根式及其运算试题及答案

合集下载

根式练习题及答案

根式练习题及答案

根式练习题及答案1. 计算 \(\sqrt{16}\) 的值。

2. 找出 \(\sqrt{64}\) 的整数解。

3. 简化表达式 \(\sqrt{8}\)。

4. 计算 \(\sqrt[3]{27}\) 的值。

5. 简化 \(\sqrt{50}\) 并写出其最简形式。

6. 求 \(\sqrt{144}\) 和 \(\sqrt{196}\) 的和。

7. 找出 \(\sqrt[3]{64}\) 与 \(\sqrt[3]{-64}\) 的值。

8. 计算 \(\sqrt{49} + \sqrt{144}\)。

9. 简化 \(\sqrt{32}\) 并将其转换为分数形式。

10. 求解方程 \(x^2 - 4x + 4 = 0\)。

答案1. \(\sqrt{16} = 4\)2. \(\sqrt{64} = 8\)3. \(\sqrt{8} = 2\sqrt{2}\)4. \(\sqrt[3]{27} = 3\)5. \(\sqrt{50} = 5\sqrt{2}\)6. \(\sqrt{144} + \sqrt{196} = 12 + 14 = 26\)7. \(\sqrt[3]{64} = 4\) 和 \(\sqrt[3]{-64} = -4\)8. \(\sqrt{49} + \sqrt{144} = 7 + 12 = 19\)9. \(\sqrt{32} = 4\sqrt{2}\),分数形式为\(\frac{4\sqrt{2}}{1}\)10. \(x^2 - 4x + 4 = (x - 2)^2 = 0\),解得 \(x = 2\)。

通过这些练习题,学生可以加深对根式运算的理解和应用。

根式运算是数学中的基础技能,掌握它们对于解决更复杂的数学问题至关重要。

希望这些练习题能够帮助学生提高他们的数学能力。

根号计算题及答案

根号计算题及答案
1.根据数的特点合理变形
例1.化简:14?65
3?
例2.化简??6
2??2
2.先化简,后求值
例3.已知:x=11
2?,y=2?3,求10
x?1?10
y?1的值
3、从整体着手
例4.已知8?x+5?x=5,求8?x)(5?x)的值
例5.已知?x2-25?x2=2,求?x2+25?x2的值
二、课堂训练
1.填空题
a.?x?2 b.x c.x2?2d.x2?2
2
2.若(3?b)?3?b,则()
a.b3b.b3 c.b≥3d.b≤3 3.若m?1有意义,则m能取的最小整数值是()a.m=0 b.m=1c.m=2 d.m=3 5.(2005)a.b.48 c.6.如果x?x?6?
x(x?,那么()
a
a?a?52a;③a
(b)(c)1?a(d)a?1 1?aa?1
9.当x?
1?3
时,多项式(4x?1997x?1994)2001的值为( ) 2
2001
(a)1;(b)-1;(c)2(d)-2
2001
1?2?1
4???????
2
11.设正整数a,m,n满足a2?42?
则这样的a,m,n的取值()m?n,
(a)有一组;(b)有两组;(c)多于二组;(d)不存在12。m?13.计算
③.被开方数是含有字母的代数式,必须根据字母的取值范围进行分类讨论
例9.化简(a-3)1 3?a
练习:
1.求下列各式中,x的取值范围:⑴1
5?2x;2x?1+?2x
4
2.若x2?6x?9-3+x=0求x的取值范围
3.当a=3

二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)
21.计算:(1) (1)2012 5 ( 1 )1 3 27 ( 2 1)0 2
(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:

8
2



1 2
0

6 3 2
1 3
48
12

3a2 3
a 2


1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2

数学二次根式知识点-+典型题含答案

数学二次根式知识点-+典型题含答案

一、选择题1.下列二次根式中是最简二次根式的为( )A B C D2.已知x 1x 2,则x₁²+x₂²等于( ) A .8B .9C .10D .113.下列运算中,正确的是( )A =B 1=C =D =4.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D 5.下列二次根式中,是最简二次根式的是( ).A .BC D6.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤47.下列各式计算正确的是( )A B .C .D8.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或9.a =-成立,那么a 的取值范围是( ) A .0a ≤B .0a ≥C .0a <D .0a >10.a 的值是( ) A .2B .-1C .3D .-1或3二、填空题11.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.12.已知2216422x x ---=,则22164x x -+-=________.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 14.已知函数1x f xx,那么21f _____.15.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.16.把1a-17.36,3,2315,,则第100个数是_______.18.4102541025-+++=_______. 19.若实数23a =-,则代数式244a a -+的值为___. 20.2m 1-1343m --mn =________.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(1(21(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.23.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.24.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22=4-23-[32-(23)2]-4=4-23+3-4=3-23【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.25.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①; ②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.26.阅读下面的解答过程,然后作答:2a b + m 和n ,使m 2+n 2=a 且b ,则a b 可变为m 2+n 2+2mn ,即变成(m +n )22a b + 例如:∵66=3)2+2)26=32)2 ∴526+()232+32请你仿照上例将下列各式化简 (1423+27210- 【答案】(1)3252-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵2224231233)(13)+=+=, 24+23=(13)13+=(2)∵2227210(5)252(2)(52)-=-=, ∴27210(52)52-=-=27.计算 (11132528+(2251694y y y +- (3)31)2a b b a b÷ (4)(23+5235 【答案】(1)32272y 334)7. 【分析】(1)先把各二次根式化为最简二次根式,然后合并即可; (2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算; (4)利用平方差公式计算; 【详解】(1+22=+=;(2==;(3÷==;(4)((22=-=7 【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.28.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A=不是最简二次根式,本选项错误; BC=不是最简二次根式,本选项错误; D=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.3.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D2=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.4.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b cp+++==∴其面积为4 S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.5.A解析:A【详解】根据最简二次根式的意义,可知=.故选A.6.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.7.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.8.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.9.A解析:A【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.10.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.二、填空题11.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a=240,b=240时,即2=1;⑥当a =135,b =540时,即2=1;⑦当a =540,b =135时,即2=1; 故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a ,b )共有 7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a 、b 可能的取值.12.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.13.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为16.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.17.【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.18.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)6=+21)=t∴=.1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.19.3【解析】∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】 根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343n m m -=⎧⎨-=-⎩, 解得,73m n =⎧⎨=⎩, ∴7321.mn =⨯=故答案为21.三、解答题21.无22.无24.无25.无26.无27.无28.无。

二次根式经典测试题附答案解析

二次根式经典测试题附答案解析

二次根式经典测试题附答案解析一、选择题1.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .2.a 的值为( ) A .2B .3C .4D .5 【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a ,移项合并,得5a=25,系数化为1,得a=5.故选:D .【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.3.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n的最小值为5.故选:B.【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.4.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.5.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.6.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.7.有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.8.= )A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】=∴x ≥0,x-6≥0,∴x 6≥.故选B.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.-中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】3,不是最简二次根式;,不是最简二次根式;-,不是最简二次根式;是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.11.下列二次根式中的最简二次根式是()A B C D【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.12x的取值范围是()A.x≥5B.x>-5 C.x≥-5 D.x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】Q有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.13.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.14.1x =-,那么x 的取值范围是( )A .x≥1B .x>1C .x≤1D .x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x 的取值范围.15.在下列各组根式中,是同类二次根式的是( )A BC D【答案】B【解析】【分析】 根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A =不是同类二次根式;B =是同类二次根式;C b ==D 不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.16.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.17.下列各式中是二次根式的是()A B C D x<0)【答案】C【解析】【分析】根据二次根式的定义逐一判断即可.【详解】A3,不是二次根式;B1<0,无意义;C的根指数为2,且被开方数2>0,是二次根式;D的被开方数x<0,无意义;故选:C.【点睛】a≥0)叫二次根式.18.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C、=(D、=故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.19.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<0=,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.20.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7正确答案:A2. 以下哪个二次根式是同类二次根式?A. √2 和3√2B. √3 和√12C. √5 和2√5D. √7 和√49正确答案:B3. 计算下列二次根式的加法:√5 + √3 =A. √8B. √15C. √18D. 无法计算正确答案:D二、填空题4. 将下列二次根式化简:√121 = ____答案:115. 合并同类二次根式:3√2 + √2 = ____答案:4√26. 计算二次根式的除法:(√6 / √3) = ____答案:√2三、计算题7. 计算下列表达式的值:(√8 + √18) / √2解:首先化简根式,√8 = 2√2,√18 = 3√2,代入原式得:(2√2 + 3√2) / √2 = 5√2/ √2 = 58. 解二次根式方程:x√2 = √3解:将方程两边同时除以√2,得:x = √(3/2) = √6 / 2四、应用题9. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

