画出6×10=60(个)三角形.Ⅳ、排列组合【例9】(★★)用数字0,1,2,3,4,(可重复使用)可以组成多少个:小于1000的自然数?分析:小于1000的自然数有三类.第一类是0和一位数,有5个;第二类是两位数,有4×5=20个;第三类是三位数,有4×5×5=100个.共有5+20+100=125个.[拓展]用1、2、3、4、5这五个数字,可以组成多少个比20000大且百位数字不是3的无重复数字的五位数?分析:分两类(1)把3排在最高位上,其余四个数字可以任意放到其余四个数位上,有4×3×2×1=24种做法,对应24个不同的五位数(2)把2、4、5放在最高位上,有3种选择,百位数上有除最高位和3以外的三种选择,其余的三个数字可以任意放到其余3个数位上,由乘法原理,可以组成3×3×3×2×1=54个不同的五位数由加法原理,可以组成24+54=78个不同的五位数.【例10】(★★★)从1到100的所有自然数中,不含有数字4的自然数有多少个?分析:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.[拓展] 从1到300的所有自然数中,不含有数字2的自然数有多少个?分析:从1到300的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含2的有8个,它们是1、3、4、5、6、7、8、9;两位数中,不含2的可以这样考虑:十位上,不含4的有l、3、4、5、6、7、8、9这八种情况.个位上,不含2的有0、1、3、4、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含2.三位数中,除去300外,百位数只有1一种取法,十位与个位均有0,1,3,4,5,6,7,8,9九种取法,根据乘法原理,不含数字2的三位数有:1×9×9=81个,还要加上300.所以根据加法原理,从1到300的所有自然数中,不含有数字2的自然数一共有8+72+82=162个.【例11】(★★★)在100~1995的所有自然数中,百位数与个位数不相同的自然数有多少个?分析:先考虑100~1995这1896个数中,百位与个位相同的数有多少个,在三位数中,百位与个位可以是1~9,十位可以是0~9,由乘法原理,有9×10=90个,四位数中,千位是1,百位和个位可以是0~9,十位可以是0~9,由乘法原理,10×10=100个,但是要从中去掉1999,在100~1995中,百位与个位相同的数共有90+99=189个,所以,百位数与个位数不相同的自然数有:1896-189=1707个[拓展]在1000至1999这些自然数中,个位数大于百位数的有多少个?分析:(方法一)解决计数问题常用分类讨论的方法.设在1000至1999这些自然数中满足条件的数为1abc(其中c>a);(1)当a=0时,c可取1~9中的任一个数字,b可取0~9中的任一个数字,于是一共有9×10=90个.(2)当a=1时,c可取2~9中的任一个数字,b仍可取0~9中的任一个数字,于是一共有8×10=80个.(3)类似地,当a依次取2,3,4,5,6,7,8时分别有70,60,50,40,30,20,10个符合条件的自然数.所以,符合条件的自然数有90+80+70+…+20+10=450个.(方法二)1000至1999这1000个自然数中,每10个中有一个个位数等于百位数,共有100个;剩余的数中,根据对称性,个位数大于百位数的和百位数大于个位数的一样多,所以总数为-÷=个.(1000100)2450【例12】(★★)红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?分析:(方法一)取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类(1)一种颜色:都是蓝色的或者都是白色的,2种可能;(2)两种颜色:(4×3)×3=36(3)三种颜色:4×3×2=24所以,一共可以表示2+36+24=62种不同的信号(方法二)每一个位置都有4种颜色可选,共有4×4×4=64种,但是不能有三红或者三黄,所以减去2种,共有64-2=62种.[前铺]一共有赤橙黄绿青蓝紫七种颜色的等各一盏,把七盏灯都串起来,紫灯不排在第一位也不排在第七位的串法有多少种?分析:先考虑紫灯的位置,除去第一位和第七位外,有5种选择,然后把剩下的6盏灯随意排,有6×5×4×3×2×1=720种排法,由乘法原理,一共有5×720=3600种1.(★例1)从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉或者上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?分析:从北京转道上海到广州一共有3×3=9种方法,从北京转道武汉到广州一共也有3×3=9种方法供选择,从北京直接去广州有2种方法,所以一共有9+9+2=20种方法.2.(★★例3)在所有的三位数中,各位数字之和是19的数共有多少个?分析:三个数字之和是19的共有10种,9,9,1;9,8,2;9,7,3;9,6,4;9,5,5;8,8,3;8,7,4;8,6,5;7,7,5;7,6,6.其中三个数字各不相同的有5种,每种能组成6个不同的三位数;三个数字中有两个相同的有5种,每种能组成3个不同的三位数,所求数共有:6×5+5×3=45(个)3.(★★例11)从54到199的整数中,各位数字互不相同的数有多少个?分析:从54至99的整数中,各位数字互不相同的数有46-5=41个.从100至199的整数中,各位数字互不相同的数有9×8=72个,总共有41+72=113个.4.(★★★例8)直线a,b上分别有4个点和2个点,以这些点为顶点可以画出多少个三角形?分析:画三角形需要在一条线上找1个点,另一条线上找2个点,本题分为两种情况:(3)在a线上找一个点,有4种选取法,在b线上找两个点,有1种,根据乘法原理,一共有:5×1=5(个)三角形(4)在b线上找一个点,有2种选取法,在a线上找两个点,有4×3÷2=6(种),根据乘法原理,一共有:2×6=12(个)三角形根据加法原理,一共可以画出:5+12=17(个)三角形5.(★★★例12)五种颜色的小旗,任意取出三面排成一行表示各种信号,问:共可以表示多少种不同的信号?分析:分3种情况(1)三面小旗一种颜色,可以表示5种信号(2)三面小旗两种颜色:可以表示5×4×3=60种信号(3)三面小旗三种颜色:可以表示:5×4×3=60种信号由加法原理,一共可以表示:5+60+60=125种信号.。
加法原理与乘法原理练习题.pdf
![加法原理与乘法原理练习题.pdf](https://img.taocdn.com/s3/m/e5e96c7b52d380eb62946de9.png)
1.将6名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有()种不同的方案.A .729 B .216 C .1719 D .7562.图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法。
