人教版数学九年级上册《第二十二章二次函数》过关自测卷
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
人教版数学九年级上册第二十二章 二次函数达标测试卷(含答案)
二次函数自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数中,属于二次函数的是( ) A. y =2x +lB. y =(x ﹣l )2﹣x 2C. y =5x 2D. y =22x 2. 在平面直角坐标系中,将二次函数y =x 2的图象先向右平移3个单位长度,再向上平移1个单位长度,所得新抛物线的解析式为( ) A. y =(x +3)2+1B. y =(x ﹣3)2﹣1C. y =(x +3)2﹣1D. y =(x ﹣3)2+13. 某抛物线的形状、开口方向与y =12x 2﹣4x +3相同,顶点坐标为(﹣2,1),则该抛物线的解析式为( ) A .y =12(x ﹣2)2+1 B .y =12(x +2)2﹣1C .y =12(x +2)2+1D .y =-12(x +2)2+14. 二次函数y =ax 2+bx +c 的部分图象如图所示,可知关于x 的方程ax 2+bx +c =0的所有根的积为( ) A .﹣4 B .4 C .﹣5 D .5第4题图 第8题图 第9题图 第10题图 5. 关于二次函数y =3(x +1)2﹣7的图象及性质,下列说法正确的是( ) A. 对称轴是x =1 B. 当x =﹣1时,y 取得最小值,且最小值为﹣7 C. 顶点坐标为(﹣1,7) D. 当x <﹣1时,y 随x 的增大而增大6. 某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100﹣x )件.若想获得最大利润,则售价x 应定为( )A .35元B .45元C .55元D .65元7. 一次函数y =bx +a (b ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D8. 板球是以击球、投球和接球为主的运动,该项目主要锻炼手眼的协调能力,集上肢动作控制能力、技巧与力量为一体的综合性运动.如图是运动员击球过程中板球运动的轨迹示意图,板球在点A 处击出,落地前的点B 处被对方接住,已知板球经过的路线是抛物线,其解析式为y =132x 2+14x +1,则板球运行中离地面的最大高度为( )A. 1B.32C.83D. 49. 如图,在△ABC 中,∠B =90°,AB =4 cm ,BC =8 cm ,动点P 从点A 出发,沿边AB 向点B 以1 cm/s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2 cm/s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( ) A. 1 s B. 2 s C. 3 s D. 4 s 10. 已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的顶点坐标是(﹣1,m ),与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,有下列结论:①abc >0;②关于x 的方程ax 2+bx +c ﹣m =2没有实数根;③3a +c >0.其中正确的个数是( ) A .3 B .2 C .1 D .0二、填空题(本大题共6小题,每小题4分,共24分) 11. 抛物线y =x 2+2x +c 的对称轴是 . 12. 当a = 时,函数y =(a ﹣1)21a x+x ﹣3是二次函数.13. 若二次函数y =x 2﹣4x +n 的图象与x 轴只有一个公共点,则实数n = .14. 点P 1(1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是 .15. 如图,将抛物线y 1=(x +1)2﹣3向右平移2个单位长度得到抛物线y 2,则阴影部分的面积为 .第15题图 第16题图16. 圆形喷水池中心O 处有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,O 为原点建立平面直角坐标系,点A 在y 轴上,x 轴上的C ,D 为水柱的落水点.已知雕塑OA 的高为116米,水柱最高点与OA 的水平距离为5米,落水点C ,D 之间的距离为22米,则喷出水柱的最大高度为 米.三、解答题(本大题共8小题,共66分)17.(6分)已知二次函数y =x 2﹣4x +c 的图象经过点(3,0). (1)求该二次函数的解析式;(2)点P (4,n )向上平移2个单位长度得到点P ',若点P ′落在该二次函数的图象上,求n 的值. 18.(6分)已知二次函数y =x 2-4mx +3m 2(m ≠0).(1)求证:该二次函数的图象与x 轴总有两个公共点; (2)若m>0,且两交点间的距离为2,求m 的值.19.(8分)购进一款防护PM 2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数解析式; (2)求出销售单价定为多少元时,每天的利润最大,并求出最大利润. 20.(8分)如图,抛物线y =2x 2+bx ﹣2过点A (﹣1,m )和B (5,m ). (1)求b 和m 的值;(2)若抛物线与y 轴交于点C ,求△ABC 的面积.第20题图 第21题图 21.(8分)如图,已知抛物线L 1:y 1=34x 2,将抛物线平移后经过点A (﹣1,0),B (4,0)得到抛物线L 2,与y轴交于点C.(1)求抛物线L2的解析式;(2)已知P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC,若存在,求点P的坐标;若不存在,请说明理由.22.(8分)已知抛物线y=﹣x2+bx+c的顶点坐标为(2,7).(1)求b,c的值;(2)已知点A,B落在抛物线上,点A在第二象限,点B在第一象限.若点B的纵坐标比点A的纵坐标大3,设点B的横坐标为m,求m的取值范围.23.(10分)图①是一座抛物线形拱桥侧面示意图,水面宽AB与桥长CD均为24 m,在到点D的距离为6米的E处,测得桥面到桥拱的距离EF为1.5 m.以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.①②①②第23题图第24题图24.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B两点,顶点为C(1,﹣1),E为对称轴上一点,D,F为抛物线上的点(点D位于对称轴左侧),且四边形CDEF为正方形.(1)求该抛物线的解析式;(2)如图①,求正方形CDEF的面积;(3)如图②,连接DF,与CE交于点M,与y轴交于点N.若P为抛物线上一点,Q为直线BN上一点,且P,Q两点均位于直线DF下方,当△MPQ是以点M为直角顶点的等腰直角三角形时,求点P的坐标.题报第②期 二次函数自我评估参考答案答案详解三、17. 解:(1)将(3,0)代入y =x 2﹣4x +c ,得9﹣12+c =0,解得c =3. 所以该二次函数的解析式为y =x 2﹣4x +3.(2)点P (4,n )向上平移2个单位长度得到点P '(4,n +2). 将P ′(4,n +2)代入y =x 2﹣4x +3,得16﹣16+3= n +2,解得n =1.18.(1)证明:令y =0,则x 2-4mx +3m 2=0(m ≠0).因为Δ=(-4m )2﹣4×3m 2=4m 2>0,所以方程x 2-4mx +3m 2=0(m≠0)有两个不等的实数根.所以无论m 取何值,该函数的图象与x 轴总有两个公共点. (2)解:解方程x 2-4mx +3m 2=0,得x 1=m ,x 2=3m .所以函数y =x 2-4mx +3m 2的图象与x 轴两个交点的坐标为(m ,0),(3m ,0).因为m >0,两交点间距离为2,所以3m-m =2,解得m =1. 19. 解:(1)根据题意,得y =(x ﹣5)105050.1x -⎛⎫+⨯⎪⎝⎭=﹣50x 2+800x ﹣2750(5≤x ≤10).所以每天的销售利润y (元)与销售单价x (元)之间的函数解析式是y =﹣50x 2+800x ﹣2750(5≤x ≤10). (2)由(1),知y =﹣50x 2+800x ﹣2750=﹣50(x ﹣8)2+450.因为﹣50<0,5≤x ≤10,所以当x =8时,y 有最大值,最大值为450. 所以销售单价定为8元时,每天的利润最大,最大利润是450元.20. 解:(1)因为A (﹣1,m ),B (5,m )是抛物线y =2x 2+bx ﹣2上的两点,所以对称轴为x=15222b -+-=⨯,得b =﹣8.所以抛物线的解析式为y =2x 2﹣8x ﹣2.将A (﹣1,m )代入y =2x 2﹣8x ﹣2,得m =2+8﹣2=8.(2)令x=0,得y =﹣2,所以点C 的坐标为(0,﹣2).所以OC =2. 因为A (﹣1,8),B (5,8),所以AB =6.所以S △ABC =12×6×(2+8)=30. 21. 解:(1)设抛物线L 2的解析式为y=34x 2+bx+c. 将A (﹣1,0),B (4,0)代入,得3041240b c b c ⎧-+=⎪⎨⎪++=⎩,,解得943.b c ⎧=-⎪⎨⎪=-⎩,所以抛物线L 2的解析式为y=34x 294-x-3.(2)存在PD =2OC . 理由:设P 239344a a a ⎛⎫-- ⎪⎝⎭,,D 234a a ⎛⎫⎪⎝⎭,,所以PD=223933444a a a ---=934a +,OC=3.由934a +=2OC=6,解得a=43或a=-4.所以点P 的坐标为41433⎛⎫ ⎪⎝⎭,-或(﹣4,18). 22. 解:(1)因为抛物线y =﹣x 2+bx +c 的顶点坐标为(2,7),所以对称轴为x=()21b-⨯-=2,解得b =4.所以y =﹣x 2+4x +c.将(2,7)代入y =﹣x 2+4x +c ,得﹣4+8+c =7,解得c =3.所以b 的值是4,c 的值是3. (2)因为y =﹣x 2+4x +3的顶点坐标为(2,7),所以抛物线开口向下,对称轴为x =2.令x =0,得y =3,所以抛物线与y 轴的交点坐标为(0,3).所以点(0,3)关于对称轴的对称点为(4,3). 因为点A ,B 落在抛物线上,点A 在第二象限,点B 在第一象限,点B 的纵坐标比点A 的纵坐标大3,所以将y =6代入y =﹣x 2+4x +3,得﹣x 2+4x +3=6,解得x =1或x =3.所以m 的取值范围是0<m <1或3<m <4.第22题图(共享2021-2022学年第二学期答案页第8期大报第20期“专项五”3题答案) 23. 解:(1)由题意,得F (6,-1.5). 设抛物线的解析式为y 1=a 1x 2.将F (6,-1.5)代入,得62·a 1=-1.5,解得a 1=124-. 所以抛物线的解析式为y 1=124-x 2.当12x =时,y 1=-6,所以桥拱顶部离水面的距离为6 m . (2)①由题意,得右侧抛物线的顶点为(6,1).设右侧抛物线的解析式为y 2=a 2(x-6)2+1.将H (0,4)代入,得a 2(0-6)2+1=4,解得a 2=112. 所以右侧抛物线的解析式为y 2=112(x-6)2+1. ②设彩带的长度为h m ,则h =y 2-y 1=112(x-6)2+1-2124x ⎛⎫-⎪⎝⎭=18x 2–x+4=18(x–4)2+2. 因为18>0,所以h 有最小值.当x=4时,h 取得最小值,为2.所以彩带长度的最小值是2 m .24. 解:(1)设抛物线的解析式为y =a (x ﹣1)2﹣1.将A (﹣1,0)代入,得a =14,所以y =14x 2-12x -34.(2)如图①,过点F 作FR ⊥EC 于点R . 设F 2113424t t t ⎛⎫-- ⎪⎝⎭,,则R 2113424t t ⎛⎫-- ⎪⎝⎭1,,所以RC =2111424t t -+,RF =t ﹣1. 因为四边形CDEF 是正方形,所以RF =RC .所以2111424t t -+=t ﹣1.所以t =1(舍去)或t =5.所以F (5,3).所以RF =4.所以CF 2=32.所以正方形CDEF 的面积是32. (3)令y=0,则14x 2-12x -34=0,解得x=-1或x=3.所以B (3,0). 由(2)可得N (0,3),M (1,3),所以直线BN 的解析式为y =﹣x +3.设Q (m ,3﹣m ),如图②,过点Q 作QG ⊥DF 于点G ,作PT ⊥DF 于点T .因为△MPQ 是以M 为直角顶点的等腰直角三角形,所以MP =QM ,∠TMP +∠GMQ =90°,∠TMP +∠TPM =90°.所以∠TPM =∠GMQ .所以△MTP ≌△QGM .所以PT =MG ,MT =QG .所以PT =MG =m ﹣1,MT =QG =m.所以P (1﹣m ,4﹣m ).因为点P 在抛物线上,所以4﹣m =14(1﹣m )2-12(1﹣m )-34,解得m =﹣2±因为m >0,所以m =﹣2+所以P (3--.所以当△MPQ 是以M 为直角顶点的等腰直角三角形时,点P 的坐标为(3--.① ② 第24题图。
2020-2021学年度人教版九年级上册数学第二十二章《二次函数》综合过关测试卷(含答案)
流落地点 B 离墙距离 OB 是 ( )
第 6 题图
第 8 题图
第 10 题图
A.2m
B.3m
C.4m
D.5m
7.在同一平面直角坐标系中,函数 y=ax2+bx 与 y=bx+a 的图象可能是( )
8.如图,在平面直角坐标系中,抛物线所表示的函数表达式为 y=-2(x-h)2+k,则
下列结论正确的是 ( )
A.h>0,k>0 B.h<0,k>0
C.h<0,k<0
D.h>0,k<0
9.向空中发射一枚炮弹,经 x 秒后的高度为 y 米,且时间与高度的关系式为
y=ax2+bx+c(a≠0).若此炮弹在第 6 秒与第 14 秒时的高度相等,则在下列时
间中炮弹所在高度最高的是( )
A.第 8 秒 B.第 10 秒 C.第 12 秒 D.第 14 秒
,当 k=
时,y 随 x 的增大而减小.
时,它的图象是开口向下的抛物线;此时当 x
13.若抛物线 y=(x+a)2+a-1 的顶点在第二象限,则 a 的取值范围是
.
14.如图,已知二次函数 y=x2+bx+c 的图象经过点(-1,0),(1,-2),当 y 随 x 的增
大而增大时,x 的取值范围是________.
25.某跳水运动员进行 10m 跳台跳水训练时,身体(看成一点)在空中运动路线是 如图所示坐标系下经过原点 O 的一条抛物线(图中标出的数据为已知条件).在跳 某个规定动作时,正常情况下该运动员在空中的最高处 A 点距水面 10 m,入水处 B 点距池边的距离为 4m,同时运动员在距水面高度为 5m 以前,必须完成规定的翻 腾动作,并调整好入水的姿势,否则就会出现失误. 世纪金榜导学号 26534313
人教版九年级数学上册作业课件 第二十二章 二次函数 阶段自测(二)
12.(2020·兰州)点A(-4,3),B(0,k)在二次函数y=-(x+2)2+h 的图象上,则k=__3__.
13.二次函数y=a(x-h)2+k的图象如图,根据图象写出此函数的一 条性质:__二__次__函__数__的__对__称__轴__为__直__线__x_=__1_(答__案__不__唯__一__)______.
