计算方法 最佳一致逼近多项式 切比雪夫多项式
计算方法最佳一致逼近多项式切比雪夫多项式ppt课件
0,1,2,… , n)
轮流取得最大值1和最小值 1,{xk }称为交错点组。
- 1 x4
x 3
x2 0
x 1
x0 1
证: 将xk
cos
kπ n
,
(k
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccos(cos
kπ )] n
cos[kπ]
(1)k
1
T2(x) T1(x)
多项式,且 max | f(x)
-1 x 1
Ln(x)
|
1 2n(n 1)!
||
f (n 1) (x)
||
证明:
max
-1 x 1
|
f(x)
Ln(x)
|
(n
1 1)!
||
f(n1)(x)
||||
(x
x0 )(x
x1) … (x
xn)
||
(n
1 1)!
||
f (n 1) (x)
||||
1 2n
xn )
|
要使 max 1 x 1
|
(x
x0 )(x
x1) … (x
xn )
|
取极小值, 只需令:
(x x0 )(x x1) … (x xn)
1 2n
Tn1(x),
最佳一致 逼近0的 多项式
而上式成立的充分必要条件是x0, x1,…xn是切比雪夫 多项式的0点。
将Lagrange插值多项式Ln(x)的节点取为Tn1(x) 的0点 :
cos[(2k
1)π] 2
0 (k
1,2, … , n)
图为T11(x)的零点,一共有11个
计算方法最佳一致逼近多项式切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
2020年4月11日星期六
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
路漫漫其修远兮, 吾将上下而求索
y
y=L (x)
路漫漫其修远兮, 吾将上下而求索
一致逼近的几何意义
x Home
切比雪夫多项式
路漫漫其修远兮, 吾将上下而求索
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用 • 。切比雪夫多项式的0点可以用于构造具有最佳
一致逼近性质的插值多项式。
切比雪夫多项式的(简单)定义:
三、切比雪夫多项式在函数逼近中的应用
希望构造最高次幂xn 系数为1 的多项式:
路漫漫其修远兮, 吾将上下而求索
…
三、切比雪夫多项式在函数逼近中的应用
证明比较复杂,省略。
路漫漫其修远兮, 吾将上下而求索
这个定理的 结论非常重要
怎样才能使得拉格朗日插值多项式成为最佳逼近 ?
…
偏差估计
路漫漫其修远兮, 吾将上下而求索
吾将上下而求索
(5)切比雪夫多项式的极值点 …
路漫漫其修远兮, 吾将上下而求索
…
1
T2(x )
T1(x
)
-1
1
T3(x ) 路漫漫其修远兮,
吾将上下而求索
T4(x )
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数
最佳一致逼近多项式3.3
定理说明任意连续函数都可以用多项式来近似 3.3.1 基本概念及其理论
Bn ( f , x) =
f ( x) −
* pn ( x)
∞
=
max a≤ x≤b
f
n k =0* ( x ) − p n ( x ) n= kmin f n − k ( x) )− p k ( x ) = k xp n ((x1∈ Pn x )
f ( x) − pn ( x)
pn(x) 在[a,b]上的偏差。 为 f (x) 与 是点到集合的距离
p n ∈Pn pn ∈P a ≤ x ≤b
E n = inf {∆( f , pn )} = inf max f ( x ) − pn ( x )
称为f (x)在 [a, b]上与 Pn 的偏差。 定义2
f ( x 0 ) − p n ( x 0 ) = ∆ ( f , pn ) = f ( x ) − pn ( x )
称 x 0为 p n ( x )的偏差点 .
∞
f ( x 0 ) − pn ( x 0 ) = − E n
f ( x 0 ) − pn ( x 0 ) = E n
负偏差点 正偏差点
正负偏差点有多少? 有什么特点?
−1≤ x ≤1
p2 ( x ) − 3ax 4+3bx3+ c 2 3 = ( x) = 2 x x= x − x
3
⇓ 3次多项式!
