解一元一次方程----合并同类项与移项 优秀教案设计

合集下载

解一元一次方程(一)——合并同类项与移项 优秀教学设计(教案)

解一元一次方程(一)——合并同类项与移项  优秀教学设计(教案)

解一元一次方程(一)——合并同类项与移项
【教学目标】
知识目标:移项概念的理解与应用.
能力目标:会用移项法则解方程;能把简单的实际问题用方程形式表达出来;灵活应用去括号法则.
情感态度与价值观:培养学生交流合作的能力,增强学习数学的兴趣和决心.
【教学重难点】
会用移项法则解方程.
去括号法则和分配律的正确应用.
知识考点:用移项法则解方程是中考考查的内容之一、应注意灵活解题..
【教学过程】
四、课堂小结,巩固反思
1.灵活运用移项法则解方程,并会解含有括号的方程;
2.移项要变号.
【教学板书】
课题:例1.例2.
移项:
去括号:。

解一元一次方程(一)——合并同类项和移项教案(教学设计)

解一元一次方程(一)——合并同类项和移项教案(教学设计)

解一元一次方程(一)——合并同类项和移项
【教学目标】
1.掌握解方程中的合并同类项。

2.熟练运用移项变号法则解决一些实际问题。

3.亲历移项变号进行解方程的探索过程,体验分析归纳得出移项变号法则,进一步发展学生的探究、交流能力。

【教学重难点】
重点:掌握利用合并同类项移项变号法则解一元一次方程。

难点:正确地找到等量关系列一元一次方程,会用“数学建模思想”解决实际问题,用“化归思想”分析以及分类讨论思想解方程。

初步养成了学生与他人合作交流、勇于探索的良好习惯。

【教学过程】
一、直接引入
师:今天这节课我们主要学习解一元一次方程(一)——合并同类项和移项,这节课的主要内容有解一元一次方程(一)——合并同类项和移项,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。

二、讲授新课
(1)教师引导学生在预习的基础上了解解一元一次方程(一)——合并同类项和移项内容,形成初步感知。

(2)首先,我们先来学习解一元一次方程(一)——合并同类项和移项,它的具体内容是:
只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

利用合并同类项解一元一次方程的一般步骤是:①合并同类项;②系数化为1;合并同类项的作用是:起“化简”的作用。

结合实际问题,建立一元一次方程解决实际问题。

它是如何在题目中应用的呢?我们通过一道例题来具体说明。

例:解方程:529x x -=。

解析:合并同类项,得39x =,系数化为1,得:3x =。

部审初中数学七年级上《合并同类项、移项解一元一次方程》曹智谦教案教学设计 一等奖新名师优质公开课获

部审初中数学七年级上《合并同类项、移项解一元一次方程》曹智谦教案教学设计 一等奖新名师优质公开课获

归纳:利用“移项”解一元一次方程的基本步骤:解一元一次方程----------移项导学案一、复习引入1、运用等式的性质,合并同类项解下列方程(1)4x-15=9(2)2x=5x-21二、探究新知1、仔细观察比较,由上式到下式发生了什么变化?4x-15=9=9+15归纳:一般地,把等式中的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项.注意:移项要变号2、思考:(1)移项的依据是什么?(2)移项的目的是什么?3、移项变换练习(见课件展示)三、应用新知例1解方程:3x-15=9(1)2x=5x-212x-5x=-21(2)2例4某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t新、旧工艺的废水排量之比2:5,两种工艺的废水排量各是多少?四、课堂小结五、当堂检测(见课件展示)六、课后作业:教材P91页第3题,第11题;《全效》P78页~79页例2解方程:3x+7=32-2x【同步训练】解方程:2x+3=5x-9【同步训练】解方程:例3解方程:(1):本节课学习了哪些内容?(2):你有哪些收获?1归纳:利用“移项”解一元一次方程的基本步骤:解一元一次方程----------移项导学案一、复习引入1、运用等式的性质,合并同类项解下列方程(1)4x-15=9(2)2x=5x-21二、探究新知1、仔细观察比较,由上式到下式发生了什么变化?4x-15=94x=9+15归纳:一般地,把等式中的某项改变符号后,从等式的一边移到另一边,这种变形叫做移项.注意:移项要变号2、思考:(1)移项的依据是什么?(2)移项的目的是什么?3、移项变换练习(见课件展示)三、应用新知例1解方程:3x-15=9(1)2x=5x-21 2x-5x =-21(2)2例4某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t.新、旧工艺的废水排量之比2:5,两种工艺的废水排量各是多少?四、课堂小结五、当堂检测(见课件展示)六、课后作业:教材P91页第3题,第11题;《全效》P78页~79页例2解方程:3x+7=32-2x【同步训练】解方程:2x+3=5x-9【同步训练】解方程:例3解方程:(1):本节课学习了哪些内容?(2):你有哪些收获?。