中,BF= PF2-PB2 = (41a2+1)2-a2 =14 a2-1,∴OF=1,∴点 F 坐 标为(0,1) ②由①知 PM=PF,∴QP+PF 的最小值为 QP+PM 的最小值, 当 Q,P,M 三点共线时,QP+PM 有最小值,最小值为点 Q 纵坐标的绝对值 与 M 纵坐标的绝对值之和.∴QP+PM 的最小值为 6
解:(1)∵抛物线 y=14 (x+2)2-1 的顶点为(-2,-1),∴抛物线 y=
1 4
(x+2)2-1 的图象向上平移
1
个单位,再向右平移
2
个单位得到抛物线
y=14 x2 的图象
(2)①存在一定点 F,使得 PM=PF 恒成立.如图,过点 P 作 PB⊥y 轴于点 B,设点 P 坐标为(a,14 a2),∴PM=PF=14 a2+1,∵PB=a,∴在 Rt△PBF
人)
检测内容:22.1.1—22.1.3
一、选择题(每题 4 分,共 32 分) 1.下列函数中,是二次函数的有( B ) ①y=3(x-1)2+1;②y=x+1x ;③y=8x2+1;④y=3x3+2x2. A.1 个 B.2 个 C.3 个 D.4 个
2.(临安区中考)抛物线y=3(x-1)2+1的顶点坐标是( A ) A.(1,1) B.(-1,1) C.(-1,-1) D.(1,-1)
5.(雅安中考)在平面直角坐标系中,对于二次函数y=(x-2)2+1, 下列说法中错误的是( C )
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教版九年级数学上册《第二十二章二次函数 》测试卷-带参考答案
人教版九年级数学上册《第二十二章二次函数》测试卷-带参考答案一、单选题1.将二次函数化为顶点式正确的是()A.B.C.D.2.若将抛物线先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.B.C.D.3.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.B.C.D.4.如图,小强在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮筐底的距离l是()A.3m B.3.5m C.4m D.4.5m5.函数,当时,此函数的最小值为,最大值为1,则m的取值范围是()A.B.C.D.6.二次函数与x轴的两个交点的横坐标分别为m和n,且,则下列结论正确的是()A.B.C.D.7.如图,抛物线与轴交于点,点的坐标为,在第四象限抛物线上有一点,若是以为底边的等腰三角形,则点的横坐标为()A.B.C.D.或8.已知二次函数的部分图象如图所示,图象经过点,其对称轴为直线.下列结论:①;②若点,均在二次函数图象上,则;③关于x的一元二次方程有两个相等的实数根;④满足的x的取值范围为.其中正确结论的个数为().A.1个B.2个C.3个D.4个二、填空题9.抛物线的顶点在轴上,则.10.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.11.函数是描述现实世界中变化规律的数学模型,运用函数知识可以解决实际问题,如飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式形,则飞机着陆后滑行的最大距离是m.12.已知点、和都在函数的图象上,则、和的大小关系为(用“”连接).13.如图,抛物线与x轴相交于点、点,与y轴相交于点C,点D 在抛物线上,当轴时,.三、解答题14.如图,一辆宽为米的货车要通过跨度为米,拱高为米的单行抛物线隧道从正中通过,抛物线满足表达式保证安全,车顶离隧道的顶部至少要有米的距离,求货车的限高应是多少.15.电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y(件)与每件玩具售价x(元)之间满足一次函数关系(其中,且x为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件.(1)求y与x之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元?16.教科书中例1:有一个窗户形状如图①所示,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这道例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形(如图②),材料总长仍为6 m,利用图②,解答下列问题:(1)若AB为1m,求此时窗户的透光面积.(2)与教科书中例1比较,改变窗户形状后,窗户的透光面积的最大值有没有变大?请通过计算说明.17.某杂技团进行杂技表演,演员从跷跷板的右端处弹跳起经过最高点后下落到右端的椅子处,其身体看成一点运动的路线是一条抛物线的一部分,如图,已知,演员起跳点的高度,演员离开地面的最大高度是,此时,演员到起跳点的水平距离为.(1)求该抛物线的解析式;(2)已知人梯高,为了成功完成此次表演,那么人梯到起跳点的水平距离应为多少18.如图,抛物线与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)若点P是抛物线段上的一点,当的面积最大时求出点P的坐标,并求出面积的最大值.(3)点F是抛物线上的动点,作交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案:1.B2.A3.A4.D5.C6.C7.A8.B9.2510.2 ﹣411.60012.13.414.解:当时米.答:货车的限高应是米.15.(1)解:设y与x之间的函数关系式为由已知得解得因此y与x之间的函数关系式为(其中,且x为整数);(2)解:设每周销售这款玩具所获的利润为W由题意得W关于x的二次函数图象开口向上,且x为整数当时,W取最大值,最大值为1800即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元.16.(1)解:由已知可得:AD==则S=1×=;(2)解:设AB= xm,则AD=(3-x)m,AF=(3-x)m∵AB>0,AD>0,AF>0∴0<x<设窗户的面积为S由已知可得:S= AB×AD= x(3-x)=-x2+3x=-(x-)2+当x=时,S有最大值,为∵>1.05∴现在窗户透光的最大值变大.17.(1)解:根据题意可知,抛物线的顶点坐标为设抛物线的解析式为把代入得:解得:抛物线的解析式为(2)解:当时解得:不符合题意,舍去答:人梯到起跳点的水平距离应为.18.(1),和(2)解:如图,连接设点当时,即点P的坐标为时,有最大值;(3)解:存在.①如图,当四边形为时抛物线对称轴为直线的坐标为②如图,当四边形为时,作于点G和和综上所述,点F的坐标为或或。
人教版九年级上数学册《第22章二次函数》综合检测试卷含答案
人教版九年级上册数学综合检测含答案第22章 二次函数(时间:120分钟 总分120分)一、选择题(本大题共6个小题,每小题3分,共18分。
在每小题给出的四个选项中,只有一个正确选项。
)1.下列各式中,y 是x 的二次函数的个数为( A )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).A .3B .4C .5D .62.若函数y =226a a ax --是二次函数且图象开口向上,则a =( B ) A .-2 B .4 C .4或-2 D .4或33.将抛物线y =3x 2平移得到抛物线y =3(x -4)2-1 的步骤是( D ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位4.抛物线y =12x 2-4x +3的顶点坐标和对称轴分别是( D )A .(1,2),x =1B .(1-,2),x =-1C .(-4,-5),x =-4D .(4,-5),x =45.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图 ,则下列结论:第5题图①a ,b 同号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =-2时,x 的值只能为0,其中正确的个数是( B )A .1个B .2个C .3个D .4个6.我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图 所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1 m ,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m 处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为( B )第6题图A .1.5 mB .1.625 mC .1.66 mD .1.67 m二、填空题(本大题共6小题,每小题3分,共18分)7.已知函数y =(m -2)x 2+mx -3(m 为常数). (1)当m ____≠2______时,该函数为二次函数; (2)当m _____=2_____时,该函数为一次函数.8.已知抛物线y =ax 2+bx +c 经过点(-1,10)和(2,7),且3a +2b =0,则该抛物线的解析式为___y =2x 2-3x +5_____.9.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为k <-74且k ≠0 .10.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =___4___元,一天出售该种手工艺品的总利润y 最大.11.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 1或0 . 12.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数2y ax bx c =++的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.根据现有信息,得出有关这个二次函数的下列结论:①过点(3,0);②顶点是(2,-2);③在x 轴上截得的线段的长是2; ④与y 轴的交点是(0,3).其中正确的有__①③④_____(填序号).三、解答题 (本大题共5小题,每小题6分,共30分)13.已知抛物线y =ax 2经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上; (3)求出抛物线上纵坐标为-6的点的坐标. 解:(1)把(-2,-8)代入y =ax 2,得-8=a (-2)2.解得a =-2,故函数解析式为y =-2x 2.(2)∵-4≠-2(-1)2,∴点B (-1,-4)不在抛物线上. (3)由-6=-2x 2,得x 2=3,x =±3.∴纵坐标为-6的点有两个,它们分别是(3,-6)与(-3,-6).14.如图 ,A (-1,0),B (2,-3)两点都在一次函数y 1=-x +m 与二次函数y 2=ax 2+bx -3的图象上.(1)求m 的值和二次函数的解析式;(2)请直接写出当y 1>y 2时,自变量x 的取值范围.第14题图解:(1)由于点A (-1,0)在一次函数y 1=-x +m 的图象上,得-(-1)+m =0,即m =-1;已知点A (-1,0),点B (2,-3)在二次函数y 2=ax 2+bx -3的图象上,则有⎩⎪⎨⎪⎧ a -b -3=0,4a +2b -3=-3.解得⎩⎪⎨⎪⎧a =1,b =-2.∴二次函数的解析式为y 2=x 2-2x -3.(2)由两个函数的图象知:当y 1>y 2时,-1<x <2.15.已知抛物线y =x 2-2x -8.(1)试说明抛物线与x 轴一定有两个交点,并求出交点坐标;(2)若该抛物线与x 轴两个交点分别为A ,B (A 在B 的左边),且它的顶点为P ,求S △ABP的值.解:(1)∵Δ=(-2)2-4×1×(-8)=4+32=36>0, ∴抛物线与x 轴一定有两个交点.当y =0,即x 2-2x -8=0时,解得x 1=-2,x 2=4. 故交点坐标为(-2,0),(4,0). (2)由(1),可知:|AB |=6.y =x 2-2x -8=x 2-2x +1-1-8=(x -1)2-9.∴点P 坐标为(1,-9).过点P 作PC ⊥x 轴于点C ,则|PC |=9.∴S △ABP =12|AB |·|PC |=12×6×9=27.16.如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.17.如图,抛物线y =ax 2-5x +4a 与x 轴相交于点A ,B ,且过点C (5,4). (1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.第17题图解:(1)a =1,P ⎝⎛⎭⎫52,-94. (2)答案不唯一,满足题意即可.如向上平移104个单位长度后,再向左平移3个单位长度等.四、(本大题共3小题,每小题8分,共24分)18.如图,二次函数y=ax 2-4x+c 的图象过原点,与x 轴交于点A(-4,0).(1)求此二次函数的解析式.(2)在抛物线上存在点P,满足S △AOP =8,请直接写出点P 的坐标.解:(1)依题意,得⎩⎨⎧=+=016160a c解得⎩⎨⎧=-=01c a∴二次函数的解析式为y=-x 2-4x. (2)令P(m,n), 则S △AOP =12 AO ·|n|=12×4|n|=8,解得n=±4, 又∵点P(m,n)在抛物线 y=-x 2-4x 上,∴-m 2-4m=±4,分别解得m 1=-2,m 2=-2+2 2 和m 3=-2-2 2 ,∴P 1(-2,4),P 2(-2+2 2 ,-4),P 3(-2-2 2 ,-4).19.已知二次函数y =ax 2+bx +c 的图象C 经过(-5,0),⎝⎛⎭⎫0,52,(1,6)三点,直线l 的解析式为y =2x -3.(1)求抛物线C 的解析式;(2)判断抛物线C 与直线l 有无交点;(3)若与直线l 平行的直线y =2x +m 与抛物线C 只有一个公共点P ,求点P 的坐标.解:(1)把(-5,0),⎝⎛⎭⎫0,52,(1,6)分别代入抛物线,解得a =12,b =3,c =52,∴y =12x 2+3x +52.(2)令12x 2+3x +52=2x -3,整理后,得12x 2+x +112=0,∵Δ<0,∴抛物线与直线无交点.(3)令12x 2+3x +52=2x +m ,整理后,得12x 2+x +52-m =0.由Δ=12-4×12×⎝⎛⎭⎫52-m =0,解得m =2,求得点P 的坐标为(-1,0).20.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐助给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (单位:个)与销售单价x (单位:元/个)之间的对应关系如图 所示:(1)试判断y 与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的价为6元/个,按照上述市场调查的销售规律,求销售利润w (单位:元)与销售单价x (单位:元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.图解:(1)y 是x 的一次函数,设y =kx +b , ∵图象过点(10,300),(12,240), ∴⎩⎪⎨⎪⎧ 10k +b =300,12k +b =240.解得⎩⎪⎨⎪⎧k =-30,b =600. ∴y =-30x +600.当x =14时,y =180;当x =16时,y =120.即点(14,180),(16,120)均在函数y =-30x +600图象上. ∴y 与x 之间的函数关系为y =-30x +60.(2)w =(x -6)(-30x +600)=-30x 2+780x -3600.即w 与x 之间的函数关系式为w =-30x 2+780x -3600. (3)由题意,得6(-30x +600)≤900,解得x ≥15.x =-30x 2+780x -3600图象对称轴为x =-7802×(-30)=13.∵a =-30<0.∴抛物线开口向下.当x ≥15时,w 随x 增大而减小. ∴当x =15时,w 最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.五、(本大题共2小题,每小题9分,共18分)21. 如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?解:(1)A ,B ,C 的坐标分别为(1,0),(3,0),(2,3) (2)y =-3(x -2)2+3(3)设抛物线的解析式为y =-3(x -2)2+k ,代入D (0,3),可得k =53,平移后的抛物线的解析式为y =-3(x -2)2+53,∴平移了53-3=43个单位22.某公司700万元购买甲、乙两种产品的生产技术和设备后,进行这两种产品的生产加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价定在35元到70元之间较为合理,设甲种产品的销售单价为x(元),年销售量为y(万件).当35≤x ≤50时,y 与x 之间的函数关系式为y=20-0.2x;当50≤x ≤70时,y 与x 之间的函数关系如图所示.乙种产品的销售单价在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元. (1)当50≤x ≤70时,求出甲种产品的年销售量y(万件)与x(元)之间的函数解析式.(2)若该公司第一年的年销售利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x ≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.解:(1)设当50≤x ≤70时,y 与x 的函数关系式为y=kx+b.把(50,10),(70,8)代入得⎩⎨⎧=+=+8701050b k b k 解得⎩⎨⎧=-=151.0b k ∴当50≤x ≤70时,y 与x 的函数解析式为y=-0.1x+15.[来源:Z*xx*] (2)①依题意知:25≤90- x ≤45,即45≤x ≤65.当45≤x ≤50时,W=(x-30)(20-0.2x)+10(90-x-20)=-0.2x 2+16x+100=-0.2(x-40)2+420.由函数的性质知,当x=45时,W 最大值为415. 当50≤x ≤65时,W=(x-30)(-0.1x+15)+10(90-x-20)=-0.1x 2+8x+250=-0.1(x-40)2+410.由函数的性质知,当x=50时,W 最大值为400.综上所述,当x=45时,即甲、乙两种产品的销售单价均定在45元时,可使第一年的年销售利润最大,最大年销售利润是415万元. (3)30≤m ≤40.(由题意,令W=-0.1x 2+8x+250+415-700≥85,整理,得x 2-80x+120≤0, 解得20≤x ≤60.∵50≤x ≤65,根据函数的性质分析,50≤x ≤60. 即50≤90-m ≤60.故30≤m ≤40.)六、(本大题共1小题,共12分)23.如图,抛物线y =ax 2+3ax +c (a >0)与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点B 的坐标为(1,0),OC =3OB .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.第23题图解:(1)∵OC =3OB ,B (1,0),∴C (0,-3).把点B ,C 的坐标代入y =ax 2+3ax +c ,得⎩⎪⎨⎪⎧a +3a +c =0,c =-3.解得⎩⎪⎨⎪⎧a =34,c =-3.∴y =34x 2+94x -3.(2)如图D86.过点D 作DM ∥y 轴分别交线段AC 和x 轴于点M ,N . S 四边形ABCD =S △ABC +S △ACD =152+12×DM ×(AN +ON ) =152+2DM , ∵A (-4,0),C (0,-3),设直线AC 的解析式为y =kx +b ,代入,求得y =-34x -3.令D ⎝⎛⎭⎫x ,34x 2+94x -3,M ⎝⎛⎭⎫x ,-34x -3, DM =-34x -3-⎝⎛⎭⎫34x 2+94x -3 =-34(x +2)2+3,当x =-2时,DM 有最大值3.此时四边形ABCD 面积有最大值为272.图D86 图D87(3)如图D87,讨论:①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥AC 交x 轴于点E 1,此时四边形ACP 1E 1为平行四边形.∵C (0,-3),令34x 2+94x -3=-3,∴x =0或x =-3.∴P 1(-3,-3). ②平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P ,当AC =PE 时,四边形ACEP 为平行四边形,∵C (0,-3),∴可令P (x,3),由34x 2+94x -3=3,得x 2+3x -8=0.解得x =-3+412或x =-3-412.此时存在点P 2⎝ ⎛⎭⎪⎫-3+412,3和P 3⎝ ⎛⎭⎪⎫-3-412,3.综上所述,存在3个点符合题意,坐标分别是P 1(-3,-3),P 2⎝ ⎛⎭⎪⎫-3+412,3,P 3⎝ ⎛⎭⎪⎫-3-412,3.。