(1 − a ) 2 ( 2 − b ) (1 + c ) max f ( x ) − p2 ( x ) = 2 max x + x + x− −1≤ x ≤1 −1≤ x ≤1 2 2 2
是两点之间的距离
∆( f , p n ) ≥ 0
第六章 正交多项式和最佳一致逼近
§1 正交多项式 一、正交函数系的概念
考虑函数系
1,cosx,sinx,cos2x,sin2x,…,connx,sinnx,… 此函数系中任何两个不同函数的乘积在区间[- , ] 上的积分都等于0 ! 我们称这个函数中任何两个函数在[- , ]上是正交 的,并且称这个函数系为一个正交函数系。
College of Science
计算方法与数值计算
函数逼近问题的一般提法: 对于函数类A(如连续函数类)中给定的函数f (x),要求在另 一类较简单的且便于计算的函数类B(如多项式、三角函数类等)
中寻找一个函数p (x),使p (x)与f (x)之差在某种度量意义下最小。
最常用的度量标准为:一致逼近、 平方逼近
上海理工大学理学院
University of Shanghai for Science and Technology
College of Science
计算方法与数值计算
特别地,当Ak 1时,则称该函数系为标准正交函数系。 若定义 4中的函数系为多项式函数系,则称为以 (x) 为权的在[a, b]上的正交多项式系。并称pn(x)是[a, b]上
(4) 对任意实数k,(kf, g) = k (f, g )。
上海理工大学理学院
University of Shanghai for Science and Technology
College of Science
计算方法与数值计算
3.正交
定义3 设 f (x),g(x) C [a, b] 若
( f , g ) ( x) f ( x) g ( x)dx 0
带权 (x)的n次正交多项式。
上海理工大学理学院
University of Shanghai for Science and Technology
数学“Chebyshev多项式最佳一致逼近,最佳平方逼近”分析研究方案(内含matlab程序)
西京学院数学软件实验任务书实验十八实验报告一、实验名称:Chebyshev 多项式最佳一致逼近,最佳平方逼近. 二、实验目地:进一步熟悉Chebyshev 多项式最佳一致逼近,最佳平方逼近.实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计.四、实验原理:1.Chebyshev 多项式最佳一致逼近:当一个连续函数定义在区间[1,1]-上时,它可以展开成切比雪夫级数.即:0()()n n n f x f T x ∞==∑其中()n T x 为n 次切比雪夫多项式,具体表达式可通过递推得出:0111()1,(),()2()()n n n T x T x x T x xT x T x +-===-它们之间满足如下正交关系:10 n mn=m 02n=m=0ππ-≠⎧⎪⎪=≠⎨⎪⎪⎩⎰ 在实际应用中,可根据所需地精度来截取有限项数.切比雪夫级数中地系数由下式决定:10112n f f ππ--==⎰⎰2.最佳平方逼近:求定义在区间01[,]t t 上地已知函数最佳平方逼近多项式地算法如下.设已知函数()f x 地最佳平方逼近多项式为01()n n p x a a x a x =+++,由最佳平方逼近地定义有:01(,,,)0(0,1,2,,)n iF a a a i n a ∂==∂其中120101(,,,)(())t n n n t F a a a f x a a x a x dx =----⎰形成多项式()p x 系数地求解方程组Ca D =其中121122211212bbb bn na a a a bb b b n n aaa ab b b b n n n n a a a abbb bn n n naaa a dx xdxx dxx dx xdx x dx x dx x dx C x dx x dx x dx x dx x dx x dx x dx x dx -+---+-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1()()()()b a b a b n a b n a f x dx f x xdx D f x x dx f x x dx -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰五、实验内容:%Chebyshev 多项式最佳一致逼近function f=Chebyshev(y,k,x0)syms t ;T(1:k+1)=t; T(1)=1; T(2)=t;c(1:k+1)=0.0;c(1)=int(subs(y,findsym(sym(y)),sym('t'))*T(1)/sqrt(1-t^2),t,-1,1)/pi;c(2)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(2)/sqrt(1-t^2),t,-1,1)/pi;f=c(1)+c(2)*t; for i=3:k+1T(i)=2*t*T(i-1)-T(i-2);c(i)=2*int(subs(y,findsym(sym(y)),sym('t'))*T(i)/sqrt(1-t^2),t,-1,1)/pi; f=f+c(i)*T(i); f=vpa(f,6); if (i==k+1) if (nargin==3)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd%最佳平方逼近function coff=ZJPF(func,n,a,b)C=zeros(n+1,n+1);var=findsym(sym(func));func=func/var;for i=1:n+1C(1:i)=(power(b,i)-power(a,i))/i;func=func*var;d(i,1)=int(sym(func),var,a,b);endfor i=2:n+1C(i,1:n)=C(i-1,2:n+1);f1=power(b,n+1);f2=power(a,n+1);C(i,n+1)=(f1-f2)/(n+i);endcoff=C\d;版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.5PCzV。
Chebyshev定理在求最佳一致逼近多项式中的应用
把满 足上式 的那些 的值统 称 为偏差 点 , 且依 △ ( ) 的
符号 的 正 、 负不 同成为 正偏 差点或 负偏 差点 .
2 最佳 一 致逼近 多项 式 的充分 必 要条件
设 ) E , b 】 , P ( ) 为一个次数不超过 凡的最佳
一
m 积 : ) 一 尺 ( ) [ = m a x ) 一 ( ( ) + Q ( ) ) l
c c , ( ) =
2
m a x
删
( ) . _ ( ) ,
解 由题意, 所求最佳逼近多项式P , ) 应满足 ma x
‘
一
( ) l = - _ m I — a x J ( ) l = ,
1 《 《 1
且点 = c 0 s 叮 r ( k = 0 , l , …, n ) 是 ( ) 的切E 匕 雪夫交错
2
+1 5 6 8 x- 2 52 x +1 3 x.
切比雪 夫定理是 否可 推广 到求任意次数 的最佳一致逼 近多项 式?为 了回答这个问题 , 我们首先看以下例题.
证 明 由 于
,
例 1 求
次 逼 近 多项 式 .