A.120 B.16 C.64 D.393.如图,∠AOB 是直角,i OP (i =1,2,3,4,5,6)是射线,则图中共有锐角:A 、28个B 、27个C 、24个D 、22个4.有不同的语文书9本,不同的数学书7本, 不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )种A .21 B.315 C. 143 D.1535.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内从A 地到B 地乘坐这三种交通工具的不同走法为( )A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对6. 4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同报法的种数是()P 6P 5P 4P 3P 2P 1OA BA.43B.34C.24D.127.现有6名同学去听同时进行的5个课外知识讲座,每同学可自由选择其中的一个讲座,不同选法的种数是()A.65 B.56C.5654322D.654328.322(1)(1)(1)x x x y y z展开后的不同的项数为()A)、9; B)、12; C)、18; D)、24 9.5名同学去听同时进行的3个名师讲座,每个同学可自由选择,且必须选择一个讲座,则不同的选择种数是()A. 35 B. 53 C. 345 D. 45 10.某商场有4个门,如果某人从其中任意一个门进入商场,并且要求从其他的门出去,共有()种不同的进出商场的方式。
加法原理和乘法原理训练题
![加法原理和乘法原理训练题](https://img.taocdn.com/s3/m/bb7239176d175f0e7cd184254b35eefdc9d31554.png)
加法、乘法原理训练题例题1:小红、小丽和小敏三个人到世纪公园游玩拍照留念(不考虑站的顺序),共有多少种不同的拍照方法?练习1:1、4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的拍照方法?2、用0,2,3三个数字组成不同的三位数,一共可以组成多少种不同的三位数?3、有1克、2克和5克的砝码各一个,那么在天平上可以称出多少种不同质量的物体?(砝码都放在右盘)例题2:从北京到天津的列车中途要经过4个站点,这列列车从北京到天津要准备多少种不同的车票?练习2:1、一列列车从甲地到乙地要经过5个站点,这列列车从甲地到乙地要准备多少种不同的车票?2、5个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场?3、一把钥匙只能开一把锁,现在有4把钥匙和4把锁,但不知道哪把钥匙开哪把锁。
最多要试多少次才能配好全部的钥匙和锁?例题3:在4×4的方格图中(如右图),共有多少个正方形?练习3:1、在3×3的方格图中,共有多少个正方形?2、在5×5的方格图中,共有多少个正方形?3、在6×6的方格图中,共有多少个正方形?例题4:从3,5,7,11,13这五个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数?练习4:1、从1,3,5,7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数?2、从5,7,11,13这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数?3、从2,3,7,11,13,17这六个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数?例题5:用0,1,2,3,4这五个数字可以组成多少个不同的三位数?练习5:1、用1,2,3,4这四个数字可以组成多少个不同的三位数?2、如右图所示:A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种染色。
(完整word版)小学四年级加法原理乘法原理20题
![(完整word版)小学四年级加法原理乘法原理20题](https://img.taocdn.com/s3/m/a95e69f3aaea998fcd220e56.png)
加法原理和乘法原理加法原理:完成一件工作共有N 类方法。
在第一类方法中有m1 种不同的方法,在第二类方法中有m2种不同的方法,⋯⋯,在第N 类方法中有m n 种不同的方法,那么完成这件工作共有N=m1+m2+m3+⋯+m n 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
乘法原理:完成一件工作共需N 个步骤:完成第一个步骤有m1 种方法,完成第二个步骤有m2种方法,⋯,完成第N 个步骤有m n 种方法,那么,完成这件工作共有m1×m2×⋯×m n 种方法。
1、从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中火车有 4 班,汽车有 3 班,轮船有 2 班。
问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?2、小明到图书馆借书,图书馆有150本不同的外语书,200 本不同的科技书,100 本不同的小说,只借1 本,有多少种不同的选法?3、第一个口袋里装了 3 个小球,第二个口袋里装了8 个不同的小球,所有的小球颜色都各不相同。
从两个口袋中任取一个小球,有多少种不同的取法?4、旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?5、四把钥匙开四把锁,但是不知道哪把钥匙开哪把锁,最多试多少次就能把锁和钥匙配起来?6、从甲地到乙地有 4 条路可走,从乙地到丙地有 2 条路可走,从甲地到丙地有 3 条路可走,从甲地到丙地共有多少种不同的走法?7、两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6,将两个正方体放到桌面上,向上的一面数字之和是偶数的有多少种情况?8、从1到400的所有自然数中,不含有数字4的自然数有多少个?9、用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?10、各数位的数字之和是24的三位数共有多少个?11、北京奥运会开幕的日子为2008年8月8日,拼成一个八位数为20080808. 它的数字和为26,请问在2008年还有哪些日子拼成的八位数,其数字之和为26?12、一把钥匙只能开一把锁,现在有10把钥匙和10把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙?13、某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤。
加法原理与乘法原理随堂练习(含答案)
![加法原理与乘法原理随堂练习(含答案)](https://img.taocdn.com/s3/m/95a752c955270722182ef784.png)