解:根据勾股定理,斜边长度为:c = √(3² + 4²) = √(9 + 16) = √25 = 510. 一个正方形的面积为16平方厘米,求其边长。

解:设边长为a,则a² = 16,所以a = √16 = 4厘米。

五、证明题11. 证明√2是一个无理数。

证明:假设√2是有理数,即存在两个互质整数m和n,使得√2= m/n。

根据有理数的性质,可以设m和n的最大公约数为1。

将等式两边平方,得到2n² = m²,从而m²是偶数,所以m也是偶数,设m = 2k。

代入原等式,得到2n² = (2k)²,即n² = 2k²,说明n也是偶数,这与m和n互质矛盾。

根式数学试题及答案

根式数学试题及答案

根式数学试题及答案一、单项选择题(每题3分,共30分)1. 下列哪个选项不是根式表达式?A. \(\sqrt{2}\)B. \(\sqrt[3]{8}\)C. \(\sqrt[4]{16}\)D. \(2^2\)答案:D2. 计算 \(\sqrt{49}\) 的值是多少?A. 7B. -7C. 7或-7D. 0答案:A3. 已知 \(\sqrt{x} = 3\),求 \(x\) 的值。

A. 9B. 6C. 3D. 1答案:A4. 根式 \(\sqrt[3]{27}\) 的值是多少?A. 3B. 6C. 9D. 27答案:A5. 计算 \(\sqrt{25} + \sqrt{9}\) 的结果是多少?A. 7B. 8C. 10D. 12答案:B6. 根式 \(\sqrt[3]{64}\) 的值是多少?A. 4B. 8C. 16D. 32答案:A7. 计算 \(\sqrt{36} - \sqrt{4}\) 的结果是多少?A. 4B. 5C. 6D. 8答案:C8. 根式 \(\sqrt[3]{-8}\) 的值是多少?A. -2B. 2C. -1D. 1答案:A9. 计算 \(\sqrt{81} \times \sqrt{9}\) 的结果是多少?A. 9B. 27C. 81D. 729答案:B10. 根式 \(\sqrt[4]{81}\) 的值是多少?A. 3B. 9C. 27D. 81答案:A二、填空题(每题3分,共30分)1. 根式 \(\sqrt{144}\) 的值为 ________。

答案:122. 根式 \(\sqrt[3]{125}\) 的值为 ________。

答案:53. 根式 \(\sqrt[2]{169}\) 的值为 ________。

答案:134. 根式 \(\sqrt[3]{-27}\) 的值为 ________。

答案:-35. 根式 \(\sqrt[4]{256}\) 的值为 ________。

二次根式经典测试题及答案

二次根式经典测试题及答案

二次根式经典测试题及答案一、选择题1.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.2.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.3.下列式子正确的是( )A 6=±B C 3=- D 5=-【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.4.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.5.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.6.下列运算正确的是( )A .B)2=2 CD==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知A 选项错误;根据二次根式的性质2=a (a≥02=2,所以B 选项正确;(0)=0(=0)(0)a a a a a a ⎧⎪=⎨⎪-⎩><﹣11|=11,所以C 选项错误;DD 选项错误.故选B .【点睛】此题主要考查了的二次根式的性质2=a (a≥0(0)=0(=0)(0)a a a a a a ⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.7.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=- C.1)4=D .()422a a -=【答案】C【解析】【分析】根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.8.+在实数范围内有意义的整数x 有( ) A .5个B .3个C .4个D .2个【答案】C【解析】∴30430x x +>⎧⎨-≥⎩ ,解得:433x -<≤, 又∵x 要取整数值,∴x 的值为:-2、-1、0、1.即符合条件的x 的值有4个.故选C.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;=是同类二次根式;B2C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、2==D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.13.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.14.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.15.下列二次根式是最简二次根式的是( )ABCD【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.16.下列运算正确的是( )A=B=C123= D2=-【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;=,故C错误;C.3D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.17.若a b>)A.-B.-C.D.【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<02=-,ab a a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.18.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.下列二次根式中的最简二次根式是()A B C D【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D,不是最简二次根式;2故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.20.的结果是A.-2 B.2 C.-4 D.4【答案】B【解析】22故选:B。