部编版七年级数学上册《解一元一次方程—合并同类项与移项》教案及教学反思

部编版七年级数学上册《解一元一次方程—合并同类项与移项》教案及教学反思

部编版七年级数学上册《解一元一次方程—合并同类项与移项》教案及教学反思一、教学目标1.理解一元一次方程的基本概念和性质2.掌握一元一次方程的解法和解的意义3.熟练运用合并同类项和移项的方法解决一元一次方程4.培养学生的分析问题和解决问题的能力二、教学重点和难点1.教学重点:一元一次方程的解法和解的意义、合并同类项和移项的方法2.教学难点:合并同类项和移项的应用三、教学过程1. 导入教师出示两个简单的方程式 2x + 3 = 7 和 5x - 2 = 3x + 4 让学生自行解决,并让部分学生上黑板讲解解法。

2. 概念解释1.一元一次方程的基本概念:一元一次方程是指只有一个未知数,且该未知数的最高次数为1的方程,如 2x +3 = 7 就是一元一次方程。

2.一元一次方程的解法及解的意义:通过等式两边的运算使得未知数项消掉,一边成为0,另一边成为解。

解的意义是能够让未知数等于某个确定的值的数或式子。

3.合并同类项和移项的方法:合并同类项就是把式子中相同的项合并成一项,移项就是将含有未知数的项移到等式的另一边。

3. 提出问题和解决问题在学生掌握了基本概念和解法后,我们带着学生提出实际的问题,例如:每次学校的门卫阿姨都会收取来访家长 20 元的停车费,今天学校门口停放的共有车辆有4辆,已经收取了50 元车费,请问今天来访的家长一共有多少位?然后让学生逐步解决问题。

4. 知识应用在解决问题的过程中,逐步引导学生运用所学知识对问题进行分析和求解。

其中包括合并同类项和移项的应用技巧,以及求解的正确性和实际意义。

5. 总结在学生完整的解决问题后,让学生总结今天所学习的知识和思考今天的收获,然后为下一次的课程做出准备。

四、教学反思本次教学活动,我主要采用了导入、概念解释、问题提出、知识应用、总结五个环节来进行教学。

在教学中,我尽可能从实际出发,引导学生逐步理解一元一次方程的基本概念和性质,同时注重合并同类项和移项的应用技巧。

解一元一次方程(一)——合并同类项与移项教案

解一元一次方程(一)——合并同类项与移项教案

解一元一次方程(一)——合并同类项与移项教案一元一次方程,指的是只有一个未知数,并且该未知数的最高次数为1的方程。

在数学中,解一元一次方程是最基本、最基础的一项技能。

它们广泛应用于物理学、工程学、商业、金融等各领域。

在本文中,我们将介绍如何解一元一次方程,包括如何合并同类项与移项。

一、合并同类项同类项指同一类变量的项。

例如,$3x$和$2x$是同类项,因为它们的未知数均为$x$。

同样,$7y^2$和$2y^2$也是同类项,因为它们的未知数均为$y^2$。

合并同类项就是把同类项合起来,化简方程的过程。

例如,将$5x + 3x - 2x$合并同类项,可以得到$6x$。

又例如,将$2y^2 - 3y^2 + 7y^2$合并同类项,可以得到$6y^2$。

二、移项移项指在方程两边同时加上或减去一个数,以使方程变形。

移项是解方程的重要步骤之一,因为它可以使方程更易于求解,简化计算过程。

例如,考虑如下一元一次方程:$$3x - 4 = 7$$我们可以使用移项的方法解决这个方程。

首先,将方程中的常数项-4移动到等号的右侧,得到:$$3x = 7 + 4$$然后,将右侧的常数项11除以3,得出方程的解:$$x = \frac{11}{3}$$这就是这个方程的唯一解。

下面我们通过一个例题来练习一下如何使用合并同类项与移项的方法解一元一次方程。

例题:求解下列一元一次方程:$$3x - 7 = 2x + 5$$解题步骤:首先,把方程中的同类项合并。

将$2x$移到等号左边,得到:$$3x - 2x - 7 = 5$$接着,移项。

将常数项-7移到等号右边,得到:$$x = \frac{5 + 7}{1}$$最后,化简。

简化式子,得到:$$x = 12$$因此,方程的解为$x=12$。

总结:通过本文的介绍,我们可以看出,解一元一次方程需要掌握许多技巧,其中合并同类项与移项就是其中非常重要的两个步骤。

掌握如何合并同类项与移项的方法,能够让我们更加顺畅地解决一元一次方程。

解一元一次方程(一)——合并同类项与移项教案人教版(优秀教案)

解一元一次方程(一)——合并同类项与移项教案人教版(优秀教案)