加法原理与乘法原理一、选择题1. [2013·苏州联考]某电话局的电话号码为139××××××××,若最后五位数字是由6或8组成的,则这样的电话号码一共有()A. 20个B. 25个C. 32个D. 60个答案:C解析:采用分步计数的方法,五位数字由6或8组成,可分五步完成,每一步有两种方法,根据分步乘法计数原理有25=32个,故选C.2. [2013·四川德阳第二次诊断]现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是()A. 81B. 64C. 48D. 24答案:A解析:每个同学都有3种选择,所以不同选法共有34=81(种),故选A.3. [2013·抚顺模拟]只用1、2、3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有()A. 6个B. 9个C. 18个D. 36个答案:C解析:对于1、2、3三个数组成一个四位数,其中必有一个数要重复,从三个中选一个有C13种,这样重复的数有2个,利用插空法知共有A33种,因此共有3A33=18个这样的四位数.4. [2013·福州质检]如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有()A. 192种种C. 96种D. 12种答案:C解析:可分三步:第一步,填A、B方格的数字,填入A方格的数字大于B方格中的数字有6种方式(若方格A填入2,则方格B只能填入1;若方格A填入3,则方格B只能填入1或2;若方格A填入4,则方格B只能填入1或2或3);第二步,填方格C的数字,有4种不同的填法;第三步,填方格D的数字,有4种不同的填法.由分步计数原理得,不同的填法总数为6×4×4=96.5. 若从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数,则不同的取法共有()A. 66种B. 63种C. 61种D. 60种答案:D解析:从1,2,3,…,9这9个数中同时取4个不同的数,其和为奇数的取法分为两类:第一类取1个奇数,3个偶数,共有C15C34=20种取法;第二类是取3个奇数,1个偶数,共有C35C14=40种取法.故不同的取法共有60种,选D.6. [2013·西安调研]某种体育彩票规定:从01至36共36个号码中抽出7个号码为一注,每注2元,某人想从01至10中选3个连续的号码,从11至20中选2个连续的号码,从21至30中选1个号码,从31至36中选1个号码,组成一注,则要把这种特殊要求的号码买全,至少要花费()A. 3360元B. 6720元C. 4320元D. 8640元答案:D解析:从01至10的3个连号的情况有8种;从11至20的2个连号的情况有9种;从21至30的单选号的情况有10种,从31至36的单选号的情况有6种,故总的选法有8×9×10×6=4320种,可得需要8640元.故选D.二、填空题7. 在某次中俄海上联合搜救演习中,参加演习的中方有4艘船、3架飞机;俄方有5艘船、2架飞机,若从中、俄两组中各选出2个单位(1架飞机或1艘船都作为一个单位,所有的船只两两不同,所有的飞机两两不同),且选出的4个单位中恰有一架飞机的不同选法共有________.答案:180种解析:若选出的一架飞机是中方的,则选法是C14C13C25=120种;若选出的一架飞机是俄方的,则选法有C15C12C24=60种.故不同选法共有120+60=180种.8. [2013·汕头模拟]如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有________.答案:480种解析:从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种).9. [2013·金版原创]如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案:12解析:由题意知本题是一个分类计数问题,当组成的数字有三个1,三个2,三个3,三个4共有4种情况,当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141;当有三个2,3,4时2221,3331,4441根据分类计数原理得到共有12种结果,故答案为12.三、解答题10. 现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?解:可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1280种不同的排法.11. [2013·常德模拟](1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解:(1)该问题中要完成的事是4名同学报名,因而可按学生分步完成,每一名同学有3种选择方法,故共有34=81(种)报名方法.(2)该问题中,要完成的事是三项冠军花落谁家,故可按冠军分步完成,每一项冠军都有4种可能,故可能的结果有43=64(种).12. [2013·厦门模拟]某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法.解:第一类:既会排版又会印刷的2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:既会排版又会印刷的2人中被选出1人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:既会排版又会印刷的2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.。
小学数学《加法原理和乘法原理》练习题
![小学数学《加法原理和乘法原理》练习题](https://img.taocdn.com/s3/m/6613236a0975f46526d3e108.png)
加法原理和乘法原理1.餐厅里有4种炒菜和2种炖菜,4种炒菜分别是:红烧鱼块、滑溜里脊、清炒虾仁和三鲜豆腐,2种炖菜分别是:土豆炖牛肉和萝卜炖排骨.小猪想点一个菜,他有种不同的选择方法?查森想点1个炒菜和1个炖菜,他有种不同的选择方法?2.商店里有2种巧克力糖:牛奶味、榛仁味;有3种水果糖:苹果味、梨味、橙味.张明想买一些糖送给他的小朋友.如果张明只买一种糖,他有种选法.如果张明想买水果糖、巧克力糖各1种,他有种选法.3.明明家有4幅油画,5幅水彩画,3幅素描.苗苗选一幅挂在客厅,有种选法.苗苗如果选3幅画不同类型的画挂在卧室,有种选法.4.从学校到明明家有3条路可走,从明明家到张老师家有2条路可走,从学校到张老师家有3条路可走,那么从学校到张老师家共有多少种走法?5.从学校到明明家有4条路可走,从明明家到张老师家有2条路可走,从学校到张老师家有3条路可走,那么从学校到张老师家共有多少种走法?6.从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海作停留,已知北京到上海和上海到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择?7.从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?8.从甲地到乙地有6条路,从乙地到丙地有4条路,从甲地到丁地有5条路可走,从丁地到丙地也有3条路,请问从甲地到丙地共有多少种不同走法?9.从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海和武汉,上海和武汉到广州除了有飞机和火车两种交通方式外还有汽车.问从北京到广州一共有多少种交通方式供选择?10.明明要从4幅水墨画、3幅油画和2幅水彩画中选取两幅不同类型的画布布置客厅,有几种选法?11.有一个三层书架第一层放了5本小说,第二层放了4本漫画,第三层放了3本科普书,并且这些书各不相同,请问:如果从中取两本不同类别的书,共有多少种取法?12.花店里有5种不同颜色的玫瑰,4种不同颜色的月季,3种不同颜色的风信子,2种不同颜色的勿忘我,王老师想要买3朵种类不同的花,共有多少种选择?13.