) = 2 x 帆‘ + 一 1在 [ 一 1 , 1 ]  ̄¥ J / l t t  ̄ 2
6
4
2
( 戈 ) = 5 1 2 x一 1 2 8 0 x+ 1 1 2 0 x+ 1 7 6 x+ 5 0 x一 1 ,
1 1 9 7 5 3
7 = , ( ) = = 1 0 2 4 x一 2 8 1 6 x + 2 8 1 6 x 一 7 8 4 x + 1 0 8 x 一 1 I x ,
最佳一致逼近多项式
§3最佳一致逼近多项式2-1 最佳一致逼近多项式的存在性切比雪夫从另一观点研究一致逼近问题,他不让多项式次数n 趋于无穷,而是固定n ,记次数小于等于n 的多项式集合为n H ,显然],[b a C H n ⊂。
记{1,,,}n n H span x x =L , n x x ,,,1L 是],[b a 上一组线性无关的函数组,是n H 中的一组基。
n H 中的元素)(x P n 可表示为01()n n n P x a a x a x =+++L ,其中n a a a ,,,10L 为任意实数。
要在n H 中求)(*x P n 逼近],[)(b a C x f ∈,使其误差)()(max min )()(max *x P x f x P x f n bx a H P n b x a n n −=−≤≤∈≤≤ 这就是通常所谓最佳一致逼近或切比雪夫逼近问题。
为了说明这一概念,先给出以下定义。
定义1 ],[)(,)(b a C x f H x P n n ∈∈,称)()(max ),(x P x f P f P f n bx a nn −=−=∆≤≤∞ 为)(x f 与)(x P n 在],[b a 上的偏差。
显然),(,0),(n n P f P f ∆≥∆的全体组成一个集合,记为)},({n P f ∆,它有下界0。
若记集合的下确界为,)()(max inf )},({inf x P x f P f E n b x a H P n H P n n n n n −=∆=≤≤∈∈ 则称之为)(x f 在],[b a 上最小偏差。
定义2 假定],[)(b a C x f ∈,若存在n n H x P ∈)(*,n n E P f =∆),(*, 则称)(*x P n 是)(x f 在],[b a 上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理。
数值分析最佳一致逼近多项式
1 f xk
max f x f x
k 1, 2,..., n;
2 f xk f xk 1 , k 1, 2,..., n 1;
则称点集 xk , k 1, 2,..., n, 为函数 f x 在区间 点 xk a, b 上的一个交错点组, 称为交错点。
找 Pn * ( x ) H n ,
pn H n
|| f ( x ) Pn * ( x ) || min || f ( x ) Pn ( x ) || max | f ( x ) Pn * ( x ) | min max | f ( x ) Pn ( x ) |
a xb pn H n a x b
P( xk ) f ( xk ) (1)k P( x) f ( x)
1, k 1,2,, n 2,
这样的点组称为 Chebyshev 交错点组。
© 2009, Henan Polytechnic University §2 最佳一致逼近多项式
9 9
第三章 函数逼近与计算
1313
第三章 函数逼近与计算
几何意义
y
N
yP 1 x
M
D
Q
O
a
x2
b
x
© 2009, Henan Polytechnic University §2 最佳一致逼近多项式
1414
第三章 函数逼近与计算
例3.1
求函数 f ( x ) 1 x 2 在区间[0,1]上的最佳一致逼近多项式。 f (b) f (a ) 解 a1 2 1 0.414 ba x2 由 f ' ( x2 ) 2 1 0.2 x ( 2 1) 2 即 得 2 2 1 x2
高中数学竞赛切比雪夫(Chebyshev)多项式知识整理
方法一:余弦倍角公式是由余弦的幂整系数线性组合来表示倍角的余弦.这样就产生余弦的n 倍角能否用余弦的幂次的整系数线性组合表示等问题.通过研究,发现cos n α都是关于2cos α的首项系数为1的、次数等于α的倍数的、系数符号正负相间的整系数多项式,还进一步得到cos n α的一些性质.应用此性质,可以得到一些求和公式及解决许多数学问题.进一步研究,发现此多项式可以转化为切比雪夫多项式.在初等数学中,三角函数是一个十分有用的工具,余弦cos n α是众所周知的偶函数,它的倍角公式如:2cos 22cos 1αα=- ,(1)3cos34cos 3cos ααα=-. (2)它们都是由余弦cos α的幂整系数线性组合来表倍角的余弦.这样就自然产生了余弦的n 倍角能否用余弦cos α的幂次的整系数线性组合表示问题,稍作计算可以得42cos 48cos 8cos 1ααα=-+ ,(3)53cos516cos 20cos 5cos αααα=-+ .(4)观察公式(1—4),可以发现.如果公式两端同乘以2,则公式右边都是关于2cos α的首系数为1的、次数等于公式左边α的倍数的、系数符号正负相间的整系数多项式.由此猜测2cos n α也具有这一性质,下面用数学归纳法加以证明.猜想2,02cos (1)(2cos )m n m n m m n a αα-==-∑,(;n N m N +∈∈) (5)(5)式可改写为:n/312112cos (2cos )(1)(2cos )ent nmm n m n m m n n C mααα----==+-∑,(9) (9)式称为n 倍角余弦公式.12424cos 2(cos )(cos )(cos )n n n n n n n αααααα-----=-++…,其中i α为正整数.因为余弦cos α在[]0,απ∈上单调,对应值为1降到1-,即cos α[]1,1∈-,[]0,απ∈ .因此存在反函数,若令cos x α=,则arccos x α=,[]1,1x ∈-,[]0,απ∈.因此,在余弦n 倍角公式中令arccos x α=,[]0,απ∈,[]1,1x ∈-,则倍角公式为[][][]24124cos(arccos )2cos(arccos )cos(arccos )cos(arccos )nn n n n n n x x x x αα-----=-++…124242n n n n n n x x x αα-----=-++….