根式的运算练习题答案

根式的运算练习题答案

根式的运算练习题答案一、选择题1. 计算下列根式的值:A. \( \sqrt{4} \)B. \( \sqrt{9} \)C. \( \sqrt{16} \)D. \( \sqrt{25} \)正确答案:D2. 以下哪个表达式等价于 \( \sqrt{8} \)?A. \( 2\sqrt{2} \)B. \( \sqrt{2} \)C. \( 4\sqrt{2} \)D. \( \sqrt{4} \)正确答案:A3. 根据根式的运算法则,\( \sqrt{a^2} \) 等于:A. \( a \)B. \( -a \)C. \( |a| \)D. \( a^2 \)正确答案:C二、填空题4. 计算 \( \sqrt{64} \) 的结果为 _______。

答案:85. 将 \( \sqrt{50} \) 简化为最简二次根式,结果为 _______。

答案:5√26. 如果 \( \sqrt{x} + 3 = 7 \),那么 \( x \) 的值是 _______。

答案:16三、计算题7. 计算下列表达式的值:(1) \( \sqrt{34} + \sqrt{8} \)(2) \( \sqrt{5} \times \sqrt{20} \)(3) \( \frac{\sqrt{7}}{\sqrt{14}} \)答案:(1) \( \sqrt{34} + 2\sqrt{2} \)(2) \( \sqrt{5 \times 20} = \sqrt{100} = 10 \)(3) \( \frac{\sqrt{7}}{\sqrt{14}} =\frac{\sqrt{7}}{\sqrt{2} \times \sqrt{7}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \)四、解答题8. 证明:\( \sqrt{a^2 + b^2} \) 不能简化为 \( a + b \)。

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析

初三数学二次根式试题答案及解析1.若在实数范围内有意义,则x的取值范围是【答案】x≤。

【解析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围。

根据题意得:1﹣3x≥0,解得:x≤。

【考点】二次根式有意义的条件。

2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.若a<<b,且a,b为连续正整数,则b2﹣a2=.【答案】7【解析】∵32<13<42,∴3<<4,即a=3,b=4,所以a+b=7.【考点】估算4.二次根式有意义,则实数x的取值范围是()A.x≥﹣2B.x>﹣2C.x<2D.x≤2【答案】B.【解析】根据被开方数大于等于0,得﹣2x+4≥0,解得x≤2.故选B.【考点】二次根式有意义的条件.5.使有意义的的取值范围是()A.B.C.D.【答案】C.【解析】∵有意义∴3x-1≥0解得:.故选C.【考点】二次根式有意义的条件.6.在函数中,自变量a的取值范围是.【答案】a≥2.【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.根据题意得:a-2≥0,解得a≥2,则自变量a的取值范围是a≥2.【考点】1.函数自变量的取值范围; 2.二次根式有意义的条件.7.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是.【答案】;3【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,第7排是奇数排,最中间的也就是这排的第4个数是1,那么第3个就是:;从图示中知道,(5,2)所表示的数是;∵第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,∴(20,17)表示的数是.∴(5,2)与(20,17)表示的两数之积是:×=3.故答案为:;3.8.已知实数a在数轴上的对应点,如图所示,则化简所得结果为【答案】2a+1.【解析】:由数轴表示数的方法得到a>0,然后利用二次根式的性质得到原式=|a|+|a+1|=a+a+1,再合并即可.试题解析:∵a>0,∴原式=|a|+|a+1|=a+a+1=2a+1.考点: 1.二次根式的性质与化简;2.实数与数轴.9.当1<x<3时,|1-x|+等于_________________【答案】2【解析】=|a|=当1<x<3时,1-x<0,x-3<0.∴原式=(x-1)+(3-x)=2.10.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.11.已知0<x<1,化简:-.【答案】2x.【解析】-=-=- ,因为0<x<1,所以原式=x+-(-x)=x+-+x=2x.12.计算:【答案】14.【解析】根据有理数的乘方、绝对值、零次幂、立方根、负整数指数幂的意义进行计算即可求出代数式的值.试题解析:.考点: 实数的混合运算.13.下列各式中计算正确的是()。

