人教版九年级数学上册课件《圆》课件
合集下载
人教版九年级数学上册圆圆精品ppt课件
2.以3cm为半径画圆,能画出几个
圆?为什么?
3.以O为圆心画圆,能画出几个圆?
为什么?
人教版九年级数学上册圆圆精品ppt课 件
归 纳
圆的两种定义
A
O
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的 图形叫做圆. 静态:圆心为O、半径为r的圆可以看成是 所有到定点O的距离等于定长r 的点的集 合.
● 13.已知⊙O的半径为5cm,则圆中最长的弦长为 cm.
● 14.下列图形中:①平行四边形;②矩形;③菱形;④正方 形;⑤等腰梯形.其中四个顶点在同一圆上的有___________ (只填序号即可).
● 15.到定点的距离等于定长的点的轨迹是______.
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
● 6.在下列命题中,正确的是(
)
● A.弦是直径 B.长度相等的两条弧是等弧 C.三点确定一个圆 D.三角形的外心不一定在三 角形的外部
● 7.下列说法错误的是( )
● A.到点P距离等于1cm的点的轨迹是以点P为圆心,半径长为1cm的圆 B.等腰△ABC的底边BC 固定,顶点A的轨迹是线段BC的垂直平分线 C.在一个角的内部(包括顶点)到角的两边距离相 等的点的轨边是这个角的平分线 D.到直线l距离等于2cm的点的轨迹是两条平行于l且与l的距离 等于2cm的直线
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
同圆的半径相等
圆的性质: 同圆的半径相等.从等圆的定义容易看出:半径相等 的两个圆是等圆;反过来,同圆或等圆的半径相等.
圆?为什么?
3.以O为圆心画圆,能画出几个圆?
为什么?
人教版九年级数学上册圆圆精品ppt课 件
归 纳
圆的两种定义
A
O
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的 图形叫做圆. 静态:圆心为O、半径为r的圆可以看成是 所有到定点O的距离等于定长r 的点的集 合.
● 13.已知⊙O的半径为5cm,则圆中最长的弦长为 cm.
● 14.下列图形中:①平行四边形;②矩形;③菱形;④正方 形;⑤等腰梯形.其中四个顶点在同一圆上的有___________ (只填序号即可).
● 15.到定点的距离等于定长的点的轨迹是______.
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
● 6.在下列命题中,正确的是(
)
● A.弦是直径 B.长度相等的两条弧是等弧 C.三点确定一个圆 D.三角形的外心不一定在三 角形的外部
● 7.下列说法错误的是( )
● A.到点P距离等于1cm的点的轨迹是以点P为圆心,半径长为1cm的圆 B.等腰△ABC的底边BC 固定,顶点A的轨迹是线段BC的垂直平分线 C.在一个角的内部(包括顶点)到角的两边距离相 等的点的轨边是这个角的平分线 D.到直线l距离等于2cm的点的轨迹是两条平行于l且与l的距离 等于2cm的直线
人教版九年级数学上册 第二十四章 圆 24.1.1 圆
同圆的半径相等
圆的性质: 同圆的半径相等.从等圆的定义容易看出:半径相等 的两个圆是等圆;反过来,同圆或等圆的半径相等.
人教版九年级数学上册第24章第1节《圆》课件
A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册
学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
人教版初中九年级上册数学《圆》精品课件
固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作⊙O,
·
O
读作“圆O”.
O
同心圆
等圆
圆心相同,半径不同 半径相同,圆心不同
确定一个圆的两个要素:
一是圆心, 二是半径.
A ·r O
问题1:圆上各点到定点(圆心 O)的距离 有什么规律?
问题2:到定点的距离等于定长的点又有什 么特点?
知识点2 与圆有关的概念
弦和直径的定义 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
半径是弦吗?
弧
圆上任意两点间的部分叫
B
做圆弧,简称弧.以 A、B 为
端点的弧记作AB,读作“圆
O
弧 AB”或“弧 AB”.