于是cos(arccos )n x 首项系数为12n -的多项式,各项系数是整数,符号依次变化,x 的幂依次递减2次,若递减到最后,幂次为负,则该项取零.若记cos(arccos )n x =()n T x ,则()n T x 满足,12()2()()n n n T x xT x T x --=-,()n T x 称为切比雪夫多项式.从递推关系可以得到:0()1T x =,1()T x x =,22()21T x x =-,33()43T x x x =-,424()88+1T x x x =-, 535()1620+5T x x x x =-,6426()3248+181T x x x x =--.第一类切比雪夫多项式有许多良好的性质,例如:1.(cos )cos(),,n T n R n N θθθ=∈∈.(分析:令cos x θ=,arccos x θ=)2.()(1)()n n n T x T x -=-,,x C n N ∈∈.这表明()n T x 当n 为奇(偶)数时是奇(偶)函数.3.()1,,1n T x x R x ≤∈≤.4.21(0)0m T +=,2(0)(1),m m T m N =-∈. 5.函数列{}()n T x 的生成函数为21(),,112n n n xtT x t t R t xt t≥-=∈≤-+∑. (分析:生成函数又叫母函数,在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的方法称为母函数方法.母函数的思想就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造.母函数是解决组合计数问题的有效工具之一,其思想方法是把组合问题的加法法则和幂级数的乘幂的相加对应起来.)6.函数列{}()n T x 满足2阶递推关系21()2()()n n n T x xT x T x ++=-,,x C n N ∈∈.(分析:由三角恒等式cos(1)cos(1)2cos cos n n n θθθθ++-=)最小偏差切比雪夫在1857年提出这样一个问题:在最高项系数为1的n 次多项式()()()01n x x x x x ω=--…()1()n n n x x x P x --=-中,寻求在区间[]1,1-上与零的偏差最小的多项式.换句话说,就是寻求[]1,1n x C ∈-在1n H -中的最佳一致逼近多项式1()n P x *-,这里{}1111()min()n n n nn n P H x P x xP x --*--∞∞∈-=-.定理 在区间[]1,1-上所有最高项系数为1的多项式中,111()())2(n n n n n x x P x x T ω**--=-=, 与零的偏差最小,其偏差为112n -.()n U x 称为第n 个第二类切比雪夫多项式,前7个第二类切比雪夫多项式为:230123()1,()2,()41,()84U x U x x U x x U x x x ===-=-,424()16121U x x x =-+,535()32326U x x x x =-+,6426()6480241U x x x x =-+-.第二类切比雪夫多项式也有许多良好的性质,例如:1.()(1)(),,n n n U x U x x C n N -=-∈∈.即当以为奇(偶)数时是奇(偶)函数. 2.21(0)0m U +=,2(0)(1)m m U =-,(1)1n U n =+,(1)(1)(1)n n U n -=-+,m N ∈. 3.函数列{}()n U x 的生成函数为2(),,112nn n U x t t R t xt t ≥=∈≤-+∑. 4.()1,,1n U x n x R x ≤+∈≤. 5.函数列{}()n U x 满足2阶递推关系21()2()(),,n n n U x xU x U x x C n N ++=-∈∈.两类切比雪夫多项式的关系定理1设()n T x 和()n U x 分别为第一类和第二类切比雪夫多项式,0n ≥为整数,则0()()nn i n i i U x T x x -==∑.证明 由两类切比雪夫多项式的定义得21),12(n n nT xt t x x t t ∞=-=-+∑ 而2211112121xt xt t xt t xt-=⨯-+-+-, 则(((())))n nnnnnn i n n n i i n n n t tUx T x x T x t x t∞∞∞∞-=======∑∑∑∑∑.比较式在子两边n t 项的系数,即有0(())nn i i n i U x T x x -==∑.4切比雪夫多项式的应用4.1切比雪夫多项式插值切比雪夫多项式在逼近理论中有重要的应用.这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值.相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近. 切比雪夫多项式插值法:定理:设01,,x x …,n x 为区间[],a b 上1n +个互不相同的点,[]1(),n f x C a b +∈,则对任何[],x a b ∈,存在[]01,,,x n x x x ξ∈,使得拉格朗日插值余()()()n R x f x L x =-, 满足()()()(1)1(1)!n n x n R x f x n ξω+=+.其中[]{}{}[]010101,,,,min ,,,,,max ,,,,,n n n x x x x x x x x x x x x a b =⊂⎡⎤⎣⎦,()()()()()010nn n j j x x x x x x x x x ω==---=-∏.插值多项式的余项极小化:要使拉格朗日插值多项式()n L x 尽量逼近()f x ,就要使余项()n R x 尽量小.在 ()n R x 中,()f x 是固定的,而 x ξ又是未知数,所以要减小()n R x ,只有恰当选择节点集,使得在插值区间内余项的最大值为极小值.为了应用切比雪夫多项式,首先应将插值区间[],a b ,通过简单变换归一化到区间[−1,1],做变换()12k k z b a x b a =-++⎡⎤⎣⎦ 所以插值节点应取为()121cos 222k k z b a b a n π+⎡⎤=-++⎢⎥+⎣⎦. 其中0,1,2,,1k n =-,所以下面我们只需要讨论区间[−1,1]上的函数的切比雪夫插值法:当取定第一类切比雪夫点21cos,0,1,2,,22k k x k n n π+==+后,()()()()()010nn n j j x x x x x x x x x ω==---=-∏()12n n T x -+=.令()1111max n n x M f x ++-≤≤=,则有()()11max 1max(1)!2(1)!n n nn x R x M M n n ++=≤++∏,故切比雪夫插值法可以使得余项的最大值极小化,得到较佳逼近多项式.。