二次根式混合运算题含答案

二次根式混合运算题含答案

二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。

二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案二次根式练题及答案(一)一、选择题(每小题2分,共24分)1.若在实数范围内有意义,则 $\sqrt{x-3}$ 的取值范围是()A。

$x\geq 3$ B。

$x>3$ C。

$x\leq 3$ D。

$x<3$2.在下列二次根式中。

$\sqrt{x-2}$ 的取值范围是 $x\geq2$ 的是() A。

$\sqrt{x-2}$ B。

$\sqrt{2-x}$ C。

$\sqrt{2+x}$ D。

$\sqrt{4-x^2}$3.如果 $x\geq 1$,那么 $\sqrt{x^2-2x+1}$ 的值是()A。

$1$ D。

无法确定4.下列二次根式,不能与$\sqrt{2}+\sqrt{3}$ 合并的是()A。

$\sqrt{2}+\sqrt{3}$ B。

$\sqrt{2}-\sqrt{3}$ C。

$\sqrt{3}-\sqrt{2}$ D。

$\sqrt{3}+\sqrt{2}$5.如果最简二次根式 $\sqrt{a}+\sqrt{b}$ 与 $\sqrt{a}-\sqrt{b}$ 能够合并,那么 $a$ 的值为()A。

2 B。

3 C。

4 D。

56.已知 $\sqrt{a}+\sqrt{b}=\sqrt{3}+\sqrt{2}$,则 $\sqrt{a}-\sqrt{b}$ 的值为()A。

$\sqrt{3}-\sqrt{2}$ B。

$\sqrt{2}-\sqrt{3}$ C。

$\sqrt{3}+\sqrt{2}$ D。

$\sqrt{2}+\sqrt{3}$7.下列各式计算正确的是()A。

$\sqrt{8}+\sqrt{12}=4\sqrt{2}+2\sqrt{3}$ B。

$\sqrt{5}+\sqrt{20}=3\sqrt{5}$ C。

$\sqrt{3}+\sqrt{2}=\sqrt{5}$ D。

$\sqrt{6}+\sqrt{3}=\sqrt{18}$8.等式 $\sqrt{x+3}-\sqrt{x-1}=2$ 成立的条件是()A。

二次根式加减运算(习题及答案).

二次根式加减运算(习题及答案).

二次根式加减运算(习题)复习巩固1.下列属于同类二次根式的是()A .4和8B .3和13C .20和40D .23和492.(1)若最简二次根式21x -与3是同类二次根式,则x =_________;(2)若8与最简二次根式1a +的和是一个二次根式,则a 的值为__________.3.下列运算错误的是()A .235+=B .236⋅=C .2222÷=D .2(2)2-= 4.计算:(1)12933--+;(2)118522-+;解:原式=解:原式=(3)1520255+-;(4)246123-+.解:原式=解:原式=5.计算:(1)1124628⎛⎫⎛⎫+-+⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)11233⎛⎫-⨯⎪⎪⎝⎭;解:原式=解:原式=(3)12035105⎛⎫+-⨯⎪⎝⎭;(4)(4236)22-÷;解:原式=解:原式=(5)1 10486412327⎛⎫-+⎪⎪⎝⎭÷;解:原式=(6)(35)(52)+-;(7)(32)(32)+-;解:原式=解:原式=(8)2(52)+;(9)22(72)(72)--+;解:原式=解:原式=(10)21(26)(26)(3)3-+----;解:原式=(11)(532)(532)-++-;解:原式=(12)21(52)51025--÷+.解:原式=6.如图,在数轴上A ,B 两点表示的数分别是2-,3,若点C 与点B 关于点A 对称,则点C 表示的数是_________.7.如图,在数轴上,点B 与点C 到点A 的距离相等,A ,B 两点所对应的实数分别是1和3-,则点C 对应的实数是_________.【参考答案】 复习巩固1.B 2.(1)2;(2)13.A 4.(1)33-(2)322(3)5(4)322 5.(1)264+(2)5(3)42-(4)3322-(5)1423(6)51-(7)1(8)7210+(9)414-(10)103-(11)26(12)44595-6.223--7.23+。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