圆的任意一条直径的两个 A
C
端点把圆分成两条弧,每一条
形成性定义(动态):在一个平面内,线段 OA 绕它 固定的一个端点 O 旋转一周,另一个端点 A 所形成的图 形叫做圆.
集合性定义(静态):圆心为 O、 半径为 r 的圆可以看成是所有到定点 O 的距离等于定长 r 的点的集合.
战国时的《墨经》 就有“圆,一中同长也” 的记载.它的意思是圆 上各点到圆心的距离都 等于半径.
2.下列说法中,不正确的是( ) D A.过圆心的弦是圆的直径 B.等弧的长度一定相等 C.周长相等的两个圆是等圆 D.长度相等的两条弧是等弧
3.一个圆的最大弦长是10cm,则此圆的半径是5
cm.
4.在同一平面内与已知点A的距离等于5cm的所有点所组成 的图形圆是 .
5.如右图,以AB为直径的半圆O上有两点D、E,ED与BA
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)
能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
人教版数学九年级上册第24课时 圆的基本性质(ppt版)-课件
【温馨提示】1.应用定理时一定注意“在同圆或等圆中” 同时要注意一条弦对着两条弧. 2.弦心距、半径、弦的一半构成的直角三角形,常用 于求未知线段或角,为构造这个直角三角形,常连接半 径或作弦心距,利用勾股定理求未知线段长.
提分必练
2.如图,在⊙O中,若点C是的中点,∠A=50°,则
∠BOC=( A )
提分必练
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°, 则∠AOC的度数为( D ) A.20° B.40° C.60° D.80°
提分必练
5.如图,⊙O中,弦AB、CD相交于点P,若∠A=
30°,∠APD=70°,则∠B等于( C ) A.30° B. 35° C. 40° D. 50°
第一部分 夯实基础 提分多
第六单元 圆
第24课时 圆的基本性质
基础点巧练妙记 基础点 1 圆的相关的概念及性质
1.圆的基本概念(参考图(1)) (1)定义:平面内到定点距离等于定长的所 有点组成的图形叫做圆,这个定点叫做圆 心,定长叫做半径,即O为圆心,OA为半 径.
(2)弧、劣弧、优弧:圆上任意两点间的部分叫做圆弧, 简称弧.其中,小于半圆的部分叫做劣弧,A F 为劣弧; 大于半圆的部分叫做①__优__弧__,A E F 为优弧. (3)圆心角:顶点在圆心,角的两边都与圆相交的角叫做 圆心角,∠AOF叫做A F 所对的圆心角. (4)圆周角:顶点在圆上,角的两边都与圆相交的角叫做 圆周角,∠AEF为A F 所对的圆周角.
2.在遇到与直径有关的问题时,一般要构造直径所对 的圆周角,这样可以由直径转化出直角,从而解决问 题.
4.圆内接四边形的性质
(1)圆内接四边形的对角⑪_互__补_,如图(2),∠A+∠BCD =⑫1_8_0_°_,∠B+∠D=⑬1_8_0_°___;
人教版数学九年级上册第二十四章.. 圆 完美课件
弦、直径
E
D
C O
A
B
F
弦
E
B
C
O
D
A F
直径
连接圆上任意两点的线段叫做弦.
经过圆心的弦叫做直径.
人教版数学九年级上册第二十四章24. 1.1 圆 课件
A B 探究
⊙O中有没有最长的弦?
证明: 连接OA、OB.
A
在△OAB中,
O
OA+OB > AB
(三角形两边之和大于第三边)
∵ OA、OB 均是半径
人教版数学九年级上册第二十四章24. 1.1 圆 课件
观察
观察车轮,你发现了什么?
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版数学九年级上册第二十四章24. 1.1 圆 课件
车轮
人教版数学九年级上册第二十四章24. 1.1 圆 课件
G
F
D
K
5.在图中,找出两条弦,一条优弧,一条劣弧.