最佳一致逼近
主讲 孟纯军
函数逼近和函数空间
回忆一下向量空间的定义. 多项式空间 C[a,b], 连续函数空间
定义:设S是线性空间,x1,...., xn S 若存在不全为零的数a1,...., an ,使得 a1x1 an xn 0 称x1,...., xn线性相关,否则,线性无关。
||
f
(x)
pˆ n (x) ||
min
p( x)n
||
f
(x)
pn (x) ||
其中 n 表示次数不超过n的多项式全体。
称pˆn (x)为f (x)在[a,b]的最佳逼近n次多项式。
最佳逼近多项式一定存在。
定义:给定f (x) C[a,b], p(x) n
若在x0 [a,b]处有:
函数的内积
函数空间C[a,b], (x)为给定的权函数,
对任何f (x), g(x) C[a,b],
b
( f (x), g(x)) a (x) f (x)g(x)dx
为函数f (x), g(x)的内积。
由函数的内积导出范数:
1
|| f (x) ||2 ( f (x), f (x))2
为u1,, un线性无关。
证明:设k1,, kn为n个数,则 u1 ,, un线性无关等价于 k1u1 knun 0 (1) 只有零解,即k1 kn 0
将方程(1)两边用ui做内积,得到
(u1, u1) (u1, u2 ) (u1, un ) k1 0
0.0571 0.0604
0
其中第一列为自变量x 的值。
4.1091 2.1951
0 0
1.3811 0
第3章佳逼近多项式
y ( ) ( x xi ) ( n + 1)! i 0
( n +1 ) n
达到极小?
在[ 1, 1]上求{ x1, …, xn } 使得 wn( x) ( x xi ) i 1 的||wn|| 最小。
v 2.1
n
wn ( x) xn Pn1 ( x) ,要使||w || 最小就意味着 注意到 n
考虑三角函数 cos(n ) 在[ 0, ] 上的 n + 1 个极值点。
k k 当 n ( k 0, 1, ... , n) 时, cos(n )交错达到极大值 1 和极
n k 0
小值 1 ,且存在系数 a0, …, an 使得 cos(n ) ak (cos )k
y
y y ( x) + En
y Pn ( x)
可见Pn(x) 是 y(x)的 某一个插值多项式
y y ( x) y y ( x) En
v 2.0
如何确定
插值节点{ x0, …, xn }
x
0
的位臵,使得Pn(x) 刚好是 y 的OUAP ? 即,使插值余项
| Rn ( x ) |
{ tk }称为切比雪夫交错组 /* Chebyshev alternating sequence */
P79 Th.5 若 y C[a, b] ,则 n 次OUAP 唯一。P80 推论1
由Chebyshev定理可推出:Pn(x) y(x) 在定义域上至少变号 n+1 次,故至少有 n+1 个根。
Tn(x)为 n 次多项式,首项系数为 2n1。且T2n(x)只含 x 的 偶 次幂, T2n+1(x)只含x 的 奇 次幂。
最佳一致逼近多项式
( f , p n ) E n,
*
( 3 .3 ) 或
则称 p n ( x ) 是 f ( x ) 在 [ a , b ]上的 n 次 最佳一致逼近多项式 最小偏差逼近多项式 ,简称 最佳逼近多项式
*
*
.
定理 2 若 f ( x ) C [ a , b ],
*
则总存在 p n ( x ) H n , 使得 。
证明:令 ( x ) | P ( x ) f ( x ) |, 则 ( x ) 连续,因而可以达到最 即存在 x 0 , 使得 ( x 0 ) max ( x ) || P ( x ) f ( x ) || 。
a xb
大值,
这说明 x 0 是 P ( x ) 的一个偏差点,不妨设 由于 P ( x ) 是最佳逼近多项式,则
三、最佳一致逼近多项式
1.零次最佳一致逼近多项式 对于n=0的P0(x)有: P0(x) =(M+m)/2 其中M、m分别为f (x) 的最大值和最小值。 ∵f(x)C[a,b],由闭区间上连续函数性质;在[a,b]上存在两点x1,x2 使f (x1)=M, f (x2)=m, 即:x1,x2为偏差点(负,正)使:
axb
f (x)
n
(x)
即在H中 (x)与f(x)之差的绝对值的最大值是最小的,H中 任一ψ (x)与f(x)之差的绝对值都比它大,这样的 (x)为 f(x)在H中的最佳一致逼近函数。
定义1
设 f ( x ) C [ a , b ],
pn ( x ) H n , 称
a xb
逼近多项式
推论2 设f(x)C[a,b],则f(x)在Hn中的最佳一致逼近多项 式Pn(x),就是f (x)在[a,b]上的某个n次Lagrange插 值多项式。 证明∵Pn(x)有n+2个偏差点,亦即使f (x) -Pn (x)在[a,b]上至少 有n+2个点交替换正负号,亦就是说f(x) Pn(x)=0在[a,b]上有n+1 个根存在n+1个点:a x0<…< xn b使f (xi) Pn (xi)=0 即:f (xi)=Pn(xi) (i =0,1,2,…,n) , 所以,以此作为插值条件可得 到Pn(x),因此,Pn(x)就是以x0,x1,…,xn为插值节点的n次值多项 式。 切比雪夫定理不仅给出了最佳一致逼近多项式的特征, 并从理论上给出了寻找最佳一致逼近多项式的方法:
3.3最佳一致逼近多项式
( 1, k 1,2,3).