快递员送货由A村去B村的道路有3条,由B村去C村的道路有2条,那么快递员从A村经B村去C村,共有多少种不同的走法?14.快递员送货由A村去B村的道路有3条,由B村去C村的道路有2条,由C 村去D村的道路有2条那么快递员从A村经B、C村去D村,共有多少种不同的走法?15.如下图,明明要从家沿着线段走到学校,要求任何点不得重复经过,他最多有多少种不同的走法?16.马戏团里的小丑有红、白、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋.小丑的帽子和鞋共有几种不同的搭配?17.明明有许多套服装,帽子的数量为3顶、上衣有8件,裤子有6条,每次出行要从几种服装中各取一件搭配.共可组成多少种不同的搭配?18.明明有许多套服装,上衣有6件,裤子有7条,鞋5双,每次出行要从几种服装中各取一件搭配.共可组成多少种不同的搭配?19.商店里有6种不同颜色的百合花,6种不同颜色的玫瑰,6种不同颜色的康乃馨,沫沫要选从中各选一种装饰房间,她有多少种不同的搭配?20.饰品店里有5种不同的熊玩具,4种不同的狗玩具,和3种不同的猫玩具,夏夏从中各选一种,有多少种不同的组合?21.灯饰品店里有不同颜色的台灯8个,不同颜色的吊灯6个,不同颜色的壁灯5个,小夏从三样式中各选一个,有多少种不同的组合?22.如下图,用红、黄两种颜色给图中雪人的帽子、头、身子三个部分染色,每个部分只能染一种颜色,一共有多少种不同的染色方法?23.用红、绿两种颜色给MBA上色,每个字母只能染一种颜色,一共可以得到多少个不同颜色的MBA?24.如下图,用5种颜料给3个方格上色,每个方格只能染一种颜色,颜料不能重复使用,有多少种不同的染色方法?25.如图,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?26.如图,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?27.如图,从A点沿线段走到B点,每次只能向上或向右走一步,共有多少种不同走法?28.如图,明明想要从A处到B处要求走最近的路,并且不能通过十字路口C正在修路.问他共有多少种不同的走法?29.如图,明明要从A处到B处要求走最近的路,并且不能通过十字路口C因正在修路.问她共有多少种不同的走法?30.如图,从A处到B处要求走最近的路,并且不能通过十字路口C和D正在修路,问共有多少种不同的走法?31.如图,从A处到B处要求走最近的路,必须通过十字路口C.问共有多少种不同的走法?32.如图,从A处到B处要求走最近的路,必通过十字路口C.问共有多少种不同的走法?33.如图,从A处到B的最短路线中,必通过十字路口C和D的,共有多少条?34.如图,从A出发经过十字路口D,但不经过线段BC(不过点B、C),不同的最短路径有多少条?35.如图,从A出发经过十字路口D,但不经过线段BC(不过点B、C),不同的最短路径有多少条?36.如图,从A出发经过十字路口D,但不经过线段BC(不过点B、C),不同的最短路径有多少条?。
(完整版)分类加法计数原理与分步乘法计数原理例题
![(完整版)分类加法计数原理与分步乘法计数原理例题](https://img.taocdn.com/s3/m/52dd0f1451e79b896902263d.png)
分类加法计数原理与分步乘法计数原理【基础知识】1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[难点正本疑点清源]分类加法计数原理与分步乘法计数原理是解决排列、组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.【题型讲解】题型一分类加法计数原理的应用分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?思维启迪:用分类加法计数原理.解 (1)完成这件事有三类方法第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.(2)完成这件事有三类方法第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80种选法.例2 王刚同学衣服上左、右各有一个口袋,左边口袋装有30张英语单词卡片,右边口袋装有20张英语单词卡片,这些英语单词卡片都互不相同,问从两个口袋里任取一张英语单词卡片,有多少种不同的取法?[解析] 从口袋中任取一张英语单词卡片的方法分两类:第一类:从左边口袋取一张英语单词卡片有30种不同的取法;第二类:从右边口袋取一张英语单词卡片有20种不同的取法.根据分类加法计数原理,所以从口袋中任取一张英语单词卡片的方法种类为30+20=50(种). 例3 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?[分析] 该问题与计数有关,可考虑选用两个基本原理来计算,完成这件事,只要两位数的个位、十位确定了,这件事就算完成了,因此可考虑按十位上的数字情况或按个位上的数字情况进行分类.[解析] 解法一:按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分为8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个). 解法二:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理共有1+2+3+4+5+6+7+8=36(个).例4 方程x 2m +y 2n=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?解 以m 的值为标准分类,分为五类.第一类:m =1时,使n >m ,n 有6种选择;第二类:m =2时,使n >m ,n 有5种选择;第三类:m =3时,使n >m ,n 有4种选择;第四类:m=4时,使n>m,n有3种选择;第五类:m=5时,使n>m,n有2种选择.∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆.题型二分步乘法计数原理的应用探究提高利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.例1已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少个?[解析]圆方程由三个量a,b,r确定,a,b,r分别有3种,4种,2种选法,由分步乘法计数原理,表示不同的圆的个数为3×4×2=24(个).例1有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维启迪:可以根据报名过程,使用分步乘法计数原理.解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).例1已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图像开口向上的二次函数.解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx +c可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c图像的开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图像开口向上的二次函数.