二次根式的四则运算习题精选(含答案)

二次根式的四则运算习题精选(含答案)

二次根式的四则运算习题精选一、选择题1.以下二次根式:①12;②22;③23;④27中,与3是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22,其中错误的有().A.3个B.2个C.1个D.0个二、填空题1.在8、1753a、293a、125、323aa、30.2、-218中,与3a是同类二次根式的有________.2.计算二次根式5a -3b -7a +9b的最后结果是________.三、综合提高题1.已知5≈2.236,求(80-415)-(135+4455)的值.(结果精确到0.01)2.先化简,再求值.(6x yx +33xyy)-(4xxy +36xy),其中x=32,y=27.答案:一、1.C 2.A二、1.1753a 323aa2.6b -2a2.原式=6xy +3xy-(4xy +6xy)=(6+3-4-6)xy =-xy,当x=32,y=27时,原式=-3272⨯=-922第二课时一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.52B .50C.25D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.13100B .1300C.1013D.513二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为2,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1.若最简二次根式22323m-与212410n m--是同类二次根式,求m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=(3)2,5=(5)2,你知道是谁的二次根式呢?下面我们观察:(2-1)2=(2)2-2·1·2+12=2-22+1=3-22反之,3-22=2-22+1=(2-1)2∴3-22=(2-1)2∴322-=2-1求:(1)322+;(2)423+;(3)你会算412-吗?(4)若2a b ±=m n ±,则m 、n 与a 、b 的关系是什么?并说明理由. 答案:一、1.A 2.C二、1.202 2.2+22三、1.依题意,得2223241012m m n ⎧-=-⎪⎨-=⎪⎩,2283m n ⎧=⎪⎨=⎪⎩,223m n ⎧=±⎪⎨=±⎪⎩ 所以223m n ⎧=⎪⎨=⎪⎩或223m n ⎧=-⎪⎨=⎪⎩或223m n ⎧=⎪⎨=-⎪⎩或223m n ⎧=-⎪⎨=-⎪⎩ 2.(1)322+=2(21)+=2+1所以a m nb mn =+⎧⎨=⎩第三课时一、选择题1.(24-315+2223)×2的值是( ). A .2033-330 B .330-233C .230-233 D .2033-302.计算(x +1x -)(x -1x -)的值是( ). A .2 B .3 C .4 D .1 二、填空题1.(-12+32)2的计算结果(用最简根式表示)是________.2.(1-23)(1+23)-(23-1)2的计算结果(用最简二次根式表示)是_______. 3.若x=2-1,则x 2+2x+1=________.4.已知a=3+22,b=3-22,则a 2b-ab 2=_________. 三、综合提高题1.化简5710141521++++2.当x=121-时,求2211x x x x x x ++++-++2211x x x x x x +-++++的值.(结果用最简二次根式表示)答案:一、1.A 2.D二、1.1-32 2.43-24 3.2 4.42二次根式的乘除 习题精选一、选择题1.下列计算正确的有( )①(4)(9)49(2)(3)6-⨯-=-⨯-=-⨯-=; ②494923=6-⨯=⨯=⨯()(-);③225454543-=+⨯-=; ④222254541-=-=。

八年级数学《根式运算》练习题(含答案)

八年级数学《根式运算》练习题(含答案)