《解一元一次方程(一)——归并同类项与移项》(第课时)教课任务剖析. 找相等关系列一元一次方程;知识技术. 用归并同类项、化系数为解一元一次方程.教. 学习剖析归并问题找到相等关系,并经过列方程解决问题的方法;数学思虑. 经过学习归并同类项、化系数为解一元一次方程的方法领会学到变形的转变作用 .目标领会解方程中的化归思想,会集并同类项,化系数为,解方程解决问题种类的方程,进一步认识如何用方程解决实质问题.经过实质情形导入学习“归并同类项”和“化系数为”,领会感情态度数学根源于生活并应用于生活,激发数学学习的热忱.要点用归并同类项,化系数为解一元一次方程.难点找相等关系列方程.教课过程设计问题与情境师生行为设计企图【活动】展现神舟七号飞天图片这是一个令全体中华子女骄傲和骄傲的时辰,神舟七号顺利飞天,太空闲步,安全返回,千年梦圆 . 老师收集了这样一条信息,这三位宇航员的宇航服的总重量为千克呢!你能说出一件宇航服的重量 . 你能设未知数列方程来求解吗?课前给同学们发一组卡片,卡片上有不一样的号码,此中有三张卡片上的号码是空白的 .学生经过媒体展现激发议论,引出宇航服重量的等量关系 .进而得出一个一元一次方程 .教师给每一个学生发放卡片,并让每一个同学记着卡片上的数字,同学们在记的过程中发现有三张卡片上的数字是空白的 .神舟七号飞船的成功发射,太空闲步的成功实现,这一让全体中华子女为之骄傲和骄傲的伟大壮举,竟与我们将要学习的这一节知识密切相联!用此极富感染力的情形激发学生强烈的好奇心和告知欲,同时也让学生从中领会到本章知识的应用价值和学习一元一次方程解法的必需性.问:若另三张卡片上的教师引入问题 .以游戏方式下手,使学数字知足这样的关系:第二学生议论得出一个一生认识到数学老是与现实张卡片上的数字是第一张元一次方程 .问题密不行分,人们的需要卡片上的数字的倍,第三张教师指引学生剖析此产生了数学 .卡片上的数字是第一张卡题的方程是由“各重量之和将实质生活中碰到的片上的数字的倍 . 三张卡片总量”这一实质模型所列得问题数学化,让学生从一些上数字之和为 . 你能分别求的 .简单的实例中,不停领会从出三张卡片上的数字吗?这些一元一次方程该现实世界中找寻数学模型、教师与学生一同剖析:怎么求解呢?教师引入课成立数学关系的方法 .设第一张卡片上的数字为,题指引学生发现等量关能够表示出:第二张卡片上系,列出方程,激发学生的的数字为,第三张卡片上的教师关注:好奇心和求知欲,并在运用数字为,依据问题中的相等. 问题的提出能否惹起数学知识解答问题的活动关系:第一张卡片上的数字学生的兴趣;中获取成功的体验,成立学第二张卡片上的数字第三习的自信心 .张卡片上的数字,列得方程. 学生能否理解了实质情境 .【活动】.思虑:以上两个方程时什么种类的方程?方程的左边只含有未知项,右侧只含教师指导同学分组议论剖析:解方程的目标时什么?如何向这一目标行进?这里浸透转变、化归的思想 .有常数项,如何才能将它向(为常数)的形式转变?需要哪几个步骤呢?. 察看上边方程的变形,每采纳框图表示解方程一步起到了什么作用?每教师指引学生察看,学的过程,这是为使告发中各一步变形的依照是什么?生议论、沟通后,教师说明:步骤先后次序清楚,浸透算归并同类项时一个恒等变法程序化的思想 . 教课中不形的过程,系数化为利用了需修业生野花框图 .等式的基天性质 ..解这个方程的详细过程:归并同类项教师指出:解此类方程的一般步骤,并不是在每一个一元一次方程的求解过程中都一定用到.在活动的基础上由详细到抽象,指引学生在练习中思虑,在思虑取意会,使学生感觉到要正确解出方化系数为程,一定正确的归并同类项 .【活动】讲堂练习.填一填;解一元一次方程过程中的归并同类项是将未知项的相加,未知数和未知数的次数保持不变 . 系数化为的依照是 ..归并同类项:()-= .()++= .()-1-1=.24. 辨一辨:判断以下方程的部分解题过程能否正确:① ++=解:归并同类项,得=② +-=解:归并同类项,得-=所以原方程的解为-=③=解:系数化为,得=34.解以下方程()-()113 2()+-=()-+-=-×-×【活动】到年代日为止,中国队在北京奥运会获取的金、银、铜牌的数目之比为∶∶,奖牌数是枚,你能分别求出金、银、铜牌的数目吗?练习、由学生口答 . 教师关注学生回答的正确性 .练习四道方程由学生独立达成,教师关注学生的解题过程,实时发现问题,并解决问题,进而使学生更为娴熟地掌握解法 .教师展现问题,学生自主剖析 .教师与同学一同剖析问题,找出问题相等关系,合理地设未知数,列式子 .老师指引学生理解金银铜牌数目之比的意义,由它们的分数之比,我们能够知道,将奖牌总数平分为份,金牌占份,银牌占份,铜牌占份,可设每一份为练习、的设计企图使让学生稳固归并同类项的过程,以及系数化为的理论依据 .设计练习的目的使让学生直接经过解方程的练习领会解方程的详细步骤.从学生比较熟习的生活环境开始,能给学生一种轻松的心理气氛,易于学生学习新知识 .这里依据状况逐渐松手,让学生自己解决问题,培育独立解决问题的习惯 .枚,则金、银、铜牌的数目分别为枚、枚、枚. 由各部重量之和总量,可列方程教师知道学生议论不问:我们能够设金牌的数同的想法并比较.量为枚吗?那如何列方程最后一个发散性的问呢?题,翻开学生思想定势,使学生养成勤于思虑的习惯.【活动】小结:经过这节课老师率领学生从知识、经过小结,使学生归的学习,你学到了哪些知方法、数学思想方面小结本纳、梳理总结本节知识、技识?节课所学的内容.能、方法,将本课所学的知识与从前所学的知识进行教师关注:密切联系,有益于培育学生不一样层次的学生对所数学思想、数学方法、数学学的内容理解和掌握.能力和对数学的踊跃感情.设计活动的目的是为【活动】作业部署了稳固本节课解一元一次必做题:方程的方法,由古文引入的第一题实质问题能够让学生领会选做题:到数学历史的渊源.在一卷古埃及草卷学生记录作业内容中,记录着这样一个数学识题“啊哈,它的所有与它的1其和等于 . ”你能求这个7问题吗?学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。