例1(1)有5本书全部借给3名学生,有多少种不同的借法?(2)有3名学生分配到某工厂的5个车间去参加社会实践,则有多少种不同分配方案?[解析](1)中要完成的事件是把5本书全部借给3名学生,可分5个步骤完成,每一步把一本书借出去,有3种不同的方法,根据分步乘法计数原理,共有N=3×3×3×3×3=35=243(种)不同的借法.(2)中要完成的事件是把3名学生分配到5个车间中,可分3个步骤完成,每一步分配一名学生,有5种不同的方法,根据分步乘法计数原理,共有N=5×5×5=53=125(种)不同的分配方案.题型三两个原理的综合应用例1一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,有多少种不同的取法?[解析](1)从书架上任取一本书,有三类方法:第一类方法:从书架上层任取一本数学书,有5种不同的方法;第二类方法:从书架中层任取一本语文书,有3种不同的方法;第三类方法:从书架下层任取一本英语书,有2种不同的方法.只要在书架上任意取出一本书,任务即完成,由分类加法计数原理知,不同的取法共有N=5+3+2=10(种).(2)从书架上任取三本书,其中数学书、语文书、英语书各一本,可以分成三个步骤完成:第一步:从书架上层取一本数学书,有5种不同的方法;第二步:从书架中层取一本语文书,有3种不同的方法;第三步:从书架下层取一本英语书,有2种不同的方法.由分步乘法计数原理知,不同的取法共有N=5×3×2=30(种).所以从书架上任取三本书,其中数学书、语文书、英语书各一本,共有30种不同的取法.例1一个科技小组中有4名女同学,5名男同学,从中任选一名同学参加学科竞赛,共有不同的选派方法________种;若从中任选一名女同学和一名男同学参加学科竞赛,共有不同的选派方法________种.[答案]920[解析]由分类加法计数原理得从中任选一名同学参加学科竞赛共5+4=9种,由分步乘法计数原理得从中任选一名女同学和一名男同学参加学科竞赛共5×4=20种.例1现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?[解析](1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理共有5+2+7=14种不同的选法.(2)分为三步:国画、油画、水彩画各有5种、2种、7种不同的选法,根据分步乘法计数原理,共有5×2×7=70种不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10种不同的选法.第二类是一幅选自国画,一幅选自水彩画,有5×7=35种不同的选法.第三类是一幅选自油画,一幅选自水彩画,有2×7=14种不同的选法,所以有10+35+14=59种不同的选法.例1有三只口袋装小球,一只装有5个白色小球,一只装有6个黑色小球,一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有多少种不同的取法?[解析]分为三类:一类是取白球、黑球,有5×6=30种取法;一类是取白球、红球,有5×7=35种取法;一类是取黑球、红球,有6×7=42种取法.∴共有取法:30+35+42=107(种).例1如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.思维启迪:染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).方法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).探究提高用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.例1有一项活动,需在3名老师、8名男生和5名女生中选人参加.(1)若只需1人参加,有多少种不同选法?(2)若需老师、男生、女生各一人参加,有多少种不同的选法?(3)若需一名老师、一名学生参加,有多少种不同的选法?解(1)分三类:取老师有3种选法;取男生有8种选法;取女生有5种选法,故共有3+8+5=16种选法.(2)分三步:第一步选老师,第二步选男生,第三步选女生,故共有3×8×5=120种选法.(3)分两步:第一步选老师,第二步选学生.对第二步,又分为两类:第一类选男生,第二类选女生,故共有3×(8+5)=39种选法.对两个基本原理的特殊题型典例:(1)(5分)把3封信投到4个信箱,所有可能的投法共有() A.24种B.4种C.43种D.34种(2)(5分)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有________种.易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算.解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意....到一封信只能投在一个信箱中.............;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算.解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).答案(1)C(2)7温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择.(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位奇数?[解析] 方法一:按末位是1,3,5分三类计数:第一类:末位是1,共有4×4×3=48个;第二类,末位是3的共有3×4×3=36个;第三类末位是5的共有3×4×3=36个,由分类加法计数原理知共有48+36+36=120(个).方法二:符合条件的数有3×4×4×3-2×4×3=120(个).3.从6人中选4人分别到巴黎,伦敦,悉尼,莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲,乙2个不去巴黎游览,则不同的选择方案共有()A.300种B.240种C.144种D.96种[答案] B[解析]能去巴黎的有4个人,依次去伦敦,悉尼,莫斯科的有5个人,4个人,3个人,故不同的选择方案为4×5×4×3=240(种).故选B.5.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有________种不同的播放方式.(结果用数值表示) [答案]48[解析]先安排首尾播放公益广告,共2种,再安排4种不同的商业广告共4×3×2×1=24种,由分步乘法计数原理得24×2=48种.方法与技巧1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.混合问题一般是先分类再分步.3.分类时标准要明确,做到不重复不遗漏.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.1.(2011·大纲全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种答案 B解析依题意,就所剩余的一本画册进行分类计数:第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有C24=6(种).