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.关于抛物线22y x x =-+,下列说法错误的是( ) A .该抛物线经过原点B .该抛物线的对称轴是直线1x =C .该抛物线的最大值为1D .当0x >时,y 随x 增大而减小2.已知一次函数y =ax +b 的图象如图所示,那么二次函数y =ax 2+bx +1的图象大致为( )A .B .C .D .3.用20cm 长的绳子围成一个矩形,如果这个矩形的一边长为xcm ,面积是Scm 2,则S 与x 的函数关系式为( )A .S =x (20﹣x )B .S =x (20﹣2x )C .S =x (10﹣x )D .S =2x (10﹣x )4.将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A . B . C .D .5.若抛物线2y x bx c =++与x 轴两个交点之间的距离为2,抛物线的对称轴为直线1x =,将此抛物线向左平移3个单位,再向下平移2个单位,得到的新抛物线的顶点坐标为( ) A .(2,3)--B .(1,3)-C .(3,2)-D .(2,3)-6.如图所示,抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①<0abc ;①40a c +>;①方程20ax bx c ++=有一个实根大于2;①当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.下列抛物线平移后可得到抛物线y=-(x -2)2的是( ) A .y=-x 2B .y=x 2-2C .y=(x -2)2+1D .y=(2-x )28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是( ) ①abc <0;①a+c >0;①2a+b=0;①关于x 的一元二次方程ax 2+bx+c=0的解是x 1=﹣1,x 2=3①b 2<4acA .①①①B .①①①①C .①①①D .①①①9.设函数221y x kx k =-+-(k 为常数),下列说法正确的是( )A .对任意实数k ,函数与x 轴都没有交点B .存在实数n ,满足当x n ≥时,函数y 的值都随x 的增大而减小C .k 取不同的值时,二次函数y 的顶点始终在同一条直线上D .对任意实数k ,抛物线221y x kx k =-+-都必定经过唯一定点 10.在平面直角坐标系中,若点()11,M x y ,()()2212,N x y x x <是抛物线()220y mx x m m =-+>上的两点,且满足124x x +=时,都有12y y >,则m 的取值范围是( )A .102m <<B .104m <<C .12m >D .1142m <<二、填空题(共8小题,满分32分)11.二次函数y=﹣2(x ﹣1)2+3的图象与y 轴的交点坐标是 .12.若点A(2,m )在函数21y x =-的图象上,则点A 关于x 轴的对称点的坐标是 . 13.把抛物线2y x =-向右平移1个单位,再向上平移3个单位,得到抛物线()213y x =--+. ( )14.已知抛物线22y x mx m =-++,当21x -<<时,y 随x 的增大而增大,m 的取值范围是 . 15.已知抛物线y =ax 2(a ≠0)过点(﹣2,6),在下列5个点中,对于不在此抛物线上的一点P ,将点P 平移到点P ′,使点P ′在此抛物线上,写出点P 的坐标及平移方法:(1,32),(﹣1,32),(1,﹣32),(2,8),(2,3)答: .16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .17.若将图中的抛物线y =x 2-2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是 .18.如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;①b>a+c;①4a+2b+c>0;①b2﹣4ac>0;其中正确的是.三、解答题(共6小题,每题8分,满分48分)19.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品的售价应为多少元?(2)如果要使商场一天获得最大利润,每件衬衫应降价多少元?20.已知二次函数2=++过点A(1,0),B(-3,0),C(0,-3)y ax bx c(1)求二次函数的解析式;(2)在抛物线的对称轴上求点F,使AF+CF最小,求点F的坐标.(3)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B (4,0),交直线AD 于点D (3,52),过点D 作DC ①x 轴于点C .(1)直接写出:a = ,b = ;(2)点P 为x 轴正半轴上一动点,过点P 作PN ①x 轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求①PCM 面积的最大值.22.函数y=ax 2(a≠0)的图象与直线y=2x ﹣3交于点(1,b ). (1)求a 和b 的值.(2)求抛物线y=ax 2的解析式,并求出顶点坐标和对称轴.(3)求抛物线与直线y=﹣2的两个交点及顶点所构成的三角形的面积.23.如图,已知抛物线()20y ax bx c a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点()0,3C .(1)求拋物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.24.在平面直角坐标系xOy中,抛物线23=-++与x轴交于点A和点B(点A在点By x mx左侧),(1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象;(2)当已知点P(m,2),Q(-m,2m-1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.参考答案:12.(2,-3)13.√14.m1≥15.(1,﹣32)向上平移3个单位,点(2,8)向下平移2个单位16.0<a<617.0<x<218.①①①.19.(1)92(2)520.(1)223y x x=+-;(2)F(1-,2-);(3)P(17-+,3)或(17--,3)或(0,3-)或P(2-,3-).21.(1)﹣34和114;(2)最大值为251622.(1)a=-1,b=-1;(2) 顶点坐标(0,0),对称轴x=0;(3)6 23.(1)223y x x=--+(2)存在,点P坐标为(1,6)-或(1,10)-或(1,10)--或5 (1,)3 -24.(1)点A坐标为(-1,0),点B坐标为(3,0);(2)m≤-2 或m≥1。
第22章 二次函数 人教版数学九年级上册单元闯关双测B卷(含答案)
第二十二章二次函数(测能力)——2023-2024学年人教版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.二次函数的图象经过点,则代数式的值为( )A.0B.-2C.-1D.22.已知二次函数,其中,,则该函数的图象可能为( )A. B.C. D.3.在平面直角坐标系中,抛物线与y轴交于点C,则该抛物线关于点C 成中心对称的抛物线的解析式为( )A. B.C. D.4.已知二次函数,当时,y的最小值为-2,则a的值为( )A.或-3B.3或-3C.或D.或35.若抛物线与抛物线关于直线x=1对称,则m m,n的值分别为( )A.m=―11,n=―2B.m=1,n=―23C.m=1,n=2 D.m=1,n=―236.如图,抛物线,其顶点坐标为,且与x轴的一个交点在点和之间,下列结论不正确的是( )A.B.C.D.关于x的方程的另一个根在-2和-1之间7.2022年新冠病毒变异株奥密克戎来势汹汹,为了更好地让顾客做好防护,某商场销售一款升级版的KN95口罩,市场信息显示,销售这种口罩,每天所获的利润y(元)与售价x(元/个)之间关系式满足,第一天将售价定为16元/个,当天获利132元,第二天将售价定为20元/个,当天获利180元.则这种口罩的成本价是多少元/个?(单位利润=售价-成本价)( )A.10B.12C.14D.158.已知抛物线, 将抛物线向左或向右平移与x轴交于A,B两点 (A在B 的左侧), 与y轴交于点C. 若的面积等于 6 , 则平移的方式有几种( )A. 1B. 2C. 3D. 49.将二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线与这个新图象有3个公共点,则b的值为( )A.或-12B.或2C.-12或2D.或-1210.己知二次函数的部分图象如图所示,对称轴为直线,有以下结论:①;②;③若t为任意实数,则有;④当图象经过点时,方程的两根为,,则,其中,正确结论的个数是( )A.1B.2C.3D.4二、填空题(每小题4分,共20分)11.如图所示,A,B分别为图像上的两点,且直线垂直于y轴,若,则点B的坐标为__________.12.如图,有一座拱桥,拱桥桥洞上沿是抛物线形状,在正常水位时水面AB的宽为,如果水位上升达到警戒水位时,那么水面CD的宽是.如果水位以的速度上涨,那么达到警戒水位后,再过__________h水位达到拱桥桥洞最高点O.13.如图,点,平行于x轴的直线AC分别交抛物线与于B、C两点,过点C作y轴的平行线交于点D.直线,交于点E,则DE的长为______.14.抛物线(a为整数)与直线如图所示,抛物线的对称轴为直线,直线与抛物线在第四象限交于点D,且点D的横坐标小于3,则a的最大值为_________.15.如图,抛物线与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,在其对称轴上有一动点M,连接MA,MC,AC,则当的周长最小时,点M的坐标是___________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有__________个交点,所以对应的方程有_________个实数根;②方程有__________个实数根.17.(8分)商店以每件40元的价格购进一种商品,经市场调查发现:在一段时间内,该商品的日销售量y(件)与售价x(元/件)成一次函数关系,其对应关系如表.(2)求售价为多少时,日销售利润w最大,最大利润是多少元.(3)该商店准备搞节日促销活动,顾客每购买一件该商品奖m元,若在日销售量不少于68件时的日销售最大利润是1360元,且日销售量与售价仍然满足(1)中的函数关系式,求m的值.(每件的销售利润=售价-进价)18.(10分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x的二次函数和,其中的图象经过点.若与为“同簇二次函数”,求函数的表达式,并求出当时,的最大值.19.(10分)如图, 在平面直角坐标系中, 抛物线与x 轴交于A,B 两点, 与 y轴交于点, 顶点为.(1)求抛物线的表达式;(2)将抛物线绕原点O旋转得到抛物线, 抛物线的顶点为, 在抛物线上是否存在点M, 使 ? 若存在, 请求出点M的坐标; 若不存在, 请说明理由.20.(12分)菱形ABCD的对角线AC,BD相交于点O,点G是射线OD上一个动点,过点G作交射线OC于点E,以OE,OG为邻边作矩形EOGF.(1)如图1,当点F在线段DC上时,求证:;(2)若,,直线AD与直线GF交于点H,将沿直线AD翻折得到.①求CF的最小值;②当是等腰三角形时,求OG的长.21.(12分)如图,已知抛物线与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点,求实数a的值;(2)在(1)的条件下,解答下列问题;①求出的面积;②在抛物线的对称轴上找一点H,使的值最小,直接写出点H的坐标.答案以及解析1.答案:B解析:把代入,得,即.故选B.2.答案:C解析:方法一:,,故A,D选项不正确;当时,,,对称轴在y轴左侧,故B选项不正确;当时,,,对称轴在y轴右侧,故C选项正确.故选C.方法二:,,可令,,则函数为,由此可知抛物线与y轴交于点,故排除选项A,D.令,则对称轴为直线,选项B不成立.故选C.3.答案:A解析:由抛物线知,抛物线顶点坐标是.由抛物线知,,该抛物线关于点C成中心对称的抛物线的顶点坐标是,该抛物线关于点C成中心对称的抛物线的解析式为.故选A.4.答案:A解析:,对称轴为直线,开口向上,①当时,,此时函数在处取得最小值为-2,,解得,②当时,,此时函数的最小值在顶点处,即,,,解得或(舍去),③当时,,此时函数在处取得最小值为-2,,解得(舍去).综上a 的值为-3或.故选A.5.答案:D 解析:由抛物线可知抛物线M 的对称轴为直线x =―轴于点(0,―5),抛物线的对称轴为直线x =――62=3,∵抛物线y =x 2+(3m ―1)x ―5与抛物线关于直线x =1对称,∴12(―3m ―12+3)=1,解得m =1,∴点(0,―5)关于直线x =1对称的点(2,―5)在抛物线上,∴把点(2,―5)代入得―5=4―12―n +1,解得n =―2,故选D.6.答案:C解析:抛物线开口向下,.抛物线的对称轴为直线,故,,.故B 选项正确.抛物线交y 轴于正半轴,,.故A 选项正确.抛物线的对称轴为直线,当时,,当时,,即.故C 选项不正确.抛物线的对称轴为直线,抛物线与x 轴的一个交点在点和之间,抛物线与x 轴的另一个交点在点和之间,关于x的方程的另一个根在-2和-1之间.故D选项正确.7.答案:A解析:由题意知:当时,;当时,代入中,得,解得:,,当每天利润为0元时,售价即为成本价.令,解得:,,由题意可知38不符合条件,,这种口罩的成本价是10元/个;故选A.8.答案:C解析:,抛物线交x轴于点,, 交y轴于点. 将抛物线向左或向右平移后, 与x 轴交于点A,B,与y轴交于点C, 且的面积等于6,. 由平移的性质可知, 将抛物线向左或向右平移时,抛物线与 x轴的两个交点之间的距离不变 (关键点), ,,点C 的纵坐标为 3 或 -3 . 设抛物线沿x 轴向左平移的距离为个单位长度, 则平移后抛物线的解析式为, 当时, 解得. 当时, 解得或(不合题意,舍去), 共有 3 种平移方式, 故选C.9.答案:A解析:如图所示,过点B的直线与新抛物线有三个公共点,将直线向下平移到A、B之间的抛物线只有C一个公共点时,直线与新抛物线也有三个公共点.令,解得:或6,即点B坐标.当一次函数过点B时,将点B的坐标代入,得,解得.将一次函数与二次函数表达式联立得:,整理得:,,解得:.综上,b的值为或,故选A.10.答案:B解析:抛物线开口向上,,抛物线的对称轴为直线,,抛物线与y轴的交点在x轴下方,,,①错误.由图象可得时,,②正确.由图象可得时,y取最小值,,即,③正确.抛物线对称轴为直线,抛物线与直线的两个交点关于直线对称,图象经过,图象经过,方程的两根为,,,,,④不正确.故选:B.11.答案:解析:,抛物线对称轴为直线,,点B横坐标为,将代入得,点B坐标为.故答案为:.12.答案:4解析:如图,以O为坐标原点,建立平面直角坐标系,设抛物线解析式为.因为抛物线关于y轴对称,,,且水位上升到达警戒水位,所以设点,点,由题意,得解得所以.当时,,,故再过水位达到拱桥桥洞最高点O.13.答案:2解析:,轴点A、C的纵坐标相同,解得,点,轴,点D的横坐标与点C的横坐标相同为2,,点D的坐标为,,点E的纵坐标为4,,解得:,点E的坐标为,,故答案为:2.14.答案:-2解析:抛物线的对称轴为直线,,.观察题图可知,当时,拋物线上对应的点在直线上对应的点的下方,,将代入,解得.又a为整数,a的最大值为-2. 15.答案:解析:如图,易知点A与点B关于抛物线的对称轴对称,连接CB交抛物线的对称轴于点M,则点M即所求点.令,解得或3.令,则,故,,,所以抛物线的对称轴为直线.设直线BC的解析式为,则解得故直线BC的解析式为.当时,,所以点.16.解析:(1)把代入,得,所以.(2)如图所示.(3)①函数的图象关于y轴对称;②当时,y随x的增大而增大.(答案不唯一)(4)①3;3;②217.答案:(1)(2)当售价是70元/件时,日销售利润w最大,最大利润是1800元(3)解析:(1)设y关于x的函数关系式为,由题意得解得故y关于x的函数关系式是.(2)日销售利润,故当售价是70元/件时,日销售利润w最大,最大利润是1800元.(3)由题意得,,日销量利润.,.,w关于x的函数的图象所在的抛物线开口向下,对称轴为直线.,w随x的增大而增大,当时,w取得最大值,最大值为,,.18.答案:(1),.(2)函数的图象经过点,,解得..与为“同簇二次函数”,可设,则.由题意知,函数的图象经过点,,..当时,的最大值为.19.答案: (1)(2) 或解析:(1) 抛物线的顶点为,可设抛物线表达式为.将点代入, 解得,抛物线的表达式为(2),,,关于原点中心对称,,记旋转后点A的对应点为, 则的坐标为, 如图,连接,.,四边形是平行四边形,过点作直线的平行线l,则l与的交点即为点M.易求得,,点M的坐标为或.20.答案:(1)见解析;(2)①;②;解析:(1)证明:四边形EOGF是矩形,,,,四边形GEFD是平行四边形,四边形GECF是平行四边形,,,;(2)①设,则,,,令,由于抛物线开口向上,当,,即;②a:若,则M在GF的垂直平分线上,显然不成立;b:若,设,则,令MG与AD交于N,由翻折而得,N为MG中点,且,,,在中,,,,,,解得:,;c:若,则F在MG的垂直平分线上,显然不成立,综上所述,.21.(1)答案:解析:将代入抛物线解析式得:,解得:;(2)答案:①②解析:①由(1)抛物线解析式,当时,得:,解得:,,点B在点C的左侧,,,当时,得:,即,;②由抛物线解析式,得对称轴为直线,根据C与B关于抛物线对称轴直线对称,连接BE,与对称轴交于点H,即为所求,设直线BE解析式为,将与代入得:,解得:,直线BE解析式为,将代入得:,则.。
九年级数学上册第22章 《二次函数》单元过关检测(图片版 有答案)
九年级上册《二次函数》单元过关检测要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。
不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?。
人教版九年级数学上册作业课件 第二十二章 二次函数 阶段自测(三)
(2)由题意得 CD=y1-y2=-x2+4-(-15 x2-45 x-45 ),即 CD=-45 x2+45 x+254 =-45 (x-12 )2+5,当 x=12 时,CD 最大=5,∴S△BCD=12 ×5×(3-12 )=245
18.(14 分)(2020·杭州)在平面直角坐标系中,设二次函数 y1=x2+bx+ a,y2=ax2+bx+1(a,b 是实数,a≠0).