《合并同类项与移项》 教学设计

《合并同类项与移项》 教学设计

《合并同类项与移项》教学设计一、教学目标1、知识与技能目标学生能够理解合并同类项和移项的概念,熟练掌握合并同类项和移项的方法,能够正确地解一元一次方程。

2、过程与方法目标通过实际问题的解决,培养学生观察、分析和解决问题的能力,提高学生的运算能力和逻辑思维能力。

3、情感态度与价值观目标让学生在学习过程中体验成功的喜悦,增强学习数学的自信心,激发学生对数学的兴趣和热爱。

二、教学重难点1、教学重点合并同类项和移项的法则及其应用。

2、教学难点移项法则的理解和正确应用,以及如何通过合并同类项和移项将方程化为最简形式。

三、教学方法讲授法、练习法、讨论法、启发式教学法四、教学过程1、导入新课通过一个实际问题引入:小明去商店买苹果和香蕉,苹果每斤5 元,香蕉每斤 3 元,小明买了 3 斤苹果和 2 斤香蕉,一共花了多少钱?学生列出式子:5×3 + 3×2 = 15 + 6 = 21(元)然后教师引导:这个式子中5×3 和3×2 是同类项,可以合并为21。

从而引出合并同类项的概念。

2、讲授新课(1)合并同类项给出一些式子,如 3x + 2x、5y 3y 等,让学生观察并尝试合并。

总结合并同类项的法则:同类项的系数相加,字母和字母的指数不变。

(2)例题讲解通过例题,如:解方程 3x + 2x = 15,让学生练习合并同类项解方程。

(3)移项提出问题:方程 3x + 2 = 17 如何求解?引导学生思考,将 2 从等号左边移到右边,变成-2,得到 3x =17 2,从而引出移项的概念。

强调移项要变号。

(4)例题讲解例如:解方程 5x 3 = 2x + 9,让学生体会移项的应用。

3、课堂练习给出一些合并同类项和移项的练习题,让学生在课堂上独立完成,教师巡视并指导。

4、小组讨论组织学生分组讨论在解题过程中遇到的问题和疑惑,然后每组派代表进行发言,教师进行总结和答疑。

5、课堂小结回顾合并同类项和移项的概念、法则和应用,强调易错点。

冀教版2024新版七年级数学上册《5.3.1 用移项解一元一次方程》教学设计

冀教版2024新版七年级数学上册《5.3.1 用移项解一元一次方程》教学设计

5.3 解一元一次方程第1课时 利用移项合并同类项解一元一次方程教 学 过 程设计意图1.创设情境,引入课题复习回顾1.等式的基本性质:性质1:等式两边同时____________________________, 所得结果仍是等式.性质2:等式两边同时____________________________,所得结果仍是等式.2.利用等式的基本性质解一元一次方程.师生活动:教师带领学生复习上节课的内容,学生举手回答,教师补充、指正.这节课我们就来学习求解一元一次方程.课题利用移项合并同类项解一元一次方程课型新授课教学内容 教材第163-165页的内容教学目标1.理解移项法则,学会解“ax +b =cx +d ”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.2.能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.教学重难点教学重点: 确定实际问题中的相等关系,建立形如ax +b =cx +d 的方程,利用移项与合并同类项解方程. 教学难点: 确定相等关系并列出一元一次方程,正确地进行移项并解出方程.2.类比探究,学习新知【探究】教师活动:提出问题,上一节课利用等式的性质解一元一次方程,具体的步骤是什么?请学生用此方法写出解方程5x=3x+8的具体步骤,发现了什么?能否将解题过程再简化一些呢?解方程:5x=3x+8.方程两边都减去3x ,得5x -3x=3x+8-3x , 即 2x=8. 方程的两边同除以2,得x=4. x=4就是方程5x=3+8的解.教师活动:我们可以借助下面框图所示的步骤来理解上面解方程的过程:师生活动:引导学生得出移项的概念,总结注意事项.【归纳总结】在解方程的过程中,等号的两边加上或减去方程中某一项的变形过程,相当于将这一项改变符号后,从等号的一边移到另一边.这种变形过程叫作移项. 【问题1】移项的依据是什么?【师生活动】学生思考后得出:移项的依据为等式的性质1. 【问题2】以上解方程中“移项”起了什么作用?【师生活动】学生思考回答,师生共同整理:通过移项,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a 的形式.