因此,满足题意的赠送方法共有4+6=10(种),选B.2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.答案32解析每位同学有两种不同的报名方法,而且只有这5位同学全部报名结束,才算事件完成.所以共有2×2×2×2×2=32(种).3.教学大楼共有4层,每层都有东西两个楼梯,由一层到4层共有走法种数为() A.6B.23 C.42 D.44答案 B解析由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择,∴23=8.4.高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种答案 C解析自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37(种).5.有不同颜色的4件上衣与不同颜色的3件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.答案12解析由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12(种)选法.6.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当父母的血型中没有AB型时,子女的血型有可能是O型,若某人的血型是O型,则其父母血型的所有可能情况有()A.6种B.9种C.10种D.12种答案 B解析找出其父母血型的所有情况分二步完成,第一步找父亲的血型,依题意有3种;第二步找母亲的血型也有3种,由分步乘法计数原理得:其父母血型的所有可能情况有3×3=9种.7.现安排一份5天的工作值班表,每天有一个人值日,共有5个人,每个人都可以值多天或不值班,但相邻两天不能同一个人值班,则此值日表共有__________种不同的排法.答案 1 280解析完成一件事是安排值日表,因而需一天一天地排,用分步计数原理,分步进行:第一天有5种不同排法,第二天不能与第一天已排人的相同,所以有4种不同排法,依次类推,第三、四、五天都有4种不同排法,所以共有5×4×4×4×4=1 280种不同的排法.8.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,则大师赛共有________场比赛.答案16解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4(场)比赛;根据分类加法计数原理共有2C24+4=16(场)比赛.9.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为 ()A.42 B.30 C.20 D.12答案 A解析将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).10.已知I={1,2,3},A、B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A、B共有()A.12对B.15对C.18对D.20对答案 D解析依题意,当A、B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A、B均有两个元素时,有3对;共20对,选择D.11.若从集合P到集合Q={a,b,c}所有的不同映射共有81个,则从集合Q到集合P所有的不同映射共有()A.32个B.27个C.81个D.64个答案 D解析可设P集合中元素的个数为x,由映射的定义以及分步乘法计数原理,可得P→Q 的映射种数为3x=81,可得x=4.反过来,可得Q→P的映射种数为43=64.12.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有() A.6种B.5种C.4种D.3种答案 C解析若选甲、乙二人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙二人,则只有甲操作B车床,丙操作A车床这一种选派方法;若选乙、丙二人,则只有乙操作B车床,丙操作A车床这一种选派方法.故共2+1+1=4(种)不同的选派方法.故应选C.13.由1到200的自然数中,各数位上都不含8的有______个.答案162个解析一位数8个,两位数8×9=72个.3位数有9×9=81个,另外1个(即200),共有8+72+81+1=162个.14.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有________个.答案32解析和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两个数,即子集中的元素取自5个组中的一个数.而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32.15.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.答案12解析分两步完成这件事,第一步取两个平行平面,有3种取法;第二步再取另外一个平面,有4种取法,由分步计数原理共有3×4=12种取法.16. 如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种答案 B解析分两类:第一类,涂三种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F 有2种方法,故有A34×2=48(种)方法;第二类,涂四种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F有3C13种方法,故共有A34·3C13=216(种)方法.由分类加法计数原理,共有48+216=264(种)不同的涂法.17.标号为A、B、C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法?(2)若取出的两个球颜色相同,有多少种取法?解析(1)若两个球颜色不同,则应在A、B袋中各取一个或A、C袋中各取一个,或B、C袋中各取一个.∴应有1×2+1×3+2×3=11种.(2)若两个球颜色相同,则应在B或C袋中取出2个.∴应有1+3=4种.18.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7个,B型血的共有9个,AB型血的有3个.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1个去献血,有多少种不同的选法?解析从O型血的人中选1个有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1个人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,这件“任选1人去献血”的事情已完成,所以由分类计数原理,共有28+7+9+3=47种不同的选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步计数原理,共有28×7×9×3=5 292种不同的选法.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() A.3 B.4 C.6 D.8答案 D解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9,共4个.把这四个数列顺序颠倒,又得到4个数列,故所求数列有8个.2.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有() A.238个B.232个C.174个D.168个答案 C解析由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复数字的四位数共有3A33=18(个),故共有192-18=174(个).3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为() A.10 B.11 C.12 D.15答案 B解析方法一分0个相同、1个相同、2个相同讨论.。