12
由于 f ( x) 在 [a, b]上不变号, 故 f ( x) 单调, f ( x) a1 在 (a, b)内只有一个零点,记为 x2, 于是
且点 xk cos
k (k 0,1, , n) 是 Tn ( x)的切比雪夫交错点组, n
8
由定理5可知,区间 [1, 1] 上 x n 在 H n 1 中最佳逼近多项式
为 Pn*1 ( x), 即 ( x) 是与零的偏差最小的多项式. n
定理得证.
9
例3 求 f ( x) 2 x3 x 2 2 x 1 在 [1, 1]上的最佳2次逼 近多项式. 解 由题意,所求最佳逼近多项式 P2* ( x) 应满足
5
使 P( x), 用反证法,若存在 Q( x) H n , Q( x)
f ( x) Q( x)
f ( x ) P( x ) .
由于
P( x) Q( x) [ P( x) f ( x)] [Q( x) f ( x)]
在点 x1 , x2 ,, xn 2 上的符号与 P( xk ) f ( xk )(k 1,, n 2) 一致, 故 P( x) Q( x) 也在 n 2 个点上轮流取“+”、“-”号. 由连续函数性质,它在 [a, b] 内有 n 1 个零点,但因
于是得 1 x 2 的最佳一次逼近多项式为
P 1 ( x) 0.955 0.414 x,
即
1 x 2 0.955 0.414 x, 0 x 1;
切比雪夫最佳函数逼近理论应用(1)
{}m in m ax ()()f x p x -型问题——切比雪夫最佳函数逼近理论应用一、知识点设函数()f x 在[],a b 上有二阶导数,且()f x ''在[],a b 上不变号(即恒为正或负),则存在()f x 在[],a b 上的线性最佳一致逼近多项式()1p x 。
(其中1()p x 指1次最佳逼近,简称为一次函数、一次多项式)①理论证明与计算:略②几何意义计算:直线()1y p x =与弦MN 平行,且过线段MQ 的中点D ,其方程为221()()()()()22f a f xa x fb f a p x x b a ++-⎛⎫=+⋅- ⎪-⎝⎭说明:根据理论,Q 为()()1f x p x -的极值点,且仅有1个。
∴212()()0f x p x ''-=,而12()MN p x k '=,所以2()MNf x k '=∴Q 点的几何特征是:过点Q 的直线l MN 且l 与()y f x =相切此时:{}1min max ()()max ()()a xb a x b f x p x f x p x <<<<-=-其中的一个核心要素:会求Q 的横坐标方法1:结合几何特征,利用()2MNf x k '=方法2:结合特殊图像,可以得出的一些结论①若()f x 的图像是平口单峰函数,显然易知此时图像特征为(示意图为张口朝上):(ⅰ)0MN k =,Q 就为()f x 极值点;(ⅱ)()()f a f b =;(ⅲ)直线l 处于正中间;(ⅳ){}()()2min max ()()a x b f a f x f x p x <<--=②若()f x 的图像不是平口单峰函数,构造为平口单峰函数二、典例分析【2016~2017台州高三上期末】【例题1】.已知函数()()1,f x x ax b a b R x =+--∈,当1,22x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值记为(),M a b ,则(),M a b 的最小值为_________。
计算方法 第五章第三节最优一致逼近
次最优一致逼近 多项式
y P (x) n
可见Pn(x) 是 f (x)的 某一个插 值多项式
0
y f (x)
y f (x)
y f (x)
x
由切比雪夫定理可推出: Pn(x) f (x) 在定义域上
至少变号 n+1 次,故至少有n+1 个根。
二、切比雪夫多项式的性质
下面我们求最好的直线所满 足的直线方程。设该方程为
p(x) a0 a1x.
由图示知它与 f (x) tan1 x的误差 R(x) f (x) p(x)在 x 0,
x 和x 1处依顺序变号,且绝对值达到最大,即有
R(0) f (0) p(0) , R( ) f ( ) p( ) , R(1) f (1) p(1) .
