励磁培训

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

励磁系统概述

1.1 励磁系统的任务

同步发电机运行时,必须在励磁绕组中通入直流电流,以便建立磁场,这个电流称为励磁电流,而供给电流的整个系统称为励磁系统。由于励磁绕组又称发电机转子,故励磁电流也叫转子电流。

在电力系统的运行中,同步发电机是电力系统的无功功率主要来源之一,通过调节励磁电流可以改变发电机的无功功率,维持发电机端电压。不论在系统正常运行还是故障情况下,同步发电机的直流励磁电流都需要控制,因此励磁系统是同步发电机的重要组成部分。励磁系统的安全运行,不仅与发电机及其相联的电力系统的运行经济指标密切相关,而且与发电机及电力系统的运行稳定性密切相关。同步发电机励磁系统的任务有以下几点:

1 电压控制

在同步发电机空载运行中,转子以同步转速n旋转时,励磁电流产生的主磁通Φ0切割N匝定子绕组感应出频率为f=pn/60的三相基波电势,其有效值E0同f,N, Φ0以及绕组系数k的关系:E0=4.44 fNkΦ0

这样,改变励磁电流If以改变主磁通Φ0,空载电势E0值也将改变,二者的关系就是发电机的空载特性E0=f(If)或发电机的磁化特性Φ0=f(Ff)。在发电机空载状态下,空载电势E0就等于发电机端电压Ut,改变励磁电流也就改变发电机端电压。

完成电压控制的设备是由励磁调节器,励磁电源,发电机等组成,同步发电机励磁控制系统框图的一般形式如图1-1所示。

图1-1 同步发电机励磁控制系统框图

在图1-1中,虚线框内是励磁调节器的基本原理框图。按照调节原理,一个控制调节装置,至少要有三个环节或单元。第一是测量单元,它是一个负反馈环节;第二是给定单元,它是调节中的参考点;第三是比较放大单元,它将测量值同参考值进行比较,并对比较结果的差值进行放大,从而输出控制电压Uk。这里的其他信号,是指调节器中的其他功能的作用信号,比如调差、励磁电流限制、无功限制、PSS等。这里的励磁电源是指可控硅整流装置。

对于一个励磁控制系统来说,电压控制就是维持发电机端电压在设定位置。为实现这一目的,首先就要设定电压,要有一个给定信号Ug,以便明确电压控制值;其次要测量电压,看发电机端电压是多少,这里由发电机电压互感器PT和调节器中的测量板组成,将Ut变为Uc;最后,由调节器比较给定值和测量值,当测量值小于给定值时,励磁装置增加励磁电流If,使发电机端电压上升,当测量值大于给定值时,励磁装置减少If使发电机端电压下降。

2 无功分配

在发电机负载运行时,根据所带负载的性质,空载电势E0同发电机端电压Ut的关系发生了变化。当发电机带感性负载时,电枢反应具有去磁性质,随着负载的增加,Ut越来越小于E0,这时为了维持Ut不变,必须增大励磁电流;当发电机带容性负载时,电枢反应具有助磁性质,随着负载的增加,Ut越来越大于E0,同样为了维持Ut不变,必须减少励磁电流。

在发电机并网运行时,系统母线电压控制着发电机端电压Ut,当调节励磁电流If,使E0发生变化时,发电机的定子电流和功率因数也随之变化,即发电机的无功功率随If变化。同步发电机的V形曲线,就是反映了励磁电流同定子电流的关系。在这一关系中,功率因数等于1的励磁电流称为正常励磁。当励磁电流大于正常励磁时,定子电流滞后于端电压,功率因数滞后,发电机输出滞后无功功率,这种状态我们俗称为发电机带无功运行;当励磁电流小于正常励磁时,定子电流超前于端电压,功率因数超前,发电机输出超前无功功率,这种状态我们俗称为发电机进相运行。

在发电厂中数台发电机并网运行时,调节一台发电机的励磁电流,不仅会改变这台机的无功,还要影响其他发电机的无功稳定性。为此,励磁系统分配并联运行的发电机无功时,还要考虑其稳定性和合理性,这就要求励磁调节器具有调差功能。

母线电压水平及无功功率在机组之间的分配,取决于发电机的电压调节特性即调差特性Ut=f (Q),一般来说,发电机的调差特性是一条发电机端电压Ut随无功Q增加而下降的直线,见图1-2的正调差系数K3,K0和K2分别表示零调差和负调差系数。