弦:GH 、CD;
CHK、CHG、CKH、CKI..优弧: KD 、 GK、 GC、 KC...... 劣弧:
6. 一根5m长的绳子,一端栓在柱子上, 另一端栓着一只羊,请画出羊的活动区域.
5
参考答案:
5m 4m o
5m 4m o
6. 一个8×10米的长方形草地,现要安装自 动喷水装置,这种装置喷水的半径为5米,你准 备安装几个? 怎样安装? 请说明理由.
静态定义:
圆心为O,半径为r的圆是所有到定点O的距离 等于定长 r 的点的集合.
人教版数学九年级上册第二十四章24. 1.1 圆 课件
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
解:每个小圆的面积为 π12a·n12=π4na22,而大圆的面积为 π12a2=14πa2,即每个小 圆的面积是大圆的面积的n12.
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质
圆
第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.
第十九页,共二十页。
第二十页,共二十页。
6.若⊙O 的半径为 6 cm,则⊙O 中最长的弦为____1_2___cm.
第七页,共二十页。
8
7.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于点D,AD<BD, 若CD=2 cm,AB=5 cm,求AD、AC的长.
第八页,共二十页。
9
解:连接 OC.∵AB=5 cm,∴OC=OA=12AB=52 cm.在 Rt△CDO 中,由勾股
A.AB>0
B.0<AB<5
C.0<AB<10
D.0<AB≤10
4.如图,⊙O 的半径为 1,分别以⊙O 的直径 AB 上的两个四等分点 O1、O2 为
圆心,12为半径作圆,则图中阴影部分的面积为( B )
A.π
B.12π
C.14π
D.2π
第六页,共二十页。
7
5. 如图,分别延长⊙O 的弦 AB 与半径 OC 交于点 D,BD=OA.若∠AOC=120°, 则∠D 的度数是_____2_0°____.
人教版九年级数学上册 《圆》圆的有关性质PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
第二十四章 圆
24.1 圆的有关性质
圆
第一页,共二十页。
2
以练助学 名师点睛
知识点1 圆的意义及其表示 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的 图形叫做圆.其固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作 “⊙O”,读作“圆O”. 注意:确定一个圆取决于两个因素:圆心和半径,圆心确定圆的位置,半径确 定圆的大小.
人教版九年级数学上册第二十四章《圆》课件
算一算:设在例3中,⊙O的半径为10,则正方形
ABCD的边长为 4 5 .
A
D
?2x 10 Ⅱ
M
x B O
C
图4
连OA,OD即可, 同圆的半径相等.
N 在Rt△ABO中,AB2 BO2 AO2
即(2x)2 x2 102
变式:如图,在扇形MON中, MON =45 ,半径 MO=NO=10,,正方形ABCD的顶点B、C、D在半径上, 顶点A在圆弧上,求正方形ABCD的边长.
视频:生活中的圆
骑车运动
看了此画,你有何想法?
思考:车轮为什么做成圆形?做成三角形、正方形 可以吗?
车轮为圆形的原理分析:(下图为FLASH动画,点击)
讲授新课
一 探究圆的概念
合作探究
情景:一些学生正在做投圈游戏,他们呈“一”字排 开.这样的队形对每一人都公平吗?你认为他们应当 排成什么样的队形?
固定的端点O叫做圆心,线段OA叫 做半径,一般用r表示.
视频:画圆实际操作演示
确定一个圆的要素
一是圆心,圆心确定其位置;二是半径,半径确定其大小.
同心圆
圆心相同,半径不同
等圆
半径相同,圆心不同
圆也可以看成是由多个点组成的
到定点的距离等于定长 的点都在同一个圆上吗?
有间隙吗?
圆可以看成到定满点足距什离么等条于件定的长?的所有点组成的.