(完整word版)小学奥数——乘法原理与加法原理
![(完整word版)小学奥数——乘法原理与加法原理](https://img.taocdn.com/s3/m/7d71da7ba36925c52cc58bd63186bceb19e8ed85.png)
乘法原理与加法原理在平常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不一样的方法,要知道完成这件事一共有多少种方法,就用我们将谈论的乘法原理来解决.比方某人要从北京到大连拿一份资料,以后再到天津开会.此中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想坐船.那么,他从北京经大连到天津共有多少种不一样的走法?解析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择坐船这一种走法,因此他从北京到天津共有下边的三种走法:3× 1=3.假如这人到大连后,可以坐船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上边谈论问题的过程中,我们把所有可能的方法一一列举出来.这类方法叫穷举法.穷举法对于谈论方法数不太多的问题是很有效的.在上边的例子中,完成一件事要分两个步骤.由穷举法获得的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,假如完成一件事需要??个步骤,此中,做第一步有 ??1种不一样的方法,做第二步有 ??2种不一样的方法,,做第 ??步有 ??种不一样的方法,那么,完成这件事一共有??= ??1×× ×????2????种不一样的方法.这就是乘法原理.例 1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不一样的买法?增补说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个相互互不影响的独立步骤来完成;②每个步骤各有若干种不一样的方法来完成.这样的问题就可以使用乘法原理解决问题.例 2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不一样的走法?例 3.书架上有6本不一样的外语书,4本不一样的语文书,从中任取外语、语文书各一本,有多少种不一样的取法?例 4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项竞赛,问:报名的结果会出现多少种不一样的情况?例 5.由数字0、1、2、3构成三位数,问:①可构成多少个不相等的三位数?②可构成多少个没有重复数字的三位数?解析在确立由 0、1、2、3 构成的三位数的过程中,应当一位一位地去确立.因此,每个问题都可以看作是分三个步骤来完成.①要求构成不相等的三位数.因此,数字可以重复使用,百位上,不可以取0,故有 3 种不一样的取法;十位上,可以在四个数字中任取一个,有 4 种不一样的取法;个位上,也有 4 种不一样的取法 .②要求构成的三位数中没有重复数字,百位上,不可以取0,有 3 种不一样的取法;十位上,因为百位已在 1、2、3 中取走一个,故只剩下0 和其余两个数字,故有 3 种取法;个位上,因为百位和十位已各取走一个数字,故只好在剩下的两个数字中取,有 2 种取法.例 6.由数字1、2、3、4、5、6共可构成多少个没有重复数字的四位奇数?解析要构成四位数,需一位一位地确立各个数位上的数字,即分四步完成,因为要求构成的数是奇数,故个位上只有能取 1、3、5 中的一个,有 3 种不一样的取法;十位上,可以从余下的五个数字中取一个,有 5 种取法;百位上有 4 种取法;千位上有 3 种取法,故可由乘法原理解决.例 7.右图中共有16个方格,要把A、B、C、D四个不一样的棋子放在方格里,并使每行每列只好出现一个棋子.问:共有多少种不一样的放法?解析因为四个棋子要一个一个地放入方格内.故可看作是分四步完成这件事.第一步放棋子 A,A 可以放在 16 个方格中的任意一此中,故有 16 种不一样的放法;第二步放棋子B,因为 A 已放定,那么放 A 的那一行和一列中的其余方格内也不可以放 B,故还剩下 9 个方格可以放 B, B 有 9 种放法;第三步放 C,再去掉 B 所在的行和列的方格,还剩下四个方格可以放 C,C 有 4 种放法;最后一步放 D,再去掉 C 所在的行和列的方格,只剩下一个方格可以放D,D 有 1 种放法,本题要由乘法原理解决.例 8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,假如从中最少取一张,至多取9 张,那么,共可以配成多少种不一样的钱数?解析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取 2 张一角的人民币和取 1 张贰角的人民币,获得的钱数是同样的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币 4 张和贰角的人民币 2 张一致起来考虑.即从中拿出几张构成一种面值,看共可以构成多少种.解析知,共可以构成从壹角到捌角间的任何一种面值,共8 种状况.(即取两张壹角的人民币与取一张贰角的人民币是一种状况;取4 张壹角的人民币与取 2 张贰角的人民币是一种状况.)这样一来,可以把它们看作是 8 张壹角的人民币.整个问题就变为了从 8 张壹角的人民币和 3 张壹元的人民币中分别取钱.这样,第一步,从 8 张壹角的人民币中取;第二步,从 3 张壹元的人民币中取共 4 种取法,即 0、1、2、3.但要注意,要求“最少取一张” .生活中常有这样的状况,就是在做一件事时,有几类不一样的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将谈论的加法原理来解决.比方某人从北京到天津,他可以乘火车也可以乘长途汽车,此刻知道每日有五次火车从北京到天津,有 4 趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不一样的走法?解析这个问题发现,这人去天津要么乘火车,要么乘长途汽车,有这两大类走法,假如乘火车,有 5 种走法,假如乘长途汽车,有 4 种走法.上边的每一种走法都可以从北京到天津,故共有 5+4=9 种不一样的走法.在上边的问题中,完成一件事有两大类不一样的方法.在详尽做的时候,只要采纳一类中的一种方法就可以完成.而且两大类方法是互无影响的,那么完成这件事的所有做法数就是用第一类的方法数加上第二类的方法数.