【师生活动】教师展示教材163页例题,教师引导学生完成,规范学生的解题步骤,培养学生良好的解题习惯.【例1】解下列方程: (1)5x-2=2x-10;(2)13231+=x x .在教学中运用探究式教学模式,使学生体验教学再创造的思维过程,培养学生的创造意识和科学精神.让学生掌握移项的原则和方法,体会移项的要领和简捷性.解:(1)移项,得5x-2x =-10+2. 合并同类项,得3x =-8. 将x 的系数化为1,得x =-83.(2)移项,得.13231=-x x .合并同类项,得131=-x .将x 的系数化为1,得x =-3.【归纳总结】一般地,对于形如ax=b (a ≠0,a,b 是已知数)的一元一次方程,方程两边同除以a ,得到方程的解是x=ba .3.学以致用,应用新知 【例1】解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1.解:(1)移项,得3x +2x =32-7. 合并同类项,得5x =25. 系数化为1,得x =5. (2)移项,得x -32x =1+3.合并同类项,得-12x =4.系数化为1,得x =-8.【例2】某制药厂制造一批药品,若用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新、旧工艺的废水排量之比为2∶5,两种工艺的废水排量各是多少?解:设新工艺的废水排量为2xt ,则旧工艺的废水排量为5xt. 根据题意,得5x -200=2x +100. 移项,得5x -2x =100+200. 合并同类项,得3x =300.通过让学生解决生活中的实际问题,进一步理解合并同类项的概念及法则,培养计算能力,激发学习兴趣.系数化为1,得x=100.所以2x=200,5x=500.答:新工艺的废水排量为200t,旧工艺的废水排量为500t.4.随堂训练,巩固新知1.下列变形过程中,属于移项的是( )A.由3x=-1,得x=-1 3B.由x4=1,得x=4C.由3x+5=0,得3x=-5D.由-3x+3=0,得3-3x=0答案:C2.解下列方程:①4x=9+x;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.②8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.③4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3. 合并同类项,得3x=-2.系数化为1,得x=-2 3 .3.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨.问经过多少个月后,两厂库存钢材相等?教师引导学生归纳本节课的知识要点和思想方法,使学生对列方程和解方程有一个整体全面的认识,同时也帮助学生养成良好的学习习惯.解:设经过x个月后,两厂库存钢材相等.依题意,得100-15x=82-9x,解得x=3.答:经过3个月后,两厂库存钢材相等.(4)由于疫情防控的需要,七(1)班统一购置一定数量的口罩.若每个学生发3个口罩,则多36个口罩;若给每个学生发4个口罩,则少8个口罩.请问该班有多少名学生?解:设该班有x名学生,依题意,得3x+36=4x-8,解得x=44.答:该班有44名学生.5.课堂小结,自我完善教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)移项的依据是什么?移项起到什么作用?移项时应该注意什么问题?(3)解ax+b=cx+d型方程的步骤是什么?(4)用方程来解决实际问题的关键是什么?6.布置作业课本P164练习1-3题,习题A组第1题.板书设计利用移项、合并同类项解一元一次方程提纲挈领,重点突出.教后反思本节课先利用等式的基本性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程.学生在移项过程中,大致会遇到以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;第一种情况在授课过程中强调不够,后面的两种情况出现最多,因此在教学设计当中应给学生进行针对性训练.引导学生正确地解方程.反思教学过程和教师表现,进一步优化操作流程和提升自身素质.。