上式等价于求实数 a0,a1,...,an,使得多项式
pn (x) a0 a1x ... an xn
满足
S( a0,a1,...,an ) :
f
pn
inf pPn
f p
定理5.3.2 (存在性定理)
f (x) C [a,b],总存在最优一致逼近多项式
满足
pn (x) c0 c1x ... cn xn
k 0,1,..., n 1,
其中 1或 1,称这样的点组为 p(x) f (x)的(切比雪夫)交错点组。
推论
设 f (x) Cn1 [a,b]且 f n1(x)在[a,b]上保号,p(x)
Pn span{1, x,.., xn}为 f (x)在区间[a,b]上的n次最优一致逼近多 项式,则 p(x) f (x)在区间[a,b]上恰好存在n+2个交错点,且
计算方法最佳一致逼近多项式-切比雪夫多项式专题培训课件
cos(nθθs )c in o(snθθ )si
co s1 () n θ cos(θ n s θi) nc(o θ n
Tn(x)在 1,[1]上有的 n个 零不 点同 xk co(s22k 1 n)π , (k1,2 …,,n)
证:将xk
cos(2k 1)π, 2n
(k
1,2,…, n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccso(cos(2k 1)π)] 2n
cos[(2k 1)π] 2
计算方法最佳一致
逼近多项式-切比 雪夫多项式
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
函数逼近的基本概念
第3章 函数逼近与曲线拟合
§1 函数逼近的基本概念
一、函数逼近与函数空间
实际应用需要使用简单函数逼近已知复杂函数。
函数逼近问题: 对于函数类A中给定函的数
f(x),要求在另一类较简单便的于计算的函
数类
BA
B
A
中找一个函数p(,x使) p(x)与f(x的) 误差在某
种度量意义下达到最. 小
定1 理(Weaisesrf)s(若 tx rC ) [b a],则 ,ε0, 多项式 使p得 (x),
得知:情况a)如 为果 奇n数,则n2(xT)只含n的偶, 次方 Tn1(x)只含x的偶方 数, 次从而左n端 1(xT)只含x的偶; 次 情况b)如果n为,偶则数2xn(Tx)只含x的奇, 次Tn方 1(x) 只含x的奇次方,左从端而 nT1(x)只含x的奇次方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
πcos(mcθo)s(nθ)d 0
根据积化和差公式:
cos((n m 2 1 θ [θ c )o )n c s ) o c (θ m o s n s( )
当m≠n:
πcos(mθ)(cnoθs)θd 0
1π [co n s ) (c θ m o s n() θ m θ 0 ]d
20
最佳逼近拉格朗日插值多项式的构造步骤
1)若f( xC )n1[1,1则 ], 计算切比雪Tn夫 1的多 0点0,xx1,...x,n作为插值多 n(x项)的 式插 L 值节
0(k
1,2, … , n)
图为T11(x)的零点,一共有11个
x 11 x 10
cosπ
x9 x8
cos 15π 22
x7
cos 13π 22
x6
cos π 2
x5
cos 9π 22
x4 x3 x2 x1
cos 7π cos 5π cos 3 π cos π
22
22
22
22
x kco (2 2 s 1 k 2) ,( π k 1… ,2 ,1 , 1
T~n(x)
0
|
max|
1x1
பைடு நூலகம்
p(x)
0
|,
p(x) Hn(x).
这个定理的
结论非常重要
证明比较复杂,省略。
怎样才能使得拉格朗日插值多项式成为最佳逼近?
问题:设fC (x n1)[1,1]函 , 数f(x)1在 ,1[]上
n1个互异节 0, x点 1,… x, xn上的拉格朗日
多项式的插值余项为
R n (xf)( x Ln ()x()f(n n 1(1 )ξj) n 0 )(! x xj)ξ [1,1]
收敛到f(x)较慢, 不常用。
在[0,1]上一致成 立。该证明于1912年出 给。
ε的数值
y
y=L (x)
一致逼近的几何意义
x Home
切比雪夫多项式
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用。 • 切比雪夫多项式的0点可以用于构造具有最佳
一致逼近性质的插值多项式。
-1 x4
x 3
x2 0
x 1
x0 1
证: 将kxcoksnπ, (k1,2 … ,,n)
代入 n(x T)的表达式,得到 Tn(x)cos[nasr(ccokn osπ )]cos[kπ (1 ] k)
1
T2(x) T1(x)
-1
1
T3(x) T4(x)
-1
T3(x)有3个0值点,4个极值点
一、函数逼近与函数空间
实际应用需要使用简单函数逼近已知复杂函数。
函数逼近问题: 对于函数类A中给定函的数
f(x),要求在另一类较简单便的于计算的函
数类
BA
B
A
中找一个函数p(,x使) p(x)与f(x的) 误差在某
种度量意义下达到最. 小
定1 理(Weaisesrf)s(若 tx r)C[b a],则 ,ε0, 多项式 使p得 (x),
接近-1和1的地方越密。过这些0点作平行于y轴的直
线,这些直线与上半单位元的交点形成了一个关于圆
弧的等距的点的集合。
(5)切比雪夫多项式的极值点
Tn(x)在 1[,1]上有 1n个不同的极值点
x k
coskπ, n
(k
0,1,… 2,n)
轮流取得最大小 值值 1和 1, 最 {xk}称为交错 。点