解:连结OA. ∵ABCD为正方形
N
A
D
xx
∴DC=CO
x
x
MB
C
O
图5
设OC=x,则AB=BC=DC=OC=x 又∵OA=OM=10
∴在Rt△ABO中, AB2 BO2 AO2
九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4
或
S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:
人教版九年级数学上册《直线和圆的位置关系》圆PPT精品课件
出去的?
情景2:用砂轮磨刀时擦出的火花,:是沿着什么方向飞出的?
知识回顾
推进新课
回顾直线与圆相切:
切线
切点
判断直线和圆相切
有哪两种办法?
.
.O
直线与圆
相切
新知探究
切线具有的性质
1. 定义法:
和圆有且只有一个公共点
的直线是圆的切线.
2. 数量关系法(d=r ):
圆心到直线的距离等于
半径的直线是圆的切线.
一不可: (1)直线经过半径的外端; (2)直线与这半径垂直.
归纳
切线的判定方法
判断一条直线是圆的切线的 三种方法
O
1.定义法:与圆有唯一公共点的直线是圆的切线;
l
A
2.数量关系法:圆心到这条直线的距离等于半径,
即d=r;
3.判定定理:经过半径的外端且垂直于这条半径
O r
d
l
A
O
的直线是圆的切线.
又AP=AC,所以∠P=∠ACP=30°,
所以∠OAP=∠AOC-∠P=90°.
所以OA⊥PA,所以PA是⊙O的切线.
人教版 数学 九年级上册
直线和圆的位置关系
第3课时
学习目标
1.掌握切线长的定义及切线长定理.
2. 运用切线长定理进行计算与证明.
复习引入
问题1
在同一个平面内,有一点 和⊙,过点 能否作
1
• ∴MN= 2 OM=2.5cm.
• 所以(1)⊙M与直线OA相离,因为r<MN.
• (2)⊙M与直线OA相交,因为r>MN.
• (3)⊙M与直线OA相切,因为r=MN.
综合应用
• 6.已知⊙O的半径为 2 ,直线l与点O的距离为d,
情景2:用砂轮磨刀时擦出的火花,:是沿着什么方向飞出的?
知识回顾
推进新课
回顾直线与圆相切:
切线
切点
判断直线和圆相切
有哪两种办法?
.
.O
直线与圆
相切
新知探究
切线具有的性质
1. 定义法:
和圆有且只有一个公共点
的直线是圆的切线.
2. 数量关系法(d=r ):
圆心到直线的距离等于
半径的直线是圆的切线.
一不可: (1)直线经过半径的外端; (2)直线与这半径垂直.
归纳
切线的判定方法
判断一条直线是圆的切线的 三种方法
O
1.定义法:与圆有唯一公共点的直线是圆的切线;
l
A
2.数量关系法:圆心到这条直线的距离等于半径,
即d=r;
3.判定定理:经过半径的外端且垂直于这条半径
O r
d
l
A
O
的直线是圆的切线.
又AP=AC,所以∠P=∠ACP=30°,
所以∠OAP=∠AOC-∠P=90°.
所以OA⊥PA,所以PA是⊙O的切线.
人教版 数学 九年级上册
直线和圆的位置关系
第3课时
学习目标
1.掌握切线长的定义及切线长定理.
2. 运用切线长定理进行计算与证明.
复习引入
问题1
在同一个平面内,有一点 和⊙,过点 能否作
1
• ∴MN= 2 OM=2.5cm.
• 所以(1)⊙M与直线OA相离,因为r<MN.
• (2)⊙M与直线OA相交,因为r>MN.
• (3)⊙M与直线OA相切,因为r=MN.
综合应用
• 6.已知⊙O的半径为 2 ,直线l与点O的距离为d,
人教版初中数学九年级上册《圆》课件
作业布置
必做题:
教材第81页练习第3题和第89页第一题.
选做题:
如图,在Rt△ABC和Rt△ABD中,∠C=90°,
∠D=90°, 点O是AB的中点.