《解一元一次方程(一)——合并同类项与移项》公开课教案

《解一元一次方程(一)——合并同类项与移项》公开课教案

《解一元一次方程(一)——合并同类项与移项》公开课教案XX中学王老师教学目标1. 知识与技能:掌握一元一次方程中合并同类项与移项的基本方法与步骤。

2. 过程与方法:通过实际例子和互动,培养学生的逻辑思维能力和问题解决能力。

3. 情感态度与价值观:增强学生学习数学的兴趣和信心,体会数学在日常生活中的应用。

教学重点与难点教学重点:理解并掌握合并同类项和移项的方法。

教学难点:灵活运用合并同类项和移项解决实际问题。

教学过程一、导入故事引入:讲述一个小故事,比如小明和小红在校园里卖二手书,小明有5本数学书,小红有3本数学书,他们想把所有书放在一起卖。

问学生:他们一共有多少本书?引导学生思考:这就是一个简单的合并同类项的例子。

二、新课讲授1. 合并同类项定义:合并同类项是指把相同字母的项进行加减。

举例:比如2x + 3x,我们可以合并成5x。

互动:提问学生:如果是2a + 4a呢?他们能不能合并?为什么?2. 移项定义:移项是指把方程一边的项移到另一边,并改变它的符号。

举例:方程2x + 5 = 15,如何解?步骤:1. 先移项:2x = 15 52. 再合并同类项:2x = 103. 最后除以系数:x = 5互动:让学生尝试解方程3x 7 = 8,讨论他们的步骤和方法。

3. 实际应用情境设置:假设你要买文具,一个铅笔盒3元,一支铅笔1元,你买了2个铅笔盒和5支铅笔,总共花了11元。

设铅笔的价格为x元,列出方程并解答。

学生讨论:2x + 5 = 11,解方程。

三、练习巩固1. 课堂练习解以下方程,并合并同类项与移项:1. 4y 2 = 102. 5a + 3a 6 = 2互动:学生解答后,同桌互相检查,并讨论解决过程中的难点。

2. 教师讲解针对学生易错点进行讲解和纠正。

四、回顾反思、课堂小结总结:今天我们学习了合并同类项和移项的方法,这些方法在解一元一次方程中非常重要。

反思:请同学们思考一下,为什么移项时需要改变符号?五、布置作业练习册第23页,习题3-5。

2 解一元一次方程(一)——合并同类项与移项【优质一等奖创新教案】

2 解一元一次方程(一)——合并同类项与移项【优质一等奖创新教案】

2 解一元一次方程(一)——合并同类项与移项【优质一等奖创新教案】班海数学精批——一本可精细批改的教辅3.2 解一元一次方程(一)——合并同类项与移项第1课时学习目标:1、通过例题和练习,让学生进一步熟悉方程的变形法则。

2、在上节课的基础上,让学生对较复杂方程的解法作自主探索,体会方程的不同解法中所经历的转化思想,让学生亲身体验成功的感觉。

3、使学生掌握解方程的基本方法,同时体验方法的多样性,培养学生的实践能力和创新精神。

4、在教与学中渗透转化的数学思想。

教学的重点、难点:重点:由方程的变形法则在解方程过程中自主探索、归纳解方程的一般步骤。

难点:方法的灵活应用和多样性。

方法设计:通过复习、练习,让学生在解题过程中自主探索、合作交流,归纳解方程的一般步骤。

由于学生亲自参与教学活动,所以对知识的巩固和延伸都有较深刻的认识。

在解题过程中会产生很多方法,这就让学生有充分发展能力的空间,体验数学活动是充满着探索创造,同时感受数学的严谨性和数学结论的正确性,还可以获得成功的体验,锻炼克服困难的意志,建立学习的自信心。

教学过程:1、知识导学:回顾训练:解方程(1) _________(2)(3)___ (4)(由四位同学上黑板计算,其他同学独立完成,并由学生分析矫正,达到复习巩固的目的)指出:今天我们继续来学习方程的变形。

(板书课题)从上一堂课我们知道方程可通过适当的变形化为:x=a这样的标准化形式。

你能把方程5x-2x=4也变形为这样的形式吗?(由学生思考,个别发言,互相补充,教师板书过程,并让学生说出每一步的依据)请同学们再把这个方程试试看:(让一名学生上黑板解)问:通过解这两个方程,你能归纳出它们的解法步骤吗?(合并同类项,最后将未知数的系数化为1。

)请同学们讨论这两个步骤的依据以及各有什么需要注意的地方,然后各小组推荐一名同学发言。

小结:合并同类项是将系数相加;未知数的系数化为1,要注意系数的符号。

2、思维拓展:1、应用与实践:解下列方程(1)___(2)(3)2、想一想应如何选择解方程的步骤?(步骤通常是:合并同类项、将未知数的系数化为1。

初中数学人教七年级上册 一元一次方程《解一元一次方程—合并同类项和移项》教学设计

初中数学人教七年级上册 一元一次方程《解一元一次方程—合并同类项和移项》教学设计

《解一元一次方程—合并同类项和移项》教学设计一、内容与解析1.内容一元一次方程的合并同类项解法,用方程模型解决实际问题。

2.内容核心本章的核心内容是“解方程”和“列方程”。

方程的解法是初中内容的核心,合并同类项是解方程的基本步骤之一,是一种同解变形,合并同类项的依据是乘法分配律,运用合并同类项可以把等式两边的多项式合并成一项,从而使方程向x=a的形式转化。