八年级数学《根式运算》练习题(含答案)一、选择题(每小题4分,共20分)1. ( )下列各式正确的是()A. $\sqrt{4}=\pm2$B. $\sqrt{16}=4$C. $\sqrt{-9}=-3$D. $\sqrt{25}=5$2. ( )$\sqrt{8}-\sqrt{32}+2\sqrt{2}=$()A. $-2\sqrt{2}$B. $2\sqrt{2}$C. $-4$D. $4$3. ( )$\sqrt{\frac{2}{3}}$是()A. 无理数B. 整数C. 自然数D. 分数4. ( )下列运算正确的是()A. $2\sqrt{3}+4\sqrt{2}=6\sqrt{5}$B. $3\sqrt{5}-\sqrt{3}=\sqrt{8}$C. $5\sqrt{3}\div \sqrt{2}=\sqrt{30}$D. $\sqrt{3}+\sqrt{5}=\sqrt{15}$5. ( )下列各根的大小关系是()A. $\sqrt{5}<\sqrt{8}<\sqrt{15}$B. $\sqrt{2}<\sqrt{3}<\sqrt{5}$C. $\sqrt{2}<\sqrt{3}<\sqrt{8}$D. $\sqrt{5}<\sqrt{7}<\sqrt{10}$二、填空题(每小题4分,共20分)1. 化简$\sqrt{27}$,得:$\underline{\hspace{2cm}}$2. 计算:$\sqrt{5^2-2^2}=$ $\underline{\hspace{2cm}}$3. $\sqrt{16}-\sqrt{2}+\sqrt{18}-\sqrt{8}=$ $\underline{\hspace{2cm}}$4. 计算:$\sqrt{2}+\sqrt{8}=$ $\underline{\hspace{2cm}}$5. 计算:$2\sqrt{80}-\sqrt{20}=$ $\underline{\hspace{2cm}}$三、解答题(每小题12分,共60分)1. 化简:$\dfrac{\sqrt{24}+\sqrt{54}}{\sqrt{6}}$解:$\because$ $24=4\times6$,$54=9\times6$,$\therefore$ $\sqrt{24}=2\sqrt{6}$,$\sqrt{54}=3\sqrt{6}$又因为$\dfrac{\sqrt{24}+\sqrt{54}}{\sqrt{6}}=\dfrac{2\sqrt{6}+3\sqrt{6}}{\s qrt{6}}=5$∴化简后的结果是:$\boxed{5}$2. 计算:$2\sqrt{125}-\sqrt{27}+\dfrac{\sqrt{200}}{\sqrt{2}}$解:$2\sqrt{125}=2\times5\sqrt{5}=10\sqrt{5}$$-\sqrt{27}=-(3\sqrt{3})$$\because$ $\sqrt{200}=\sqrt{100\times2}=10\sqrt{2}$$\therefore$ $\dfrac{\sqrt{200}}{\sqrt{2}}=5\sqrt{2}$又因为 $2\sqrt{125}-\sqrt{27}+\dfrac{\sqrt{200}}{\sqrt{2}}=10\sqrt{5}-3\sqrt{3}+5\sqrt{2}$∴计算后的结果是:$\boxed{10\sqrt{5}-3\sqrt{3}+5\sqrt{2}}$3. $\sqrt{2}+\dfrac{\sqrt{6}}{2}+\sqrt{8}-\dfrac{\sqrt{32}}{4}$解:$\because$ $\sqrt{2}=\sqrt{2}\times1$,$\sqrt{8}=2\sqrt{2}$,$\therefore$ $\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$又因为 $\sqrt{6}=\sqrt{2\times3}= \sqrt{2}\sqrt{3}$$\therefore$ $\dfrac{\sqrt{6}}{2}=\dfrac{\sqrt{2}\sqrt{3}}{2}=\sqrt{2}\dfrac{\sqrt{3}}{2}$因为是减法,又因为 $\sqrt{32}=4\sqrt{2}$$\therefore$ $\dfrac{\sqrt{32}}{4}=\dfrac{4\sqrt{2}}{4}=\sqrt{2} $$\therefore$ $\sqrt{2}+\dfrac{\sqrt{6}}{2}+\sqrt{8}-\dfrac{\sqrt{32}}{4}\\=\sqrt{2}\times1+\sqrt{2}\dfrac{\sqrt{3}}{2}+2\sqrt{2}-\sqrt{2}\\=(\sqrt{2}+\sqrt{2}-\sqrt{2})+\sqrt{2}\dfrac{\sqrt{3}}{2}\\=\boxed{\sqrt{2}\dfrac{\sqrt{3}}{2}}$4. $\sqrt{6}+\sqrt{3}-\sqrt{2}-\sqrt{12}$解:$\because$ $\sqrt{6}=\sqrt{2}\sqrt{3}$,$\sqrt{12}=2\sqrt{3}$$\therefore$ $\sqrt{6}+\sqrt{3}-\sqrt{2}-\sqrt{12}=\sqrt{2}\sqrt{3}+\sqrt{3}-\sqrt{2}-2\sqrt{3}\\=(\sqrt{2}\sqrt{3}-\sqrt{2}-\sqrt{2}\sqrt{3})+\sqrt{3}\\=\boxed{\sqrt{3}-\sqrt{2}}$5. 化简:$\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}$解:$\because$ $\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{(\sqrt{x}+\sqrt{y})(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\\=\dfrac{x+2\sqrt{xy}+y}{x-y}$∴化简后的结果是:$\boxed{\dfrac{x+2\sqrt{xy}+y}{x-y}}$。