A.y=x
B.y=x+1
C.y=x+12
D.y=x+2
7.(2020·德阳)已知不等式 ax+b>0 的解集为 x<2,则下列结论正确的 个数是( C )
(1)2a+b=0;(2)当 c>a 时,函数 y=ax2+bx+c 的图象与 x 轴没有公共 点;(3)当 c>0 时,抛物线 y=ax2+bx+c 的顶点在直线 y=ax+b 的上方; (4)如果 b<3 且 2a-mb-m=0,则 m 的取值范围是-34 <m<0.
解:(1)由题意可得-b2 =3,解得 b=-6,∵函数 y1 的图象经过(a,-6), ∴a2-6a+a=-6,解得 a=2 或 3,∴函数 y1=x2-6x+2 或 y1=x2-6x +3
(2)∵函数 y1 的图象经过点(r,0),其中 r≠0,∴r2+br+a=0,∴1+br +
a r2
=0,即
三、解答题(共44分) 15.(8分)(2020·临沂)已知抛物线y=ax2-2ax-3+2a2(a≠0). (1)求这条抛物线的对称轴; (2)若该抛物线的顶点在x轴上,求其解析式; (3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范 围.
解:(1)∵抛物线 y=aቤተ መጻሕፍቲ ባይዱ2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴抛物线的 对称轴为直线 x=1
2023-2024学年九年级数学上册《第二十二章 二次函数》单元测试卷及答案(人教版)
2023-2024学年九年级数学上册《第二十二章二次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数表达式中,一定为二次函数的是()A.y=2x−5B.ℎ=12t2C.y=ax2+bx+c D.y=x2+1x2.抛物线y=2x2−4x+1的对称轴是直线()A.x=−3B.x=−32C.x=1D.x=−13.同一坐标系中作y=3x2,y=−3x2,y=13x2的图像,它们的共同特点是()A.关于y轴对称,抛物线开口向上B.关于y轴对称,抛物线开口向下C.关于y轴对称,抛物线的顶点在原点D.关于x轴对称,抛物线的顶点在原点4.已知二次函数y=3(x+2)2的图象上有三点A(1,y1),B(2,y2),C(−3,y3)则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 5.将y=x2+6x+7进行配方,正确的结果是()A.y=(x−3)2−2B.y=(x−3)2+2C.y=(x+3)2−16D.y=(x+3)2−26.对于二次函数y=x2−4x−1的图象,下列说法错误的是()A.开口向上B.与x轴有两个交点C.抛物线的顶点坐标是(2,-5)D.当x≥2时,y随x的增大而减小7.如图所示二次函数y=ax2+bx+c的图象的一部分,图象过点(﹣3,0),对称轴为直线x=﹣1,以下结论:①2a﹣b=0;②abc<0;③当﹣3<x<1时,y>0;④对于a的每一个确定值,若一元二次方程ax2+bx+c=t(t为常数,t≥0)的根为整数,则t的值只有3个.其中正确的有()A.4个B.3个C.2个D.1个8.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=−112x2+23x+53,则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m二、填空题9.如果函数y=(k-2)x k2−2k+2+kx+1是关于x的二次函数,那么k的值是。
人教版初中数学九年级上册第22章《二次函数》章节测试题含答案
一、选择题 1.如图是二次函数 y ax2 bx c 的部分图象,由图象可知该二次函数的对称轴是( )
A.直线 x=-1 B.直线 x=5 C.直线 x=2 D.直线 x=0
2. (2019 四川巴中)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②
当
x
1时
y
随
x
的增大而减小,当 0
x
1时:当
x1
x2
时,必有
y1
y2 ,此时
y2 x2
y1 x1
0,
故 B 选项不符合;当 x 0 时, y 随 x 的增大而增大,即当 x1 x2 时,必有 y1 y2 ,此时
y2 y1 0 ,故 C 选项不符合;对称轴为直线 x 2 ,当 x 0 时 y 随 x 的增大而减小, x2 x1
6.A 解: ∵抛物线 y=ax2+bx+c(a≠0)过点(1,0)和点(0,-2),∴a+b+c =0.∵c =
-2,∴a+b=2.∴b=2- a.∴P=a-b+c= a-(2- a)-2=2a-4.
∵抛物线开口向上,∴ a>0.①
∵抛物线的顶点在第三象限,∴- b <0.∴- 2 a <0.∴-(2-a)<0.
A. m 1
B. m 3
C. 1 m 3 D. 3 m 4
4. (2019 四川攀枝花)在同一坐标系中,二次函数 y=ax2+bx 与一次函数 y=bx-a 的图
象可能是( )
A
.
B.
C.
D.
人教版九年级上册数学分层单元测第二十二章 二次函数--基础卷(解析版)
第二十二章 二次函数 (基础过关)一、选择题(每小题3分,共36分)1. 抛物线y=x 2﹣6x +5的顶点坐标为﹣ ﹣A. ﹣3﹣﹣4﹣B. ﹣3﹣4﹣C. ﹣﹣3﹣﹣4﹣D. ﹣﹣3﹣4﹣【答案】A【解析】【分析】用配方法将抛物线的一般式转化为顶点式,可求顶点坐标.【详解】解:∵y =x 2-6x +5=(x -3)2-4,∴抛物线顶点坐标为(3,-4).故答案为(3,-4).故选A .【点睛】本题考查了二次函数的性质,抛物线的顶点式为y =a (x -h )2+k ,顶点坐标是(h ,k ),对称轴是直线x =h .也考查了配方法.2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A. 4米B. 3米C. 2米D. 1米【答案】A【解析】 【详解】)∵y=-x 2+4x=2x-24-+(),∴当x=2时,y 有最大值4,∴最大高度为4m .故选A .3. 一个二次函数的图像的顶点坐标为()31-,,与y 轴的交点()0,4-,这个二次函数的解析式是( ﹣ A. 21y x 2x 43=-+ B. 21y x 2x 43=-+- C. 21(3)13y x =-+- D. 2612y x x =-+- 【答案】B【解析】【分析】由于已知顶点坐标﹣则可设顶点式231()y a x =--﹣然后把(0﹣﹣4)代入求出a 的值即可得到抛物线解析式﹣【详解】解:设抛物线解析式为231()y a x =--﹣把(0﹣﹣4)代入得﹣ 2•(3)14a --=-﹣解得﹣a =﹣13﹣ 所以抛物线解析式为y =﹣13﹣x ﹣3﹣2﹣1=﹣13x 2+2x ﹣4﹣ 故选:B﹣【点睛】本题考查了待定系数法求二次函数的解析式﹣解题的关键是设出二次函数的顶点式.4. 已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是( )A. 当a =1时,函数图象经过点(-1,0)B. 当a =-2时,函数图象与x 轴没有交点C. 若a <0,函数图象的顶点始终在x 轴的下方D. 若a >0,则当1≥x 时,y 随x 的增大而增大【答案】D【解析】【分析】A 、将1a =代入原函数解析式,令1x =-求出y 值,由此得出A 选项不符合题意;B 、将2a =代入原函数解析式,令0y =,根据根的判别式△80=>,可得出当2a =-时,函数图象与x 轴有两个不同的交点,即B 选项不符合题意;C 、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a 的取值范围,由此可得出C 选项不符合题意;D 、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D 选项符合题意.此题得解.【详解】解:A 、当1a =时,函数解析式为221y xx =--,当1x =-时,1212y =+-=,∴当1a =时,函数图象经过点(1,2)-, A ∴选项不符合题意;B 、当2a =-时,函数解析式为2241y x x =-+-,令22410y x x =-+-=,则△244(2)(1)80=-⨯-⨯-=>,∴当2a =-时,函数图象与x 轴有两个不同的交点,B ∴选项不符合题意;C 、2221(1)1y ax ax a x a =--=---,∴二次函数图象的顶点坐标为(1,1)a --,当10a --<时,有1a >-,C ∴选项不符合题意;D 、2221(1)1y ax ax a x a =--=---,∴二次函数图象的对称轴为1x =.若0a >,则当1x 时,y 随x 的增大而增大,D ∴选项符合题意.故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数图象上点的坐标特征以及二次函数的性质,逐一分析四个选项的正误是解题的关键.5. 为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y 轴对称,//AE x 轴,4AB cm =,最低点 C 在x 轴上,高 1CH cm =,2BD cm =,则右轮廓DFE 所在抛物线的解析式为( )A. 21(3)4y x =+B. 21(3)4y x =-C. 21(3)4y x =-+D. 21(3)4y x =-- 【答案】B【解析】【分析】利用B 、D 关于y 轴对称,CH=1cm ,BD=2cm 可得到D 点坐标为(1,1),由AB=4cm ,最低点C 在x 轴上,则AB 关于直线CH 对称,可得到左边抛物线的顶点C 的坐标为(-3,0),于是得到右边抛物线的顶点C 的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.【详解】∵高CH=1cm ,BD=2cm ,且B 、D 关于y 轴对称,∴D 点坐标为(1,1),∵AB ∥x 轴,AB=4cm ,最低点C 在x 轴上,∴AB 关于直线CH 对称,∴左边抛物线的顶点C 的坐标为(-3,0),∴右边抛物线的顶点F 的坐标为(3,0),设右边抛物线的解析式为y=a (x-3)2,把D (1,1)代入得1=a×(1-3)2,解得a=14, ∴右边抛物线的解析式为y=14(x-3)2, 故选:B .【点睛】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.6. 对二次函数()2331y x =--,下列说法正确的是( ) A. 其图象的开口向下B. 其图象的对称轴为直线3x =-C. 其最小值为-1D. 当3x <时,y 随x 的增大而增大【答案】C【分析】直接根据二次函数的顶点式写出二次函数的性质后即可找到正确的答案.【详解】解:二次函数()2331y x =--的开口向上,对称轴为x =3,有最小值为-1,当x <3时y 随x 的增大而减小,故选:C .【点睛】本题考查了二次函数的性质,解题的关键是能够根据二次函数的顶点式写出二次函数的性质,难度不大.7. 在同一坐标系中,一次函数y =ax +1与二次函数y =x 2+a 的图象可能是( ) A. B. C. D.【答案】C【解析】【分析】本题可先由一次函数y =ax +1图象得到字母系数的正负,再与二次函数y =x 2+a 的图象相比较,看是否一致.【详解】A .由抛物线y 轴的交点在y 轴的负半轴上可知,a <0,由直线可知,a <0,错误;B .由抛物线与y 轴的交点在y 轴的正半轴上可知,a >0,二次项系数为负数,与二次函数y =x 2+a 矛盾,错误;C .由抛物线与y 轴的交点在y 轴的负半轴上可知,a <0,由直线可知,a <0,正确;D .由直线可知,直线经过(0,1),错误.故选:C .【点睛】正确理解一次函数和二次函数的性质是解答本题的关键.8. 已知二次函数2115722y x x =--+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( ) A. y 1>y 2>y 3 B. y 1<y 2<y 3C. y 2>y 3>y 1D. y 2<y 3<y 1【解析】【分析】根据x 1、x 2、x 3与对称轴的大小关系,判断y 1、y 2、y 3的大小关系:【详解】﹣二次函数2115722y x x =--+, ﹣此函数的对称轴为:771222b x a -=-=-=-⎛⎫⨯- ⎪⎝⎭. ﹣7<0<x 1<x 2<x 3,三点都在对称轴右侧,a <0,﹣对称轴右侧y 随x 的增大而减小.﹣y 1>y 2>y 3.故选:A9. 已知二次函数()23y a x b =++有最大值0,则a ,b 的大小关系为( ﹣ A. a ﹣ bB. a b =C. a ﹣ bD. 大小不能确定【答案】A【解析】 【分析】根据二次函数有最大值可判断a ﹣0,再根据最大值为0可判断b =0,据此即可进行比较a ﹣b 的大小.【详解】解:∵二次函数y =a ﹣x +1﹣2-b ﹣a ≠0)有最大值,∴抛物线开口方向向下,即a <0,又最大值为0,∴b =0,∴a <b ,故选A﹣【点睛】本题考查了二次函数的顶点式以及二次函数的性质,熟练掌握二次函数的性质是解题的关键.10. 如图,矩形OABC 在平面直角坐标系中的位置如图所示, 3OA =,2AB =.抛物线 2y ax bx c =++(0a ≠)经过点 A 和点B ,与 x 轴分别交于点D 、E (点D 在点 E 左侧),且1OE =,则下列结论:﹣ 0a >;﹣3c >;﹣ 20a b -=;﹣4a -2b +c =3;﹣连接AE 、BD ,则=9ABDE S 梯形,其中正确结论的个数为A. 1个B. 2个C. 3个D. 4个【答案】C【解析】 【分析】由题意得A (0,3)B (-2,3)E (1,0),用待定系数法求得a =-1,b =-2,c =3,由此可判断﹣,﹣错,﹣,﹣正确;连接BE ,由题意得DE =4,BC =OA =3,由此可求得梯形ABDE 的面积等于9,故﹣正确【详解】解:将A (0,3)B (-2,3)E (1,0)代入2y ax bx c =++得34230c a b c a b c =⎧⎪-+=⎨⎪++=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩,﹣22(2)0a b -=---=,424(4)33a b c -+=---+=,故﹣,﹣错,﹣,﹣正确;﹣DE =4,BC =OA =3, ﹣1()92ABDE S OA AB DE =+=梯形. 故选:C .11. 某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A. 1个B. 2个C. 3个D. 4【答案】D【解析】【分析】在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x 轴,y轴的交点,解答题目的问题即可.【详解】解:当x=0时,y=3,故柱子OA的高度为3m;(1)正确;∵y=-x2+2x+3=-(x-1)2+4,∴顶点是(1,4),故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是4米;故(2)(3)正确;解方程-x2+2x+3=0,得x1=-1,x2=3,故水池的半径至少要3米,才能使喷出的水流不至于落在水池外,(4)正确.故选D.【点睛】本题考查了抛物线解析式的实际应用,掌握抛物线顶点坐标,与x轴交点,y轴交点的实际意义是解决问题的关键.12. 如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论正确的个数是()①对称轴为直线x=﹣1;②b2﹣4ac>0;③方程ax2+bx+c=0的解是x1=﹣3,x2=1;④不等式ax2+bx+c>3的解为﹣2<x<0.A. 4B. 3C. 2D. 1【答案】A【解析】【分析】利用抛物线与x轴的交点为对称点可对①进行判断;利用抛物线与x轴有2个交点可对②进行判断;根据x=﹣3时,y=0;x=1时,y=0可对③进行判断;抛物线的对称性得到点(0,3)关于直线x=﹣1的对称点为(﹣2,0),然后利用函数图象可对④进行判断.【详解】解:∵抛物线经过点(﹣3,0),(1,0),∴抛物线的对称轴为直线x=﹣1,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=﹣3时,y=0;x=1时,y=0,∴方程ax2+bx+c=0的解是x1=﹣3,x2=1,所以③正确;∵点(0,3)关于直线x=﹣1的对称点为(﹣2,0),∴当﹣2<x<0时,y>3,即不等式ax2+bx+c>3的解为﹣2<x<0,所以④正确.故选:A.【点睛】本题考查的是二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数的关系是解题的关键.二、填空题(每小题3分,共18分)13. 下列说法中正确的序号是_____________﹣在函数y=﹣x2中,当x=0时y有最大值0;﹣在函数y=2x2中,当x>0时y随x的增大而增大﹣抛物线y =2x 2,y =﹣x 2,y =﹣212x 中,抛物线y =2x 2的开口最小,抛物线y =﹣x 2的开口最大 ﹣不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点【答案】﹣﹣﹣【解析】【分析】根据二次函数y =ax 2的图象与性质逐一判断即得答案【详解】解:由函数的解析式y =-x 2,可知a =﹣1<0,得到函数的开口向下,有最大值y =0,故①正确;由函数的解析式y =2x 2,可知其对称轴为y 轴,对称轴的左边(x <0),y 随x 增大而减小,对称轴的右边(x >0),y 随x 增大而增大,故②正确;根据二次函数的性质,系数a 决定抛物线的开口方向和开口大小,且a 越大开口越小,可知抛物线y =2x 2的开口最小,抛物线y =-x 2的开口第二小,而y 212x =-开口最大,故③不正确;不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点,故④正确. 综上,正确的结论是:①②④.故答案为:①②④.