合并同类项是后续解方程经常应用的步骤,并且在学习其它方程、方程组、不等式、函数时都要经常使用。

“列方程”在所有方程类型中占有重要的地位,贯穿于全章的始终,从实际问题中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然的反映所讨论的内容是从实际需要中产生。

列方程对学生来说是个难点,以实际问题引入增强学生的兴趣,慢慢理解和掌握列方程的基本步骤,有利于提高学生分析问题和解决问题能力。

解方程就是将复杂的方程向x=a的形式转化,其中化归思想起了指导作用,化归思想在以后二元一次方程组、一元一次不等式、分式方程、一元二次方程的解法中都有所体现。

根据以上分析,确定本节课的教学重点是:确定问题中的相等关系,建立形如ax+bx=c的方程,会用合并同类项的方法解形如ax+bx=c+d类型的一元一次方程。

二、目标和目标解析1.目标(1)掌握解方程中的合并同类项,会解形如“ax+bx=c+d”类型的一元一次方程,体会等式变形中的化归思想。

(2)能够从实际问题中列出一元一次方程,体会方程思想的作用以及它的应用价值。

2.目标解析达成目标(1)的标志是:知道合并同类项是应用乘法分配率,给定一个方程,能够准确的进行合并同类项解方程。

知道合并同类项的作用可以简化方程,使方程向x=a的形式转化,在此过程中体会化归思想。

达成目标(2)的标志是:通过对某校三年购买计算机台数的研究,建立ax+bx=c类型的方程,观察与分析方程的特征,可以通过合并同类项解这类方程;在“列方程”和“解方程”的过程中,能够体会方程思想的价值。

解一元一次方程(一)——合并同类项与移项 优秀教案设计

解一元一次方程(一)——合并同类项与移项  优秀教案设计

解一元一次方程(一)——合并同类项和移项【课时安排】2课时【第一课时】【教学目标】1.知识目标:会利用合并同类项解一元一次方程。

2.能力目标:探究并掌握利用合并同类项解一元一次方程。

3.情感、态度与价值观目标:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学重难点】教学重点:探究并掌握利用合并同类项解一元一次方程。

教学难点:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学过程】一、引入新课。

(一)预习任务。

(1)解一元一次方程时,把含有未知数的项合并,把常数项也合并。

(2)解一元一次方程时,第一步:合并同类项,得;第二步系数2251x x +=⨯+113=x 化为1,得。

311=x (二)预习自测。

(1)下列各组中,两项不能合并的是( )A .与b 3b-B .与y 6-x3C .与a 21-a D .与23-100知识点:同类项的概念。

解题过程:解:A .与所含字母相同,并且相同字母的指数也相同的为同类项。

所b 3b -以可以合并;B .与所含字母不同,所以不是同类项,不能进行合并;C .与y 6-x 3a 21-a 所含字母相同,并且相同字母的指数也相同的为同类项,所以可以合并;D .与所有23-100的常数项也叫同类项,所以可以合并;因此选择B .思路点拨:所含字母相同,并且相同字母的指数也相同的项称为同类项,所有的常数项也叫同类项。

答案:B(2)方程两边合并后的结果是?16210+=-x x 知识点:合并同类项解一元一次方程。

解题过程:解:合并同类项,得:;系数化为1,得:。

78=x 87=x 思路点拨:解一元一次方程时,同类项有两类,即未知数的一次项和常数项,合并同类项是一种恒等变形,它使方程变得简单,更接近的形式。

a x =答案:87=x (3)方程的解是( )21022=++x x x A .20=x B .40=x C .60=x D .80=x 考点:合并同类项解一元一次方程。

解一元一次方程(一)——合并同类项与移项 优秀教案设计

解一元一次方程(一)——合并同类项与移项  优秀教案设计

解一元一次方程(一)——合并同类项和移项【课时安排】2课时【第一课时】【教学目标】1.知识目标:会利用合并同类项解一元一次方程。

2.能力目标:探究并掌握利用合并同类项解一元一次方程。

3.情感、态度与价值观目标:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学重难点】教学重点:探究并掌握利用合并同类项解一元一次方程。

教学难点:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学过程】一、引入新课。

(一)预习任务。

(1)解一元一次方程时,把含有未知数的项合并,把常数项也合并。

(2)解一元一次方程时,第一步:合并同类项,得;第二步系数2251x x +=⨯+113=x 化为1,得。

311=x (二)预习自测。

(1)下列各组中,两项不能合并的是( )A .与b 3b-B .与y 6-x3C .与a 21-a D .与23-100知识点:同类项的概念。

解题过程:解:A .与所含字母相同,并且相同字母的指数也相同的为同类项。

所b 3b -以可以合并;B .与所含字母不同,所以不是同类项,不能进行合并;C .与y 6-x 3a 21-a 所含字母相同,并且相同字母的指数也相同的为同类项,所以可以合并;D .与所有23-100的常数项也叫同类项,所以可以合并;因此选择B .思路点拨:所含字母相同,并且相同字母的指数也相同的项称为同类项,所有的常数项也叫同类项。