如果励磁调节器具有调差功能,则发电机总的调差系数是发电机(发变组)的自然调差系数与励磁调差系数的代数和。由于自然调差系数不可变,故发电机的总调差系数由励磁调差系数控制。若励磁调差系数为零,比如退出调节器中的调差电路,则发电机的调差特性就是自然调差特性,其大小由发电机和变压器的电磁参数决定,且变压器参数起主导作用;若励磁调差系数为负,如图1-2中的直线K2所示,则发电机调差特性就是发电机的自然调差系数减励磁调差系数的差;若励磁调差系数为正,如图1-2中的直线K1所示,则发电机调差特性就是发电机的自然调差系数加励磁调差系数的和。在这里之所以有加减之别,其目的是在控制励磁调差系数大小情况下,保证发电机调差特性向下倾斜,因为只有具有正调差特性的发电机才能并联运行。对于单元接线的发电机系统来说,若发变组的自然调差率很大,励磁调差系数应选择负,以补偿无功电流在主变上的压降;若发变组的自然调差率很小,励磁调差系数应选择正。对于扩大单元接线的发电机系统来说,由于发电机的自然调差率很小,为保证数台发电机的并联运行及其无功功率的均衡分配,发电机必须具有基本一致的正调差特性,这就要求励磁调差必须为正极性。图1-3是两台发电机并入电网后,二者调差特性与无功分配关系,图中Uto是两台发电机空载额定电压,Us母线电压,K1和K2是两台发电机各自的调差系数。这两台发电机并网后,调节励磁电流,其K1和K2直线平行上下移动,所对应的无功Q1和Q2也随之改变,并且相互不影响。

0 Q 0 Q1 Q2 Q

图1-2 励磁调差特性图1-3 并联运行机组调差特性

我们知道,无论励磁调节器是何种类型,其工作原理都是将反映发电机端电压Ut的测量电压Uc,与给定电压Ug进行比较,从而得到发电机电压偏差信号即控制电压Uk。对于可控硅整流器

来说,Uk 经移相器产生α角变化的脉冲,以此改变整流桥输出电压,使发电机端电压同给定电压保持一致。如果在测量电压Uc 或者给定电压Ug 上,再叠加一个反映发电机无功变化的附加量U q ,就能使控制电压Uk 和α角产生变化,从而改变发电机的电压调节特性。这个附加量就是励磁调差起作用的量,也称无功补偿量,其极性直接影响励磁调差极性。一般说来,给定为正信号,测量为负信号,图1-4描述了这一过程的基本原理,虚线表示调差单元的输出电平可以有两种接入方式参与励磁调节。

Ug

图1-4 励磁装置调差原理图

如果将调节器中调差单元接入到给定单元上,当调差单元随发电机+Q 增加而输出+Uq 时,就会引起给定电压Ug 增加,控制电压Uk 增加,α角减少,最终使得发电机端电压Ut 增加,此时的励磁调差就是负调差。当调差单元随+Q 增加而输出-Uq 时,就会引起相反的结果,此时的励磁调差就是正调差。在图1-2中,将给定电压Ug 和控制电压Uk 引入纵坐标,就能根据Ug=f (Q )和Uk=f (Q )来判断励磁调差极性。

如果将调节器中调差单元接入到测量单元上,当调差单元随发电机+Q 增加而输出+Uq 时,就会引起测量电压Uc 减少,控制电压Uk 增加,α角减少,最终使得发电机端电压Ut 增加,此时的励磁调差就是负调差。当调差单元随+Q 增加而输出-Uq 时,就会引起相反的结果,此时的励磁调差就是正调差。

3 提高电力系统稳定性

a 提高静态稳定性

静态稳定是指电力系统遭受小扰动之后,不发生自发振荡和非周期失步,自动恢复到起始运行状态的能力。电力系统静态稳定性高低,可以用输电线路的输送功率极限的大小来判断,这也

Pmax’’= UtUc/Xe

Pmax’= Eq ’ Uc/(Xe+Xd’)

Pmax = E 0Uc/(Xe+Xd)

中:Uc 为无穷大系统电压

Xd 为d 轴同步电抗

Xd’为d 轴暂态电抗

Xe 为发电机至无穷大系统间的电抗

图1-5 调节励磁对功率特性的影响

在单机-无穷大系统中,如果发电机没有励磁控制,则正常运行时,发电机的空载电势E 0保持不变,那么该系统的静态极限为Pmax ,其功率特性曲线见图1-5中的曲线1。如果发电机具有

相关文档
最新文档