【点睛】此题主要考查了二次函数的图象与性质,熟练掌握二次函数y =ax 2的与性质是解题的关键.14. 如图,在一幅长50cm ,宽30cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为y 2cm ,金色纸边的宽为x cm ,则y 与x 的关系式是________.【答案】y =4x 2+160x +1500【解析】【分析】由于整个挂画为长方形,用x 分别表示新的长方形的长和宽,然后根据长方形的面积公式即可确定函数关系式.【详解】解:由题意可得:y =(50+2x )(30+2x )=4x 2+160x +1500.故答案为:y =4x 2+160x +1500.【点睛】本题主要考查了根据实际问题列二次函数关系式,解题的关键是根据题意,找到所求量的等量关系,此题主要利用了长方形的面积公式解题. 15. 已知二次函数y =ax 2+bx +c 的部分图象如图所示,则关于x 的方程ax 2+bx +c =0的两个根的和为_____.【答案】2 【解析】【详解】解:根据函数的图像可知其对称轴为2bx a=-=1,解得b =-2a , 则两根之和为x 1+x 2=ba-=2. 故答案为:2【点睛】此题主要考查了二次函数的图像与一元二次方程的关系,解题关键是由函数的图像求得对称轴x =2ba-,然后根据一元二次方程的根与系数的关系x 1+x 2=ba-求解即可. 16. 已知二次函数2()21y x a a =-++-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当a 取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是_________.【答案】21y x =-- 【解析】【分析】已知抛物线的顶点式,写出顶点坐标,用x 、y 代表顶点的横坐标、纵坐标,消去a 得出x 、y 的关系式.【详解】解:二次函数2()21y x a a =-++-中,顶点坐标为:(,21)a a --, 设顶点坐标为(x ,y ), ∴x a =-①,21y a =-②,由①⨯2+②,得22211x y a a +=-+-=-, ∴21y x =--; 故答案为:21y x =--.【点睛】本题考查了二次函数的性质,根据顶点式求顶点坐标的方法是解题的关键,注意运用消元的思想解题.17. 如图,抛物线y=ax 2+1与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y=4x 2于点B 、C ,则线段BC 的长为___.【答案】1 【解析】【分析】先由y 轴上点的横坐标为0求出A 点坐标为(0﹣1),再将y=1代入y=4x 2,求出x 的值,得出B﹣C 两点的坐标,进而求出BC 的长度.【详解】∵抛物线y=ax 2+1与y 轴交于点A﹣ ∴A 点坐标为(0﹣1﹣﹣ 当y=1时,4x 2=1﹣ 解得x=±12﹣∴B 点坐标为(﹣12﹣1﹣﹣C 点坐标为(12﹣1﹣﹣ ∴BC=12﹣﹣﹣12﹣=1﹣ 故答案为1﹣【点睛】本题考查了二次函数的性质,两函数交点坐标的求法以及平行于x 轴上的两点之间的距离的知识,解答本题的关键是求出点A 的坐标,此题难度不大. 18. 二次函数2(0)y ax bx c a =++≠的部分图象如图所示, 图象过点(-1,0),对称轴为直线x =2,则下列结论中正确的序号是________.﹣4a +b =0; ﹣930a b c ++<;﹣若点A (-3,1y ),点B (-12,2y ),点C (5,3y )在该函数图象上,则1y <3y <2y ;﹣ 若方程()()153a x x +-=-的两根为1x 和2x ,且1x <2x ,则1x <-1<5<2x【答案】﹣﹣﹣ 【解析】【分析】根据抛物线的对称轴即可判断①;根据图象可知当x=3时,y=9a+3b+c >0,即可判断②;利用抛物线的特征即可判断③;令y=a (x+1)(x-5),画出图象,结合图象即可判断④.【详解】解:由抛物线的对称轴为x=2可得-2ba=2,即4a+b=0,故﹣正确; 由抛物线的对称性知x=0和x=4时,y >0,则x=3时,y=9a+3b+c >0,故﹣错误; ﹣抛物线的开口向下,且对称轴为x=2,﹣抛物线上离对称轴水平距离越小,函数值越大,﹣点A 到x=2的水平距离为5,点B 到对称轴的水平距离为2.5,点C 到对称轴的水平距离为3, ﹣y 1<y 3<y 2,故﹣正确;令y=a (x+1)(x-5),则抛物线y=a (x+1)(x-5)与y=ax 2+bx+c 形状相同、开口方向相同,且与x 轴的交点为(-1,0)、(3,0),函数图象如图所示,由函数图象可知方程a (x+1)(x-5)=-3的两根即为抛物线y=a (x+1)(x-5)与直线y=-3交点的横坐标, ﹣x 1<-1<5<x 2,故﹣正确; 故答案:﹣﹣﹣.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.三、解答题(共46分)19. 如图,平面直角坐标系中,抛物线21232y x x =-+ 交y 轴于点A .P 为抛物线上一点,且与点A 不重合.连接AP ,以AO 、AP 为邻边作□OAPQ ,PQ 所在直线与x 轴交于点B .设点P 的横坐标为m . (1)点Q 落在x 轴上时m 的值.(2)若点Q 在x 轴下方,则m 为何值时,线段BQ 的长取最大值,并求出这个最大值.【答案】(1)m=4;(2)2m =时,线段QB 的长取最大值,最大值为2. 【解析】【详解】解:(1)抛物线21232y x x =-+与y 轴交于点A , ∴点A 的坐标为()03,.∴OA =3. ∵四边形OAPQ 为平行四边形, ∴QP =OA =3.∴当点Q 落在x 轴上时,212332m m -+=.解得1204m m ==,.当m=0,点P 与点A 重合,不符合题意,舍去. ∴m=4.(2)∵点P 的横坐标为m ,∴21=232BP m m -+.∴=QB QP BP-2213232122m m m m⎛⎫=--+ ⎪⎝⎭=-+()21222m =--+. ∵点Q 在x 轴下方,∴04m <<.∴2m =时,线段QB 的长取最大值,最大值为2.【点睛】本题考查了平行四边形的性质,以及二次函数的最值问题,掌握配方法是解决本题题的关键..20. 某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销量y 1(千克)与x 的关系为y 1=﹣x 2+40x ;乙级干果从开始销售至销售的第t 天的总销量y 2(千克)与t 的关系为y 2=at 2+bt ,且乙级干果的前三天的销售量的情况见下表:(1)求a 、b 的值;(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克? (说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)【答案】(1)a =1;b =20;(2)798元;(3)第7天起乙级干果每天的销量比甲级干果每天的销量至少多6千克 【解析】【分析】(1)根据表中的数据可得214442a b a b =+⎧⎨=+⎩,解方程组可得;(2)甲级干果和乙级干果n 天售完这批货.得﹣n 2+4n +n 2+20n=1140,求n 可得; (3)设第m 天甲级干果的销售量为﹣2m +19.第m 天乙级干果的销售量为 2m +19,得(2m +19)﹣(﹣2m +41)≥6,解不等式可得﹣ 【详解】解:(1)根据表中的数据可得214442a b a b =+⎧⎨=+⎩,解得120a b =⎧⎨=⎩. (2)甲级干果和乙级干果n 天售完这批货. ﹣n 2+40n+n 2+20n =1140解得n =19,当n =19时,y 1=399,y 2=741,毛利润=399×8+741×6﹣1140×6=798(元).(3)设第m 天起乙级干果每天的销量比甲级干果每天的销量至少多6千克, 第m 天甲级干果的销售量为:-m 2+40m -[-(m -1)2+40(m -1)]=﹣2m +41.第m 天乙级干果的销售量为:()()22201201m m m m ⎡⎤+--+-⎣⎦=2m +19, ∴(2m +19)﹣(﹣2m +41)≥6 解得m ≥7,∴第7天起乙级干果每天的销量比甲级干果每天的销量至少多6千克.【点睛】此题考查了二元一次方程组的运用,一元一次不等式运用,正确理解题意是解题的关键.21. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数,其关系如下表:(1)求1y 关于x 的函数表达式.(2)李林骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用22121178y x x -+=来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短并求出最短时间.【答案】(1)122y x =+;(2)应在B 站出地铁,时间最短,为79min 2. 【解析】【分析】(1)根据数据表,运用待定系数法解答即可;(2)设李华从文化宫回到家所需的时间为y ,则y=12y y +列出y 与x 的二次函数解析式,最后运用二次函数求最值解答即可.【详解】解:(1)设1y kx b =+,将(8,18),(9,20)代入得:188209k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩, 所以122y x =+;(2)设李华从文化宫回到家所需的时间为y ,则22121122117898022y y x x x x x +=++-+=-+2179(9)22x =-+ 则当9x =时,12y y +取最小值792, 则应在B 站出地铁,时间最短,为79min 2.【点睛】本题主要考查了运用待定系数法求一次函数的解析式、二次函数的应用等知识点,根据题意,确定二次函数的解析式是解答本题的关键.22. 如图,在Rt △ABC 中,∠B=90°,AB =9㎝,BC =2㎝,点M ,N 分别从A ,B 同时出发,M 在AB 边上沿AB 方向以每秒2㎝的速度匀速运动,N 在BC 边上沿BC 方向以每秒1㎝的速度匀速运动(当点N 运动到点C 时,两点同时停止运动).设运动时间为x 秒,△MBN 的面积为y 2cm .(1)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围; (2)求△MBN 的面积的最大值.【答案】(1)29(02)2y x x x =-+<≤;(2)5cm 2 【解析】【分析】(1)根据三角形的面积公式求得. (2)由二次函数的最大值可得.【详解】解:(1)设运动时间为x 秒,MBN ∆的面积为2ycm ,则2AM x =,92BM x =-,BN x =, 根据题意得:11(92)22y BM BN x x ==-,292y x x ∴=-+,(02)x <;(2)由(1)可知,292y x x =-+, 对称轴为;924x =>, 当94x <,y随x 的增大而增大, 又02x <,∴当2x =时,5y =最大, MBN ∴∆的面积的最大值是5.【点睛】本题考查了二次函数的性质和二次函数的最大值,能正确的列出函数关系式是解题的关键.23. 生物学上研究表明:不同浓度的生长素对植物的生长速度影响不同,在一定范围内,生长素的浓度对植物的生长速度有促进作用,相反,在某些浓度范围,生长速度会变缓慢,甚至阻碍植物生长(阻碍即植物不生长,甚至枯萎).小林同学在了解到这一信息后,决定研究生长素浓度与茶树生长速度的关系,设生长素浓度为x 克/升,生长速度为y 毫米/天,当x 超过4时,茶树的生长速度y 与生长素x 浓度满足关系式:212y x ax c =-++.实验数据如下表,当生长速度为0时,实验结束.(1)如图,建立平面直角坐标系xOy ,描出表中各对对应值为坐标的点,画出该函数图象;(2)根据上述表格,求出整个实验过程中y与x的函数关系式,并写出自变量x 的取值范围;(3)结合画出的函数图象,写出该函数的一条性质:;(4)若直线y=kx+3与上述函数图象有2个交点,则k的取值范围是:.【答案】(1)画出该函数图象如图所示;见解析;(2)()()222041744822x xyx x x⎧+≤<⎪=⎨-++≤≤⎪⎩(3)当0<x<4时,y随x的增大而增大;(4)37 84k-≤<.【解析】【分析】(1)把表中的x,y的值分别描入平面直角坐标系中,再用直线或平滑的曲线连接即可;(2)利用待定系数法进行求解,当0<x<4时,函数图像是直线,当4≤x≤8时,函数图像是抛物线;(3)当0<x<4时,函数图像是直线,0k>,y随x的增大而增大;(4)直线y=kx+3过点(0,3),要与上述函数图像有2个交点,则直线过点(4,10)或(8,0),代入求解出k的值,进而求出k的取值范围.【详解】(1)画出该函数图象如图所示;(2)当0<x <4时,设y =kx +b ,把(0,2),(2,6)代入y =kx +b 得,226b k b =⎧⎨+=⎩, 解得:22k b =⎧⎨=⎩, ∴y =2x +2;当4≤x ≤8时,把(7,4),(8,0)代入212y x ax c =-++得,144972106482a c a c ⎧=-⨯++⎪⎪⎨⎪=-⨯++⎪⎩解得:724a c ⎧=⎪⎨⎪=⎩ ∴y =﹣12x 2+72x +4; ∴整个实验过程中y 与x 的函数关系式为:()()222041744822x x y x x x ⎧+≤<⎪=⎨-++≤≤⎪⎩;(3)当0<x <4时,y 随x 的增大而增大,故答案为:当0<x <4时,y 随x 的增大而增大;(4)∵直线y =kx +3与上述函数图象有2个交点,∴当直线y=kx+3过(4,10)或(8,0)时,即把(4,10)或(8,0)分别代入y=kx+3得,k=74或k=﹣38,∴若直线y=kx+3与上述函数图象有2个交点,则k的取值范围是:37 84k-≤<故答案为:37 84k-≤<.【点睛】本题考查了画函数图像,待定系数法,一次函数和二次函数的性质,函数的交点个数求k的取值范围,属于基础题,熟练掌握函数图像的画法,待定系数法,函数的性质是解题的关键.24. 如图,一次函数1y=x+22-分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D 的坐标.【答案】(1)y=﹣x2+72x+2(2)当t=2时,MN有最大值4(3)D点坐标为(0,6),(0,﹣2)或(4,4)【解析】【分析】(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式.(2)求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值.(3)明确D点的可能位置有三种情形,如图2所示,不要遗漏.其中D1、D2在y 轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.【详解】解:(1)﹣1y=x+22-分别交y轴、x轴于A、B两点,﹣A、B点的坐标为:A(0,2),B(4,0).将x=0,y=2代入y=﹣x2+bx+c得c=2;将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=72.﹣抛物线解析式为:y=﹣x2+72x+2.(2)如图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.﹣21 tan42OAABOOB∠===,﹣ME=BE•tan﹣ABO=(4﹣t)×12=2﹣12t.又﹣N点在抛物线上,且x N=t,﹣y N=﹣t2+72t+2.﹣()222712242422N MN y ME t t t t t t =-=-++--=-+=--+(). ﹣当t =2时,MN 有最大值4.(3)由(2)可知,A (0,2),M (2,1),N (2,5).如图2,以A 、M 、N 、D 为顶点作平行四边形,D 点的可能位置有三种情形.(i )当D 在y 轴上时,设D 的坐标为(0,a ),由AD =MN ,得|a ﹣2|=4,解得a 1=6,a 2=﹣2,从而D 为(0,6)或D (0,﹣2).(ii )当D 不在y 轴上时,由图可知D 为D 1N 与D 2M 的交点,由D 1(0,6),N (2,5)易得D 1N 的方程为y =12-x +6; 由D 2(0,﹣2),M (2,1)易得D 2M 的方程为y =32x ﹣2. 由两方程联立解得D 为(4,4).综上所述,所求的D 点坐标为(0,6),(0,﹣2)或(4,4).【点睛】本题考查了二次函数、锐角三角函数、平行四边形,解题的关键是求出函数的解析式,利用数形结合的思想求解.。
第22章 二次函数 人教版数学九年级上册单元闯关双测A卷(含答案)
