高考数学玩转压轴题专题复杂数列的通项公式求解问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题3.1 复杂数列的通项公式求解问题

一.方法综述

数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略

类型一 数阵(数表)中涉及到的数列通项公式问题

【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____.

【答案】12

【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1⋯⋯=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(⋯⋯=i A ij ,最后根据整数解方程的解法列举所有解即可.

2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要

明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列.

【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________.

【答案】1030

类型二 点列问题中涉及到的数列通项公式问题 【例2】已知点1122(1,),(2,),,(,),n n A y A y A n y L L

顺次为直线11

412

y x =

+

上的点,点1122(,0),(,0),,(,0),n n B x B x B x L L 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点

1,,n n n B A B +构成以n A 为顶点的等腰三角形.则数列{}n x 的通项公式为

____________.

【答案】,(1,(n n a n x n a n -⎧=⎨+-⎩

为偶数)

为奇数)

【指点迷津】对于点列问题,要根据图像上点与点之间的关系,以及平面几何知识加以分析,找出关系式即可,本题是直线上的点列,已知点列n A 的通项公式,求点列n B 的通项公式,并研究等腰三角形是否为特殊的等腰直角三角形.

【举一反三】在直角坐标平面中,已知点列111,2A ⎛

⎫-

⎪⎝⎭,2212,2A ⎛⎫ ⎪⎝⎭

,3313,2A ⎛⎫- ⎪⎝⎭,…,1,(1)2n n n A n ⎛⎫- ⎪⎝⎭,…,其中n 是正整数.连接12A A 的直线与x 轴交于点()11,0B x ,连接23A A 的直线与x 轴交于点()22,0B x ,…,连接1n n A A +的直线与x 轴交于点(),0n n B x ,….则数列{}n x 的通项公式为___________.

【解析】直线1n n A A +的斜率为11

121(1)(1)3(1)222n n n n n n k ++++---=-=, 所以111

(1)3(1):()22n n n n n n A A y x n +++-⋅--=-,2

3

n x n =+. 【答案】23

n x n =+

类型三 函数问题中涉及到的数列通项公式问题

【例3】【全国名校大联考2017-2018年度高三第三次联考】设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数,x y 有()()()f xy f x f y =+,已知112f ⎛⎫

=-

⎪⎝⎭

,若一个各项均为正数的数列{}n a 满足

()()()()

*11n n n f S f a f a n N =++-∈,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =

( ) A.

1

36

B. 9

C. 18

D. 36

【答案】C

【指点迷津】本题主要考查抽象函数的解析式以及数列通项与前n 项和之间的关系以及公式()12n n n a S S n -=-≥的应用,属于难题.已知n S 求n a 的一般步骤:

(1)当1n =时,由11a S =求1a 的值;(2)当2n ≥时,由1n n n a S S -=-,求得n a 的表达式;(3)检验1a 的值是否满足(2)中的表达式,若不满足则分段表示n a ;(4)写出n a 的完整表达式.

【举一反三】【北京西城35中2017届高三上学期期中数学】已知()112F x f x ⎛

=+

- ⎪⎝⎭

是R 上的奇函数, ()()()

*

12101n n a f f f f f n N n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭

L ,则数列{}n a 的通项公式为( )

. A. n a n = B. 2n a n = C. 1n a n =+ D. 2

23n a n n =-+

【解析】∵()112F x f x ⎛⎫=+

- ⎪⎝⎭是奇函数,∴11022F F ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令12x =, ()1112F f ⎛⎫=- ⎪⎝⎭

, 令12x =-

, ()1012F f ⎛⎫

-=- ⎪⎝⎭

,∴()()012f f +=,∴()()1012a f f =+=,

相关文档
最新文档