一般地,假如完成一件事有??类方法,第一类方法中有??1种不一样做法,第二类方法中有??2种不一样做法,,第 ??类方法中有 ??种不一样的做法,则完成这件事共有种????= ??1 + ??2 + ?+ ????不一样的方法.这就是加法原理.例 1.学校组织读书活动,要求每个同学读一本书.小明到图书室借书时,图书室有不一样的外语书150 本,不一样的科技书 200 本,不一样的小说 100 本.那么,小明借一本书可以有多少种不一样的选法?例 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不同样.问:①从两个口袋内任取一个小球,有多少种不一样的取法?②从两个口袋内各取一个小球,有多少种不一样的取法?增补说明:由本题应注意加法原理和乘法原理的差别及使用范围的不一样,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,常常有好多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟习加法原理和乘法原理的内容,综合使用这两个原理.例 3.如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有 3 条路可走.那么,从甲地到丙地共有多少种走法?解析从甲地到丙地共有两大类不一样的走法.第一类,由甲地路过乙地到丙地.第二类,由甲地直接到丙地.例 4.以下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不行重复经过.问:这只甲虫有多少种不一样的走法?解析从 A 点到 B 点有两类走法,一类是从 A 点先经过 C 点到 B 点,一类是从 A 点先经过 D 点到 B 点.两类中的每一种详尽走法都要分两步完成,因此每一类中,都要用乘法原理,而最后计算从 A 到 B 的所有走法时,只要用加法原理乞降即可.例 5.有两个同样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情况?解析要使两个数字之和为偶数,只要这两个数字的奇偶性同样,即这两个数字要么同为奇数,要么同为偶数,因此,要分两大类来考虑.例 6.从1到500的所有自然数中,不含有数字4 的自然数有多少个?解析从 1 到 500 的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含 4 的有 8 个,它们是 1、2、3、5、6、7、8、9;要确立一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确立一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.增补说明:这道题也可以这样想:把一位数看作是前方有两个0 的三位数,如:把 1 看作是 001.把两位数看作是前方有一个0 的三位数.如:把11 看作 011.那么所有的从 1 到 500 的自然数都可以看作是“三位数”,除去 500 外,考虑不含有 4 的这样的“三位数”.百位上,有 0、 1、 2、 3 这四种选法;十位上,有0、1、2、3、5、6、7、8、 9 这九种选法;个位上,也有九种选法.因此,除500外,有 4× 9× 9=324 个不含 4 的“三位数”.注意到,这里面有一个数是000,应当去掉.而500 还没有算进去,应当加进去.因此,从 1 到 500 中,不含 4 的自然数仍有324 个.这是一种特别的思虑问题的方法,注意到当我们对“三位数”重新恩赐规定以后,问题很简捷地获得解决.例 7.如图,要从A点沿线段走到B,要求每一步都是向右、向上也许向斜上方.问有多少种不一样的走法?解析观察下页左图,注意到,从 A 到 B 要向来向右、向上,那么,经过下页右图中 C、D、E、F 四点中的某一点的路线必定不再经过其余的点.也就是说从 A 到 B点的路线共分为四类,它们是分别经过C、D、E、F 的路线.自我检测1. 某罪犯要从甲地路过乙地和丙地逃到丁地,此刻知道从甲地到乙地有 3 条路可以走,从乙地到丙地有 2 条路可以走,从丙地到丁地有 4 条路可以走.问,罪犯共有多少种逃脱的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以构成多少个不一样的减法算式?4.一个篮球队,五名队员 A 、B、C、 D、 E,因为某种原由, C 不可以做中锋,而其余四人可以分配到五个地点的任何一个上.问:共有多少种不一样的站位方法?5.由数字 1、 2、 3、4、5、6、 7、 8 可构成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8 的没有重复数字的三位数?⑤百位为8 的没有重复数字的三位偶数?6. 某市的电话号码是六位数的,首位不可以是0,其余各位数上可以是0~ 9 中的任何一个,而且不一样位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2. 书架上有 6 本不一样的画报和7 本不一样的书,从中最多拿两本(不可以不拿),有多少种不一样的拿法?3.以以下图中,沿线段从点 A 走最短的路线到 B,各有多少种走法?4.在 1~ 1000 的自然数中,一共有多少个数字0?5.在 1~ 500的自然数中,不含数字0 和 1 的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲加法原理和乘法原理(练习题)
1. 从武汉到上海,可以乘飞机·火车·轮船和汽车。
一天中飞机有两班,火车有4班,轮船有2班,汽车有3班。
那么一天从武汉到上海,一共有多少种不同的走法?
2. 商店有铅笔5种,钢笔6种,圆珠笔3种。
小红要从中任选一种,一共有多少种不同的选法?
3. 4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的照法?
4. 有0、2、3三个不同的数字组成不同的三位数,一共可以组成多少种不同的三位数?
5. 一列火车从甲地到乙地中途要经过5个站,这列火车从甲地到乙地共要准备多少种不同的车票?
6. 五个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场?
7. 在5×5的方格中(如右图),共有多少个正方形?
8. 书架上有8本故事书和6本童话书,王刚要从书架上去一本故事书和一本童话书,一共有多少种不同的取法?
9. 服装店里有5件不同的儿童上衣、4条不同的裙子。
妈妈为小红买了一件上衣和一条裙子配成一套,一共有多少种不同的选法?
10. 从1、3、5、7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数?
11.用1、2、3、4这四个数字可以组成多少个不同的三位数?
12.(如图所示):A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种涂色。
如果要求相邻的区域涂不同的颜色,共有多少种不同的涂色方法?
13. 从4名男生和2名女生中选出班干部3名,其中至少要有一名女生,一共有多少种不同的选法?
14. 有红、黄、蓝、白四种颜色的旗各一面,从中选一面、两面、三面或者四面旗从上到下挂在旗杆上表示不同的信号(顺序不同时,表示的信号也不同),一共可以表示多少种不同的信号?。