第二十二章二次函数(测基础)——2023-2024学年人教版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.已知是y关于x的二次函数,那么m的值为( )A.2B.-2C.D.2.抛物线的顶点坐标是( )A. B. C. D.3.已知二次函数的图象上有两点和,则当时,二次函数的值是( )A.-1B.0C.1D.24.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC的长度为( )A. B. C. D.5.抛物线的顶点A的纵坐标为 -5 , 若方程有且只有两个不相等的实数根, 则m的取值范围是( )A. B. 或C. 或D. 或6.已知抛物线的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是( )A.或2B.C.2D.7.如图,在矩形ABCD中,,,,,则四边形EFGH面积的最大值是( )A. B. C. D.8.已知二次函数(其中x是自变量),当时,,则a的值为( )A.1B.2C.D.9.已知抛物线过点和,且与y轴交于点C.若,则该抛物线的解析式是( )A. B.或C. D.或10.如图,二次函数的图象与x轴的一个交点为,对称轴是直线,下列结论正确的是( )A. B. C. D.点在函数图象上二、填空题(每小题4分,共20分)11.抛物线向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是______.12.已知函数的图象与x轴有交点,则k的取值范围为________.13.如图,用一根60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若设框架的宽AB为x cm,则框架的长为________厘米(用含x的代数式表示);(2)矩形框架ABCD面积的最大值为________平方厘米.14.如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若的周长为5,则四边形AOBC的周长为_____________.15.已知二次函数的图象与x轴的两个交点A,B关于直线对称,且,顶点在函数的图象上,则这个二次函数的表达式为______________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某小区计划建一个矩形花圃,花圃的一边利用长为a米的墙,另三边用总长为79米的篱笆围成,围成的花圃是如图所示的矩形ABCD,并在BC边上留有一扇1米宽的门.设AD边的长为x米,矩形花圃的面积为S米.(1)求S与x之间的函数关系式.(不要求写出自变量x的取值范围)(2)若,求S的最大值.17.(8分)如图,点在抛物线上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值.(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为,求点移动的最短路程.18.(10分)初三年级某班成立了数学学习兴趣小组,该小组对函数的图象和性质进行探究,过程如下,请你补充完整.(1)①列表:下表是x,y的几组对应值,其中__________,__________;m,请在下图中补充描出点,.③连线:用平滑的曲线顺次连接各点,请在下图中把图象补充完整.(2)请你观察图象,直接写出当x在什么范围内时,y随x的增大而增大:_____________.(3)除了上述增减性,请你再写出两条该函数的图象特征或性质:①_____________;②_____________.(4)点与在函数图象上,且,则a与b的大小关系是_____________.19.(10分)如图(1)所示是一座抛物线形拱桥的侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6 m的E处,测得桥面到桥拱的距离EF为1.5 m,以桥拱顶点O 为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离.(2)如图(2),桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面的距离为1 m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.20.(12分)如图,已知抛物线与x轴交于A,B两点,与y轴交于点C,点B的坐标为.(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当的值最小时,求点P的坐标. 21.(12分)如图,在平面直角坐标系中,抛物线 (b、c为常数)的顶点坐标为,与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点C、点D关于x轴对称,连结,作直线.(1)求b、c的值;(2)求点A、B的坐标;(3)求证:;(4)点P在抛物线上,点Q在直线上,当以点C、D、P、Q为顶点的四边形为平行四边形时,直接写出点Q的坐标.答案以及解析1.答案:A解析:是y关于x的二次函数,且,解得. 2.答案:B解析:,顶点坐标为,故选B.3.答案:C解析:二次函数的图像上有两点和,,,当时,二次函数.故选C.4.答案:C解析:,,解得,,,.故选C.5.答案:C解析:如图, 画出抛物线的大致图象, 将此抛物线在x轴下方的部分沿x轴向上翻折, 得到一个新的函数图象, 且点A的对应点B的纵坐标为 5. 的图象是x 轴上方部分 (包含与x轴的两个交点), 当或时, 有两个不相等的实数根.6.答案:B解析:抛物线的对称轴在y轴右侧,,.抛物线,将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线的解析式是,将代入,得,解得(舍去),.故选B.7.答案:B解析:设,则,.设四边形EFGH的面积为y,依题意,得,即.,抛物线开口向下,时,y有最大值.由题意知,,函数最大值为.故选B.8.答案:C解析:二次函数图象的对称轴为直线.根据题意,①当时,;时,,则解得②当时,;时,,则解得a的值为,故选C.9.答案:D解析:设抛物线的解析式为.,点C的坐标为或.把代入,解得,此时抛物线的解析式为,即.把代入,解得,此时抛物线的解析式为,即.抛物线的解析式为或.10.答案:B解析:A、由二次函数的图形可知: ,,所以.故本选项不符合题意;B、因为二次函数的对称轴是直线,则,即.故本选项符合题意:C、因为抛物线与x轴有两个交点, 所以, 即. 故本选项不符合题意;D、因为抛物线与x轴的一个交点坐标为,且对称轴为直线,所以它与x轴的另一个交点的坐标为.故本选项不符合题意;故选B.11.答案:解析:抛物线,顶点坐标为,抛物线向右平移2个单位长度,再向上平移3个单位长度,平移后的抛物线的顶点坐标为.故答案为:.12.答案:解析:①当时,,,解得:;②当时,,与x轴有交点;故k的取值范围是,故答案为:.13.答案:(1);(2)150解析:(1)如图,若设框架的宽AB为x cm,则铁丝的长为60厘米框架的长AD为若设框架的宽AB为x cm,则框架的长AD为要使矩形框架ABCD面积的最大值,则,此时最大的面积为150平方厘米14.答案:9解析:根据题意,对称轴为直线,抛物线经过原点、x轴负半轴交于点B,,由抛物线的对称性知,四边形AOBC的周长为的周长.故答案为:9.15.答案:解析:对称轴为直线,且二次函数图象与x轴交于A、B两点,,二次函数图象与x轴交于,两点,顶点的横坐标为-1,顶点在函数的图象上,,顶点坐标为,设二次函数的表达式为,把代入,得,解得..这个二次函数的表达式为.16.答案:(1)(2)S的最大值为750解析:(1)AB边的长为(米),根据题意得,S与x之间的函数关系式为.(2)由(1)知,,当时,S随x的增大而增大.,,当时,S取得最大值,最大值为750.17.(1)答案:解析:,C的对称轴为直线,y的最大值是4.把,代入,得,解得,.又,.(2)答案:5解析:,抛物线的顶点为.如图,过C的顶点作轴于点A.连接,.由平移可知,,点移动的最短路程是.18.答案:(1)①;②见解析③见解析(2)或(3)(答案不唯一)①函数图象是轴对称图形②函数值y都是非负数(4)解析:(1)①当时,,当时,.②补充点如图所示.(3)用平滑的曲线顺次连接各点,把图象补充完整如上图所示.(2)略(3)略(4),,,,而,,.19.答案:(1)桥拱顶部O离水面的距离为(2)①或②彩带长度的最小值是解析:(1)设拱桥所在抛物线的函数表达式为,由题意得,,,.易知,则当时,,即,桥拱顶部O离水面的距离为.(2)①由题意得第一象限内的钢缆抛物线的顶点坐标为,可设第一象限内的钢缆抛物线的函数表达式为.,,,.(同理可求得第二象限内的钢缆抛物线的函数表达式为.正确求出其中一条抛物线的函数表达式即可)②设彩带长度为,则,当时,h取得最小值,最小值为2.彩带长度的最小值是.20.答案:(1)把点B的坐标代入抛物线解析式,得,解得,,抛物线的顶点坐标为.(2)连接BC,交抛物线对称轴l于点P,则此时的值最小,由知,C点坐标为.设直线BC的解析式为,,,解得直线BC的解析式为,当时,,当的值最小时,点P的坐标为.21.答案:(1);(2);(3)见解析(4)或或或解析:(1)设抛物线的表达式为:,则,即;(2)令,解得:或 -1,故点A、B的坐标分别为;(3)证明:由抛物线的表达式知:点, 则点,则,,;(4)设点,点,,当为平行四边形的对角线时,由中点坐标公式得:,整理得:, 解得: (舍去)或 2,则, 即点;当是平行四边形的对角线时,同理可得:,解得:,即点;当是平行四边形的对角线时,同理可得:, 解得: ,即点Q的坐标为或,综上,点Q的坐标为:或或或。
九年级数学上册第二十二章二次函数基本知识过关训练(带答案)
九年级数学上册第二十二章二次函数基本知识过关训练单选题1、在平面直角坐标系中,已知抛物线y=x2−4x+5,将该抛物线沿y轴翻折所得的抛物线的表达式为()A.y=−x2−4x+5B.y=x2+4x+5C.y=−x2+4x−5D.y=−x2−4x−5答案:C分析:把抛物线沿y轴翻折后,抛物线的开口方向与原抛物线开口方向相反,顶点(2,1)关于y轴对称的顶点为(2,-1),则可得翻折后的抛物线的解析式.∵y=x2−4x+5=(x−2)2+1,∴顶点坐标为(2,1),开口向上,∴抛物线y=x2−4x+5沿y轴翻折后顶点坐标为(2,-1),此时抛物线的开口向下,∴抛物线沿y轴翻折所得的抛物线的表达式为y=−(x−2)2−1,化简后为:y=−x2+4x−5.故选:C.小提示:本题考查了求抛物线关于y轴对称后的解析式,点关于y轴对称,把二次函数的一般式化为顶点式等知识,关键是抓住抛物线的开口方向与顶点坐标翻折后的变化.2、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.3、已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A.2020B.2021C.2022D.2023答案:C分析:根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到x1+x2=20212020,代入解析式即可得解.解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,有:y=2020x2+2021x+2022==2020×(−20212020)2+2021×(−20212020)+2022=2022,故选C.小提示:本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理.4、抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n答案:B分析:根据题意可得抛物线的定点坐标即为(x 1,0),代入解析式即可求解. 解:∵抛物线经过(x 1,0),且抛物线与x 轴只有一个交点, ∴抛物线顶点坐标为(x 1,0),y =(x ﹣x 1)2,∴x 2﹣2x 1x +x 12=(x ﹣x 1)(x ﹣x 2)+mx +n =x 2﹣(x 1+x 2﹣m )x +x 1x 2+n ,∴x 1+x 2﹣m =2x 1,即x 2﹣x 1=m , 故选:B .小提示:本题考查了抛物线与坐标轴交点问题,顶点式,掌握二次函数图象的性质是解题的关键. 5、小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为y =−19(x −3)2+k ,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为(0,169),则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m 答案:C根据出手点A 的坐标为(0,169)求出函数关系式,再令y =0可解得答案.解:把A (0,169)代入y =−19(x −3)2+k 得:169=−19(0−3)2+k ,∴k =259,∴y =−19(x −3)2+259,令y =0得0=−19(x −3)2+259,解得x =−2(舍去)或x =8,∴实心球飞行的水平距离OB 的长度为8m ,小提示:本题考查二次函数的应用,解题的关键是理解题意,能用待定系数法求出函数关系式.6、已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=−1,且经过点(−3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0答案:D=−1,得b=2a,则b<0,图象经过(−3,0),根据对分析:图象开口向下,得a<0,对称轴为直线x=−b2a称性可知,图象经过点(1,0),故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.解:∵图象开口向下,∴a<0,∵对称轴为直线x=−b=−1,2a∴b=2a,∴b<0,故A不符合题意;根据对称性可知,图象经过(−3,0),∴图象经过点(1,0),当x=1时,a+b+c=0,故C不符合题意;∴c=-a-b,∴c>0,故B不符合题意;将b=2a代入,可知3a+c=0,故D符合题意.故选:D.小提示:本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.7、二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关分析:分别求出函数解析式的最小值、当0≤x≤1时端点值即:当x=0和x=1时的函数值.由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关解:依题意得:当x=0时,端点值y1=q,当x=1时,端点值y2=1+p+q,当x=−p2时,函数最小值y3=−p24+q,由二次函数的最值性质可知,当0≤x≤1时,此函数最大值和最小值是y1=q、y2=1+p+q、y3=−p24+q 其中的两个,所以最大值与最小值的差可能是|1+p|或p24或1+p+p24,故其差只含p不含q,故与p有关,但与q无关故选:D.小提示:本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键.8、某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是()A.2500元B.2000元C.1800元D.2200元答案:C分析:设每件商品降价x元,每天的销售额为y元,由题意可得到y和x的二次函数关系,利用配方法可求最值.解:设每件商品降价x元,每天的销售额为y元.依题意有:y=(35﹣x)(50+2x)=﹣2x2+20x+1750=﹣2(x﹣5)2+1800,∵﹣2<0,∴当x=5时,y最大,最大值为1800,∴最大销售额为1800元.故选:C.小提示:本题考查二次函数的应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.9、在平面直角坐标系中,将二次函数y=(x−1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x−2)2−1B.y=(x−2)2+3C.y=x2+1D.y=x2−1答案:D分析:根据抛物线的平移规律:上加下减,左加右减解答即可.解:将二次函数y=(x−1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为y=(x−1+1)2+1−2=x2−1故选D.小提示:本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.10、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN,设运动时间为t s,△MND的面积为S cm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.答案:B分析:分别求出M在AD和在BD上时△MND的面积为S关于t的解析式即可判断.解:∵∠ACB=90°,∠A=30°,AB=4√3,∴∠B=60°,BC=12AB=2√3,AC=√3BC=6,∵CD⊥AB,∴CD=12AC=3,AD=√3CD=3√3,BD=12BC=√3,∴当M在AD上时,0≤t≤3,MD=AM−AD=3√3−√3t,DN=DC+CN=3+t,∴S=12MD·DN=12(3√3−√3t)(3+t)=−√32t2+9√32,当M在BD上时,3<t≤4,MD=AD−AM=√3t−3√3,∴S=12MD·DN=12(√3t−3√3)(3+t)=√32t2−9√32,故选:B.小提示:本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.填空题11、在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t秒离水面的高度为h米,且ℎ=−5t2+256t+10.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.答案:32##1.5分析:根据题意,令ℎ=5,解一元二次方程求解即可.依题意5=−5t2+256t+10整理得6t2−5t−6=0即(2t−3)(3t+2)=0解得t1=32,t2=−23(不符合题意,舍)所以答案是:32小提示:本题考查了一元二次方程的应用,读懂题意将ℎ=5代入关系式是解题的关键.12、把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:________.答案:m>3分析:先求得原抛物线的顶点坐标为(-2,m-4),再求得平移后的顶点坐标为(1,m-3),根据题意得到不等式m-3>0,据此即可求解.解:∵y=x2+4x+m=(x+2)2+m-4,此时抛物线的顶点坐标为(-2,m-4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m-4+1),即(1,m-3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m-3>0,解得:m>3,所以答案是:m>3.小提示:本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.x2+4的图像上,那么m、n的大小关系是:13、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣13m_____n.