动量守恒定律的应用-四种模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)
练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?
例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A与C碰撞后瞬间A的速度大小.
练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。
例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,
(1)整个系统损失的机械能;
(2)弹簧被压缩到最短时的弹性势能.
练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度围),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:
(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小;
(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.
1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).
2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的力作用下突然分开,
已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则
(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.
(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .
附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为
m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体
P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度
v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度).P 与P 2之间的动摩擦因数为μ.求:
(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2;
(2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .
O C B
a b
A B v A v B C
例题参考答案
例3:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量定恒定律得 m A v 0=m A v A +m C v C
A 与
B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB A 与B 达到共同速度后恰好不再与
C 碰撞,应满足 v AB =v C
联立①②③式,代入数据得 v A =2 m/s.
例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.
(1)P 1与P 2碰撞时,根据动量守恒定律,得mv 0=2mv 1 解得v 1=v 02
,方向向右 P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2mv 1+2mv 0=4mv 2 解得v 2=34
v 0,方向向右. (2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得
从P 1与P 2碰撞后到弹簧压缩到最大 12×2mv 21+12×2mv 20=12
×4mv 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12
×4mv 22+2Q 联立以上两式解得E p =116mv 20,Q =116
mv 20 根据功能关系有Q =μ·2mg (L +x ) 解得x =v 20
32μg
-L .
练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.
(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 mv 0=2mv 1
此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,
由动量守恒定律和能量守恒定律得 mv 1=2mv 2 12mv 21=ΔE +12(2m )v 22 联立解得ΔE =116
mv 20. (ⅱ)由②式可知v 2 压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得mv 0=3mv 3 12mv 20-ΔE =12 (3m )v 23+E p 联立④⑤⑥式得E p =1348 mv 20. 课后作业: 1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