(4)切比雪夫多项式的零点
Tn(x)在 1,[1]上有的 n个 零不 点同 xk co(s22k 1 n)π , (k1,2 …,,n)
证:将xk
cos(2k 1)π, 2n
(k
1,2,…, n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccso(cos(2k 1)π)] 2n
cos[(2k 1)π] 2
计算方法 (Numerical Analysis)
第4次 最佳一致逼近多项式
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
函数逼近的基本概念
第3章 函数逼近与曲线拟合
§1 函数逼近的基本概念
而上式成立的充分必要条件是x0, x1,…xn是切比雪夫 多项式的0点。
将Lagran值g多 e插 项n(式 x)L的节点n取 1(x为 ) 的0点 :
x k
cos(2k-1)π, k 2(n1)
1, … ,n,n1
此时 Ln(,x)具有近致 似逼 最近 佳的 一性
定理7设f(x) Cn1[1,1]L,n(x)为插值多项式, 其插值节点 0, x1,...,xn取为切比雪夫多项 n1式T 的0点,则 n(xL)是f(x)-在 1,1[ ]上的最佳一致逼近 多项m - 1 式 x 1, |f a 且( x x L n ()x |2 ) n (1 n 1|)f |(! n 1 ()x | |)
称为f(x)在 b][上 a,的最小 。偏差
定义8设f(x) C[a,b], 若存在n*p(x) Hn, 使得
Δ(f,pn* ) En (最小偏差),(3.3) 则称pn*(x)是f(x)在a,[b]上的n次最佳一 逼致 近多项式,简称最近 佳多 逼项式。
最佳一致逼近多项式的存在性定理 定4 理 若f (C x[)b a]则 ,, 必n *(存 x )在 H n, 使得 ||fp n * | |En
偏差估计
若 n 1 M m 1 x 1|a f(n x 1 ()x |则 ,)
|R n (x | (M ) n n 1 1|) ( ! x x 0 )( x 1 x )( x x n )|
要 m 1 x 使 1 |(a x x x 0 )( x x 1 ) … ( x x n )|取极 只小 (x x 0 )(x 1 )… (x x n )2 1 nT n 1 (x最逼多) 佳近项一0式,的致
1)当 0和 n 1n时 0(, x)1T0x ,T 1(x)x,结 2)假 2 设 为 当 奇 n(n (偶 x))只 数含 时 )次 x ,
3)则对n1的情况,由递推公式 Tn1(x) 2xTn(x) Tn1(x)
得知:情况a)如 为果 奇n数,则n2(xT)只含n的偶, 次方 Tn1(x)只含x的偶方 数, 次从而左n端 1(xT)只含x的偶; 次 情况b)如果n为,偶则数2xn(Tx)只含x的奇, 次Tn方 1(x) 只含x的奇次方,左从端而 nT1(x)只含x的奇次方
T0(x ) cos(01) T1(x )cos(ax rc)cxos T 2(x)cos(2 sa xr )2 c2 x c 1 o
T 3 (x )cos(3 sa x r )4 c3 x c 3 ox
课堂练习:推出T4(x)
切比雪夫多项式的性质
(1)基本递推关系 T T 0 n (1 x (x ) 1 )2 , T x n 1 ((T x x ))T x n1,(x)(. 2.11
Home
切比雪夫多项式在函数逼近 中的应用
三、切比雪夫多项式在函数逼近中的应用
已n 知 (xT )的最 n 的 高 系 次 n 数 1,(幂 n 为 1 x .)2
希望构造最高次幂xn 系数为1 的多项式:
设
T~n(x)
1 2n 1
Tn(x),
则
1) T~n(x)是最高次幂项x n系数为1的n次多项式 , 2) T~n(x)在
T n 1(x 2 ) cos s(θ n co θ s ) 1( c)n o θ 2x n(T x-T )n1(x)
(2)正交性
0,mn,
1
1
1 1x2Tm (xn()x T)d π x π/m ,m 2 ,nn00.,
(2.1
证:令 cxosθ,则
1 1
1 1x2T m (xn ()x T)d π 0c xo 1s c(o 2 θ ( m n sd θ θc))o c
|f(x p ) (|x ε )对 , 于一 x切 ba成
证明:伯恩斯坦的构性造证明:Bernstein多项式
Bn(f, x)
n k0
f
k n
Pk
(x)
(1.3)
其中Pk(x)
knxk (1
x)nk ,
a. 定理1具有重要
使得 的理论意义;
b. Bernstan多项式
lim
n
Bn(f,
x)
f(x)
切比雪夫多项式的(简单)定义: 表达 式 1x : 1对
T n (x) cos(snxn a)r,0 c,c 1 … o ,2 称为切比雪夫多项式。 由三角表达式定 (2.10)
义的多项式
切比雪夫多项式的表达式
若令 cx osθ,则 T n (x)cos(0 n θ θ)π , .
切比雪夫多项式的前几项:
T n(x)的最 n的 高 系 次 n 数 1,幂 (n 为 x 1.2 ) 证明: a记 rcθ c则 osx, T n1(x )cos [1 (n )θ c ]os[(θ n)θ ]
cos(nθθ s )c in o(snθθ)si
co s1 () n θ cos(θ n s θi)nc(o θ n
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数,
T2(x), T4(x),…只含x的偶次项,是偶函数。 Home
最佳一致逼近多项式