(填“>”、“=”或“<”)答案:<分析:先利用二次函数的性质得到抛物线的对称轴为y轴,然后根据二次函数的性质解决问题.x2+4可知,抛物线开口向下,抛物线的对称轴为y轴,解:二次函数y=−13所以当x<0时,y随x的增大而增大,∵−7<−5,∴m<n,所以答案是:<.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.14、抛物线y=ax2+bx+3与x轴的公共点是(−1,0),(−3,0),该抛物线的对称轴是直线________.答案:x=−2分析:根据点(−1,0)与(−3,0)的纵坐标都为0,可判定这两点是一对对称点,把两点的横坐标代入公式x=x1+x2求解即可.2解:∵抛物线与x轴的交点为(−1,0),(−3,0),∴两交点关于抛物线的对称轴对称,=−2.则此抛物线的对称轴是直线x=−1+(−3)2所以答案是:x=−2.小提示:本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可求解.以将函数化为顶点式来求解,也可以用公式x=x1+x2215、如图,抛物线y=1x2﹣3与x轴交于A,B两点,点P是以点C(0,4)为圆心,1为半径的圆上的动点,3点Q是线段PB的中点,连接OQ,则线段OQ的最小值是 _____.答案:2分析:连接AP,先解方程13x2﹣3=0得A(−3,0),B(3,0),再判断OQ为△ABP的中位线得到OQ=12AP,利用点与圆的位置关系,连接AC交圆于P时,PA最小,然后计算出AP的最小值即可得到线段OQ的最小值.解:连接AP.当y=0时,13x2﹣3=0解得x1=3,x2=﹣3则A(−3,0),B(3,0)∵Q是线段PB的中点.∴OQ为△ABP的中位线.∴OQ=12AP.当AP最小时,OQ最小.连接AC交圆于P时,PA最小.∵AC=√OA2+OC2=√32+42=5.∴AP的最小值:AP=AC−PC=5−1=4.∴线段OQ的最小值:OQ=12AP=2.故答案为2.小提示:本题考查了中位线、二次函数与圆的综合题,解题的关键在于连接圆心C所得的AP最小.解答题16、受“新冠”疫情的影响,某销售商在网上销售A,B两种型号的“手写板”,获利颇丰.已知A型,B型手写板进价、售价和每日销量如表格所示:5元就可多卖1个,B型手写板每提高5元就少卖1个,要保持每天销售总量不变,设其中A型手写板每天多销售x个,每天总获利的利润为y元(A型售价不得低于进价).(1)求y与x之间的函数关系式并写出x的取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B型手写板,就捐a元给(0<a≤100)因“新冠疫情”影响的困难家庭,当30≤x≤40时,每天的最大利润为229200元,求a的值.答案:(1)0≤x≤60且x为整数(2)20≤x≤60(3)a=30分析:(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论.(1)由题意得,y=(900﹣600﹣5x)(200+x)+(1200﹣800+5x)(400﹣x)=﹣10x2+900x+220000,{x≥0,300−5x≥0,400−x≥0,解得0≤x≤60,故x的取值范围为0≤x≤60且x为整数;(2)x的取值范围为20≤x≤60.理由如下:y=﹣10x2+900x+220000=﹣10(x﹣45)2+240250,当y=234000时,﹣10(x﹣45)2+240250=234000,(x﹣45)2=625,x﹣45=±25,解得:x=20或x=70.要使y≥234000,得20≤x≤70;∵0≤x≤60,∴20≤x≤60;(3)设捐款后每天的利润为w元,则w=﹣10x2+900x+220000﹣(400﹣x)a=﹣10x2+(900+a)x+220000﹣400a,对称轴为x=900+a20=45+a20,∵0<a≤100,∴45+a20>45,∵抛物线开口向下,当30≤x≤40时,w随x的增大而增大,当x=40时,w最大,∴﹣16000+40(900+a)+220000﹣400a=229200,解得a=30.小提示:本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答.17、如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的,正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面4.5m.当水位上涨刚好淹没小孔时,求大孔的水面宽度.答案:此时大孔的水面宽度为10m.分析:根据题意,建立如图所示的平面直角坐标系,可以得到A、B、M的坐标,设出函数关系式,待定系数求解函数式.根据NC的长度,得出函数值y,代入解析式,即可得出E、F的坐标,进而得出答案.解:如图,建立如图所示的平面直角坐标系,由题意得,M点坐标为(0,6),A点坐标为(-10,0),B点坐标为(10,0),设中间大抛物线的函数式为y=ax2+6,∵点B在此抛物线上,∴0=a×102+6,,解得a=-350∴函数式为y=-3x2+6.50∵NC=4.5m,∴令y=4.5,x2+6=4.5,代入解析式得-350x1=5,x2=-5,∴可得EF=5-(-5)=10.此时大孔的水面宽度为10m.小提示:本题是二次函数的实际应用,考查了待定系数法求二次函数的解析式,由函数值求自变量的值,解答时求出函数的解析式是关键.18、在平面直角坐标系xOy 中,二次函数y =x 2+mx +n 的图象经过点A (0,1),B (3,4).求此二次函数的表达式及顶点的坐标.答案:y =x 2−2x +1,(1,0)分析:直接把点A 、B 的坐标代入二次函数解析式进行求解,然后求出对称轴,最后问题可求解. 解:∵二次函数y =x 2+mx +n 的图象经过点A (0,1),B (3,4);∴{n =19+3m +n =4, 解得:{m =−2n =1, ∴y =x 2−2x +1∴对称轴为直线x =−−22×1=1,∴y =12−2+1=0,∴顶点的坐标为(1,0).小提示:本题主要考查二次函数的图象与性质,熟练掌握利用待定系数法求解函数解析式是解题的关键.。
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一、单选题(共48分)1.(本题4分)抛物线23y x =-与y 轴的交点坐标为( )A .(-3,0)B .(0,-3)C .(3,0)-D .(3,0) 2.(本题4分)已知:抛物线y =a (x +1)2的顶点为A ,图象与y 轴负半轴交点为B ,且OB =OA ,若点C (-3,b )在抛物线上,则△ABC 的面积为( )A .3B .3.5C .4D .4.53.(本题4分)二次函数y =﹣x 2﹣4的图象经过的象限为( )A .第一象限、第四象限B .第二象限、第四象限C .第三象限、第四象限D .第一象限、第三象限、第四象限4.(本题4分)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =-- 5.(本题4分)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.则下列结论不正确的是( )A .小球在空中经过的路程是40mB .小球运动的时间为6sC .小球抛出3s 时,速度为0D .当 1.5t =s 时,小球的高度30h =m 6.(本题4分)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1B .2C .3D .27.(本题4分)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D . 8.(本题4分)已知二次函数()222y x =--,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A .有最大值-1,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 9.(本题4分)记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( )A .y =﹣(x ﹣60)2+1825B .y =﹣2(x ﹣60)2+1850C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+200010.(本题4分)已知二次函数2202020212022y x x =++的图象上有两点A (x 1,2023)和B (x 2,2023),则当12x x x =+时,二次函数的值是( )A .2020B .2021C .2022D .2023 11.(本题4分)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD 2+PC 的最小值是( )A .4B .2+22C .22D .32223+ 12.(本题4分)抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是( ) A .1m <-或0m > B .1122m -<< C .02m ≤< D .11m -<<二、填空题(共20分)13.(本题5分)若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________. 14.(本题5分)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).15.(本题5分)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD 的长)为______.16.(本题5分)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).三、解答题(共52分)17.(本题6分)二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求二次函数的解析式;(2)不等式ax 2+bx +c >0的解集为 ;(3)方程ax 2+bx +c =m 有两个实数根,m 的取值范围为 .18.(本题6分)已知抛物线经过点(0,-2),(3,0),(-1,0),求抛物线的解析式.19.(本题6分)已知:二次函数2142y x x =-++. (1)通过配方,将其写成()2y a x h k =-+的形式;(2)求出函数图象与x y 、轴的交点、、A B C 的坐标;(3)当0y >时,直接写出x 的取值范围;(4)当x ________时,y 随x 的增大而减少.20.(本题6分)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.21.(本题6分)一隧道内设双行公路,隧道的高MN 为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF 的三条边围成的,矩形的长DE 是8米,宽CD 是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少?22.(本题6分)如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式; (2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 23.(本题8分)如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ面积的最大值,并求此时P点坐标.24.(本题8分)已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A(1)若a>0①当a=1,c=-1,求该抛物线与x轴交点坐标;②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.参考答案1.B2.A3.C4.B5.A6.D7.A8.D9.D10.C11.A12.D13.214.<15.40米16.②③17.(1)y =x 2﹣2x ﹣3;(2)x <﹣1或x >3;(3)m ≥﹣4.18.224233y x x =-- 19.(1)()219122x --+ (2)A (-2,0),B (4,0),C (0,4)(3)-2<x <4(4)>120.(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元21.(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14 22.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 23.(1)223y x x =+-(2)2;P (-1,0)24.(1)①,0),0)②m>0或m<-3 (2)-9(3)49a=或12a≥或14a-≤。
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)一、单选题1.下列函数中,y 是x 的二次函数的是( ) A .22(1)y x x =--B .(2)y x x =-+C .21y x =D .2x y =2.若函数2221()m m y m m x --=+是二次函数,则m 的值是( ) A .2B .-1或3C .-1D .33.已知二次函数y =(a ﹣1)x 2﹣x +a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定4.苹果熟了,从树上落下所经过的路线s 与下落的时间t 满足s=212gt (g 是不为0的常数),则s 与t 的函数图象大致是( )A .B .C .D .5.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .132x =,25x 2=D .1x 4=-,2x 0=6.由二次函数22(3)1y x =-+可知( ) A .其图象的开口向下 B .其图象的对称轴为3x =- C .其最大值为1D .当3x <时,y 随x 的增大而减小7.二次函数y =﹣2x 2+4x +1的图象如何平移可得到y =﹣2x 2的图象( ) A .向左平移1个单位,向上平移3个单位 B .向右平移1个单位,向上平移3个单位 C .向左平移1个单位,向下平移3个单位 D .向右平移1个单位,向下平移3个单位8.如果二次函数2(0)y ax bx c a =++≠的图像如图所示,那么( )A .a 0,b 0,c 0<>>B .0,0,0a b c >>>C .0,0,0a b c ><<D .0,0,0a b c >><9.已知函数y =kx 2﹣7x ﹣7的图象和x 轴有交点,则k 的取值范围是( )A .74k >-B .74k ≥-C .74k ≥-且k ≠0D .74k >-且k ≠010.根据表格中代数式ax 2+bx +c =0与x 的对应值,判断方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围是( )x 6.17 6.18 6.19 6.20 ax 2+bx +c ﹣0.03﹣0.010.020.06A .6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.2011.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个12.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( ) A .90元,4500元 B .80元,4500元 C .90元,4000元 D .80元,4000元二、填空题13.若二次函数y =(m +2)23mx -的图象开口向下,则m =______.14.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上,则m -n 的最大值为_________.15.抛物线223(0)y ax ax a =--≠与x 轴交于两点,分别是()0m ,,(),0n ,则m n +的值为_______.16.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为______.17.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.三、解答题18.已知抛物线y =ax 2-2ax -6+a 2(a ≠0) (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其对应的函数的解析式.19.已知二次函数2y x px q +=+的图象经过(0,1),(2,1)A B -两点. (1)求,p q 的值.(2)试判断点(1,2)P -是否在此函数的图象上.20.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为区域ABCD 的面积为y m 2. (1)求y 与x 之间的函数关系式;(2)当x 为何值时,y 有最大值?最大值是多少?21.已知二次函数2123y x x =--的图像与x 轴交于A 、B 两点(A 在B 的左侧),与y轴交于点C ,顶点为D .(1)求点A 、B 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图像; (2)设一次函数()20y kx b k =+≠的图像经过B 、C 两点,请直接写出满足12y y <的x 的取值范围.22.已知,如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求①MCB 的面积.23.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x(元/件)(x≥24),每天销售利润为y(元).