求证:A、B、C、D四个点在以点O为圆心的
同一圆上.
A
O
C
B
D
等于定长(半径r);
r
(2)到定点的距离等于定长的点
都在同一个圆上.
r OO r
BC
CB
判断几个点是否在同一个圆上。
归纳:圆心为O、半径为r的圆可以看成是: 所有到定点O的距离等于定长r的点组成的图形.
圆的两种定义
描述性定义:在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做圆.
自学教材,辨析概念
自学教材第80页与圆有关的概念.
1、弦:连接圆上任意两点的线段叫做弦.
2、直径:经过圆心的弦叫做直径.
D B
·O
A
C
注意:直径是最长的弦!弦不一定是直径!
3、判断下列说法的正误:
(1)弦是直径; ( ) (2)过圆心的线段是直径; ( ) (3)半圆是弧;( ) (4)半圆是最长的弧;( ) (5)长度相等的两条弧是等弧;( ) (6)大于半圆的弧是劣弧,小于半圆的弧是优弧. ( )
圆的概念
如图,在一个平面内,线段OA绕它固定的一个端点O旋
转一周,另一个端点A所形成的图形叫做圆.
Oo rr AA
固定的端点O叫做圆 心 线段OA叫做半径
确定圆心 确定半径大小
以点O为圆心的圆,记“⊙O”, 读作“圆O”.
确定一个圆的 两个要素
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都 AA
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:(1)结合我们所画出的圆形,回答一个圆有 几个圆心,几条半径,指出它们来.
(2)通过读书,说一说圆的记法是什么?
圆的表示方法:以点O为圆心的圆记作⊙O.
O
圆上点具有的两条性质: (1)圆上各点到定点(圆心O)的距离都等于定长. (2)到定点的距离等于定长的点都在同一个圆上.
问题:你能说出车轮为什么是圆的吗?
A.1个 B.2个
C.3个 D.无数个
5.以已知点O为圆心,已知线段a为半径作圆,可以
作( A )
A.1个
B.2个
C.3个
D.无数个
6.如何在操场上画出一个很大的圆?说一说你的 方法.
课堂总结
本节课我们学习了圆的概念和圆的性质,需要注意: (1)由圆的定义可知,“圆”指的是“圆周”,而不是 “圆面”. (2)这里的半径指的是线段,为了方便,通常我们把半径 的长也叫做半径.
问题:(1)用准备好的绳子在纸上画出一个圆. (2)用圆规画出一个圆. (3)说一说你的画图方法,你能说出圆形 成的过程吗?
我们画图时,先将绳子的一端固定,另一端绕着这个固 定点旋转一周得出一个圆形的图案.
圆:在一个平面内,线段OA绕着它固定的一个端点O旋 转一周,另一个端点所形成的图形叫做圆.固定的端点 O叫做圆心,线段OA叫做半径.
B
弦:连接圆上任意两点的线段(如线段
O
AB,)叫做弦.
A
C
直径:经过圆心的弦(如弦AB)叫做直径.
圆弧:圆上任意两点间的部分叫做圆弧,简称为 弧. 以A,C为端点的弧记作AC ,读作“弧AC”或“圆弧 AC”. 圆的任意一条直径的两个端点将圆分成两条弧, 每一条弧都叫做一个半圆.
【例1】已知:如图1,OA、OB、OC是⊙O的三条半径, ∠AOC=∠BOC,M、N分别为OA、OB的中点.求证: MC=NC.
【解析】要证明MC=NC,可证明所在的 三角形全等,根据 同圆的半径都相等得到:OA=OB=OC,
图1
再由∠AOC=∠BOC, 就可将三角形全等的条件备足.
1.在同一圆中的半径都__相__等___. 2.一个圆有 无数条半径; 无数条直径; 无数 条弦. 3.圆中最大的弦是_直__径_____.
4.以已知点O为圆心作圆,可以作( D )