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.计算:(1)(2)【答案】(1)原式=﹣6;(2)原式=2x﹣x.【解析】(1)根据二次根式的乘法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可试题解析:(1)原式==﹣6;(2)原式=2+2x﹣x﹣2=2x﹣x.【考点】二次根式的混合运算2.下列式子中,是最简二次根式的是()A.B.C.D.【答案】B.【解析】A、=3,故A选项错误;B、是最简二次根式,故B选项正确;C、=2,不是最简二次根式,故C选项错误;D、=,不是最简二次根式,故D选项错误.故选B.【考点】最简二次根式.3.化简后的结果是()A.B.C.D.【答案】B.【解析】.故选B.【考点】二次根式的化简.4.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.5.计算:______.【答案】13【解析】6.在实数,,,,中,无理数有()A.1个B.2个C.3个D.4个【答案】A【解析】因为所以在实数,0,,,中,有理数有,0,,,只有是无理数.7.阅读下面问题:;.试求:(1)的值;(2)(为正整数)的值.(3)的值.【答案】(1)(2)(3)9【解析】解:(1)=.(2).(3)8.在3.14、、、、、0.2020020002这六个数中,无理数有()A.1个B.2个C.3个D.4个【答案】B.【解析】无理数即无限不循环小数,显然3.14、、0.2020020002这三个数是有限小数,不是无理数;而是无理数,所以也是,毫无疑问是无理数,的结果是一个无限循环小数,所以不是无理数,因此无理数有2个,即:故选B.【考点】无理数的定义.9.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.10.在数轴上与表示的点距离最近的整数点所表示的数是 .【答案】2【解析】本题主要考查了实数与数轴的对应关系,解题应看这个无理数的被开方数在哪两个能开得尽方的数的被开方数之间,比较无理数的被开方数和这两个能开得尽方的数的被开方数的距离,进而求解.先利用估算法找到与的点两边的两个最近整数点,再比较这两个点与的大小即可解决问题.因为,所以左右两边的整数点是1和2,又因为3与4的距离最近,所以与的点的距离最近的整数点所表示的数是2,故填2.【考点】实数与数轴.11.若(x-3)2+=0,则x-y= .【答案】5.【解析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.解:根据题意得,x-3=0,y+2=0,解得x=3,y=-2,x-y=3-(-2)=3+2=5.故答案为:5.【考点】1.非负数的性质:2.算术平方根;3.偶次方.12.估算的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C.【解析】因为5<<6,所以3<<4.故选C.【考点】估算无理数的大小.13.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较大14.观察各数:,,,.其中最小数与最大数的和为(结论化简);【答案】【解析】依题意:;;;,易知最大数为,最小数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档