(1)直接写出y与x的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.参考答案1.BA . 22(1=)2+1y x x x =---是一次函数,不合题意;B . 2(2)=2y x x x x =-+--是二次函数,合题意;C . 21y x =不是二次函数,不合题意; D . 2x y =不是函数,不合题意; 故选:B . 2.D根据题意得:22212m m m m ⎧+≠⎨--=⎩解得:m=3. 故选:D . 3.C解:①二次函数y =(a ﹣1)x 2﹣x +a 2﹣1 的图象经过原点, ①a 2﹣1=0, ①a =±1, ①a ﹣1≠0, ①a ≠1, ①a 的值为﹣1. 故选:C 4.B 解:由21,2s gt =可得:s 是t 的二次函数,且函数图像经过原点,图像的开口向上, 所以:A 错误,B 正确,,C D 错误, 故选:.B 5.A解:①二次函数y=ax 2+1的图象经过点(-2,0), ①4a+1=0,①a=-14,①方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A . 6.D解:22(3)1y x =-+,∴抛物线开口向上,对称轴为3x =,顶点坐标为(3,1), ∴函数有最小值1,当3x <时,y 随x 的增大而减小, 故选:D . 7.C解:二次函数y =﹣2x 2+4x +1的顶点坐标为(1,3),y =﹣2x 2的顶点坐标为(0,0), 只需将函数y =﹣2x 2+4x +1的图象向左移动1个单位,向下移动3个单位即可. 故选:C . 8.C解:①图象开口方向向上, ①a >0;①图象的对称轴在y 轴的右边上, ①2ba->0, ①a >0, ①b <0;①图象与y 轴交点在y 轴的负半轴上, ①c <0;①a >0,b <0,c <0. 故选:C . 9.B解:当0k =时,函数为77y x =--,为一次函数,与x 轴有交点,符合题意; 当0k ≠,函数为277y kx x =--,为二次函数, 因为图像与x 轴有交点所以,2(7)470k ∆=-+⨯≥,解得74k ≥-且0k ≠综上,74k ≥-故选B 10.C解:①当x =6.18时,y =-0.01<0;当x =6.19时,y =0.02>0,①当x 在6.18<x <6.19的范围内取某一值时,对应的函数值为0,即ax 2+bx +c =0,①方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围为6.18<x <6.19. 故选:C . 11.C解:①抛物线过(1,0),对称轴是x =2,① 30b 22a a b ++=⎧⎪⎨-=⎪⎩ ,解得a =1,b =-4,①y =x 2-4x +3,当x =3时,y =0,所以小华正确, 当x =4时,y =3,小彬正确, a =1,小明也正确,抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x =2,此时答案不唯一,所以小颖也错误, 故答案为:C . 12.B解:设每月总利润为w , 依题意得:(50)w y x =-(5550)(50)x x =-+- 2580027500x x =-+-25(80)4500x =--+50-<,此图象开口向下,又50x ≥,∴当80x =时,w 有最大值,最大值为4500元.故选:B . 13.5①y =(m +2)23m x -是二次函数,①m 2-3=2, 解得:5m =± ①二次函数y =(m +2)23m x -的图象开口向下,①m +2<0, ①2m <-,52>-,52--, ①5m =- 故答案为:5-14.154-解:二次函数y =x 2+ax +4以y 轴为对称轴 02a∴-= ,即0a = , ∴ 二次函数解析式为24y x =+ ,点P (m ,n )在二次函数y =x 2+ax +4的图象上, 24n m ∴=+ ,()2221154424m n m m m m m ⎛⎫∴-=--=---=--- ⎪⎝⎭ ,∴ m -n 的最大值为154-. 故答案为:154-. 15.2解:①抛物线y =ax 2-2ax -3与x 轴交于两点,分别是(m ,0),(n ,0), ①2.2am n a-+=-=. 故答案是:2. 16.12x =-,21x =解:①抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,①方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,即关于x 的方程20ax bx c --=的解为12x =-,21x =. 故答案为x 1=-2,x 2=1. 17.10m解:根据题意,以C 为坐标原点建立如图所示的平面直角坐标系,则B (12,﹣8), 设该抛物线的表达式为y =ax 2,将B (12,﹣8)代入,得:﹣8=a ·122, 解得:a =118-, ①该抛物线的表达式为y =118-x 2, 当x =18时,y =118-×182=﹣18,①E (18,﹣18), ①点E 到直线AB 的距离为﹣8﹣(﹣18)=10m ,故答案为:10m .18.(1)222226(1)6y ax ax a a x a a =--+=-+--, ∴对称轴为直线1x =;(2)由题可知,当抛物线顶点在x 轴上时, 260a a --=, (3)(2)0a a -+=,解得:3a =或2a =-,当3a =时,函数解析式为2363y x x =-+; 当2a =-时,函数解析式为2242y x x =-+-. 19.解:(1)把A (0,1),B (2,-1)代入y =x 2+px +q ,得1421q p q =⎧⎨++=-⎩, 解得:31p q =-⎧⎨=⎩,①p ,q 的值分别为-3,1;(2)把x =-1代入y =x 2-3x +1,得y =5, ①点P (-1,2)不在此函数的图象上. 20.解:(1)设BC 的长度为x m ,则AB =13(40﹣x )m ,则矩形区域ABCD 的面积y =13x (40﹣x )=﹣13x 2+403x ;(2)①y =﹣13x 2+403x =13-(x ﹣20)2+4003 ,①当x =20时,y 有最大值,最大值是4003m 2. 21.解:(1)令y=0时,则有2023x x -=-,解得:121,3x x =-=, ①()1,0A -;()3,0B ;由二次函数2123y x x =--可得顶点式为()2114y x =--, ①()1,4D -,图像如图所示:(2)由题意画出直线()20y kx b k =+≠的图像,如图所示,则由图像可得:当12y y <时,03x <<.22.(1)①A (﹣1,0),C (0,5),(1,8)三点在抛物线y=ax 2+bx+c 上, ①058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解方程组,得145a b c =-⎧⎪=⎨⎪=⎩,故抛物线的解析式为y=﹣x 2+4x+5;(2)①y=﹣x 2+4x+5=﹣(x ﹣5)(x+1)=﹣(x ﹣2)2+9,①M (2,9),B (5,0),设直线BC 的解析式为:y=kx+b ,550b k b =⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩则直线BC 的解析式为:y=﹣x+5.过点M 作MN①y 轴交BC 轴于点N ,则①MCB 的面积=①MCN 的面积+①MNB 的面积=12MN OB ⋅. 当x=2时,y=﹣2+5=3,则N (2,3),则MN=9﹣3=6, 则165152MCB S =⨯⨯=. 23.(1)解:根据题意,得65557545k b k b +=⎧⎨+=⎩,解得:1120k b =-⎧⎨=⎩, ①所求一次函数的表达式为y =-x +120;(2)解:W =(x -60)•(-x +120)=-x 2+180x -7200=-(x -90)2+900,①抛物线的开口向下,①当x <90时,W 随x 的增大而增大,①60≤x ≤60×(1+45%),①60≤x ≤87,①当x =87时,W 有最大值,此时W =-(87-90)2+900=891.答:销售单价定为87元时,商场可获得最大利润,最大利润是891元. 24.解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由()2210640880010321440y x x x =-+-=--+可得100-<, ①该二次函数的图象开口向下,对称轴为直线32x =,①每件小商品的售价不超过36元,①当32x =时,该商场每天销售此商品的利润为最大,最大值为1440; 答:该商场每天销售此商品的最大利润为1440元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九年级上册《第二十二章二次函数》过关自测卷
(100分,45分钟)
一、选择题(每题4分,共32分)
1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()
A.-2
B.2
C.15
D.-15
2.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()
图1 图2
A.y=-2x2
B.y=2x2
C.y=-x2
D.y=x2
3.〈恩施州〉把抛物线y=x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()
A.y= (x+1)2-3
B.y= (x-1)2-3
C.y= (x+1)2+1
D.y= (x-1)2+1
4.〈常州〉二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x -3 -2 -1 0 1 2 3 4 5
y 12 5 0 -3 -4 -3 0 5 12
给出了结论:
(1)二次函数y=ax2+bx+c有最小值,最小值为-3;
(2)当-<x<2时,y<0;
(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则
其中正确结论的个数是()
A.3
B.2
C.1
D.0
5.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则
抛物线y=ax2+bx的对称轴为()
A.直线x=1
B.直线x=-2
C.直线x=-1
D.直线x=-4
6.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,
则α,β满足()
A.1<α<β<2
B.1<α<2<β
C.α<1<β<2
D.α<1且β>2
7.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的
是()
A.抛物线开口向上
B.抛物线的对称轴是直线x=1
C.当x=1时,y的最大值为-4
D.抛物线与x轴的交点为(-1,0),(3,0)
8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的
是()
A.图象关于直线x=1对称
B.函数y=ax2+bx+c(a≠0)的最小值是-4
C.-1和3是方程ax2+bx+c=0(a≠0)的两个根
D.当x<1时,y随x的增大而增大
图3
二、填空题(每题4分,共32分)
9.已知抛物线y=-x2+2,当1≤x≤5时,y的最大值是______.
10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的
另一个交点坐标是__________.
11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.
12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关
系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.
13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m
的最大值为__________.
图4 图5
14.如图5,已知函数y=-与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐
标为1,则关于x的方程ax2+bx+=0的解为_______.
15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.
16.如图6,把抛物线y=x2平移得到抛物线m,抛物线m经过点
A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为__________.
图6
三、解答题(每题12分,共36分)
17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.
图7
18.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+k2+1.(1)k取什么值时,此抛物线与x轴有两个交点?
(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.
19.〈广州〉已知抛物线y1=ax2+bx+c过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且与该抛物线交于另一点C,求当x≥1时y1的取值范围.
参考答案及点拨
一、1. C 2. C 3. B
4. B 点拨:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数
据,熟练掌握二次函数的性质是解题的关键.
5. C
6. D 点拨:令m=0,则函数y=(x-1)(x-2)的图象与x轴的交点分别为(1,0),(2,0),画出函数图象(如答图1),利用数形结合即可求出α,β的取值范围.∵m
>0,∴α<1,β>2.故选D.
答图1
7. C 8. D
二、9. 点拨:∵拋物线y=-x2+2的二次项系数a=-<0,∴该抛物线开口向下;又∵常数项c=2,∴该抛物线与y轴交于点(0,2);而对称轴就是y轴,∴当1≤
x≤5时,y=-x2+2中y随x的增大而减小,∴当1≤x≤5时,
y最大值=-+2=.
10. (-2,0)
11. k≤4 点拨:分为两种情况:①当k-3≠0时,(k-3)x2+2x+1=0,
=b2-4ac=22-4(k-3)×1=-4k+16≥0,k≤4;②当k-3=0时,y=2x+1,与x 轴有交点.故k≤4.
12. 6米
13. 3 点拨:方法一:图象法,由ax2+bx+m=0得ax2+bx=-m,一元二次方程ax2+bx+m=0有实数根,得函数y=ax2+bx与函数y=-m的图象有交点,所以-m≥-3,m≤3;
方法二:因为一元二次方程ax2+bx+m=0有实数根,所以b2-4am≥0,由y=ax2+bx 的图象可得顶点纵坐标, =-3,b2=12a,所以12a-4am≥0,解得m≤3.
14. x=-3
15. 12.5 点拨:设一段铁丝的长度为x cm,则另一段长度为(20-x) cm,S=x2+
(20-x)(20-x)=(x-10)2+12.5,
∴当x=10 时,S最小为12.5 cm2.
16. 点拨:(1)平移后抛物线的表达式与原来的抛物线的表达式中的a相同,可以通过待定系数法求抛物线的表达式;(2)不规则图形的面积要通过割补、拼接转化
为规则图形的面积,这是解本题的关键.
三、17. 解:(1)∵二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3),∴解
得
∴二次函数的解析式为y=x2+2x-3;
(2)∵当y=0时,x2+2x-3=0,解得:x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB·|n|=10,解得:n=±5,
当n=5时,m2+2m-3=5,解得:m=-4或2,∴P点坐标为(-4,5)或(2,5);当n=-5时,m2+2m-3=-5,方程无解,故P点坐标为(-4,5)或(2,5). 18. 解:(1)∵抛物线y=x2-(k+2)x+k2+1与x轴有两个交点,
若令y=0,即x2-(k+2)x+k2+1=0,
则有=-(k+2)2-4×1×(k2+1)>0, k2+4k+4-k2-4>0,4k>0,∴k>0,
即k>0时,此抛物线与x轴有两个交点.
(2)∵抛物线y=x2-(k+2)x+k2+1与x轴交于A(x1,0)、B(x2,0)两点,
∴x1,2=,∵点A在点B左侧,即x1<x2,又∵k>0,
∴x1=,x2=>0,∴.
∵x1+=3,∴x1+x2=3,即+ =3,即k=1.
19.解:(1)把点A(1,0)的坐标代入函数解析式即可得到b=-a-c.
(2)若a<0,则抛物线开口向下,抛物线必过第三象限,所以a<0不成立.
当a>0时,抛物线开口向上,B在第四象限.理由如下:由题意,ax2+bx+c=0可变形为ax2-(a+c)x+c=0,
解得x1=1,x2=,a≠c,
所以抛物线与x轴有两个交点.又因为抛物线不经过第三象限,所以a>0,且顶点在第四象限;
(3)由(2)知抛物线与x轴两个交点为A(1,0)与(,0).
∵直线y2=2x+m与该抛物线交于点B、点C (,b+8),∴点C就是抛物线与x轴的一个交点,即b+8=0,b=-8,此时-a-c=-8,y1=ax2-8x+c,抛物线顶点B的坐标
为(,).
把B、C两点坐标代入直线解析式y2=2x+m,得ac+2c=24.
又a+c=8,解得a=c=4(与a≠c矛盾,舍去)或a=2,c=6.
∴y1=2x2-8x+6,B(2,-2).
画出上述二次函数的图象(如答图2),观察图象知,当x≥1时,y1的最小值为顶点纵坐标-2,且无最大值.
∴当x≥1时,y1的取值范围是y1≥-2.
答图2
点拨:二次函数的问题通常都是求解析式、求对称轴、求顶点坐标、求最值以及与其他知识的综合等,本题基本上综合了上述各种问题,解题的方法就是牢牢抓住二次函数的对称轴的求法,顶点坐标的求法,以及最值的求法.。