答案:B(2)方程两边合并后的结果是?16210+=-x x 知识点:合并同类项解一元一次方程。

解题过程:解:合并同类项,得:;系数化为1,得:。

78=x 87=x 思路点拨:解一元一次方程时,同类项有两类,即未知数的一次项和常数项,合并同类项是一种恒等变形,它使方程变得简单,更接近的形式。

a x =答案:87=x (3)方程的解是( )21022=++x x x A .20=x B .40=x C .60=x D .80=x 考点:合并同类项解一元一次方程。

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

3.3.1解一元一次方程-合并同类项与移项(教案)

3.3.1解一元一次方程-合并同类项与移项(教案)
-合并同类项的法则与运算技巧。
2.移项:介绍移项的概念,使学生掌握如何将未知数项和常数项在不同侧进行移动,以简化方程的求解过程。
-移项的原理与Biblioteka 作方法;-在一元一次方程中的应用实例。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过合并同类项与移项的操作,使学生能够理解和运用数学逻辑,提高解题过程中的推理能力。
-形成数学思维模式;
-运用数学知识分析问题,提高数学素养。
三、教学难点与重点
1.教学重点
-合并同类项法则:重点讲解如何识别同类项,并运用合并同类项的法则简化方程,包括系数相加减、字母及其指数不变等核心知识。
-举例:2x + 3x = 5x,-5y - 3y = -8y。
-移项方法:强调移项过程中未知数项和常数项的移动规则,以及移项后方程符号的变化,确保学生掌握移项的基本操作。
3.3.1解一元一次方程-合并同类项与移项(教案)
一、教学内容
本节课选自教材第三章第三节的第一部分“3.3.1解一元一次方程-合并同类项与移项”。教学内容主要包括以下两个方面:
1.合并同类项:引导学生理解同类项的概念,掌握合并同类项的法则,并能将其应用于解一元一次方程的过程中。
-同类项的定义与识别;
3.重点难点解析:在讲授过程中,我会特别强调合并同类项的法则和移项的符号变化这两个重点。对于难点部分,我会通过具体例题和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个涉及合并同类项与移项的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解实验操作。这个操作将演示合并同类项与移项的基本原理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2解一元一次方程(一)教学设计
——合并同类项与移项
一、内容:P86次方程的移项解法,用方程模型解决实际问题。

二、内容解析:本章的核心内容是“解方程”和“列方程”。

方程的解法是初中数学的核心内容,移项
是解方程的基本步骤之一,是一种同解变形,移项法则的依据是等工的性质1,运用移项法则可以所含有未知数的项变号后都移到等号的一边,把不含未知数的项变号后都移到等号的另一边。

从而使方程向x=a的形式进行转化。

移项法则在后续学习其他方程、不等式、函数时经常使用。

而“列方程”在所有方程类问题中占有重要的地位,贯穿于全章始终,从实际背景中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然地反映所讨论的内容是从实际需要中产生。

三、教学目标:
1、理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想。

2、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值。

四、教学问题诊断分析:对于已经习惯了用算术方法解决实际问题的学生,将实际问题转化为方程模
型时还需经历思维的转换过程,从不熟悉到熟悉,在用移项法则简化方程时,对于移项变号的意识比较淡,会出现移项过程中没用变号的错误,其原因是对移项原理的忽视与不重视,同时时还要注意移项与在方程的同一边交换两项的位置有本质的区别,这两种情况学生容易混淆,需要教师引导说明。

五、教学重点:确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,利用移项与合并同类项解
一元一次方程。

六、教学难点:确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

七、教学过程设计
(一)创设情境,列出方程
问题1:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
师生活动:
1、教师提出问题,学生自主讨论:(1)题目中含有怎样的相等关系?(2)应怎样设未知数,如何根据相等关系列出方程?
2、学生讨论后再根据以下表格学会分析整理题目中的数据,更好更快的找出相等关系。

分法这个班人数(人)这批书的总数(本)
分法一x
分法二x
3、师生共同根据表示这批书总数的两个代数式相等,从而列出方程3x+20=4x-25
(设计意图:以学生熟悉的实际问题展开讨论,激发学生学习的兴趣和解决问题的愿望。

根据学生情况,逐步放手,培养学生独立解决问题的能力。


(二)尝试合作,探究方法
问题2:方程3x+20=4x-25与前面学过的一元一次方程如x+2x+4x=140在结构上有什么不同?
师生活动:由学生独立思考,小组讨论,代表回答。

(设计意图:调动学生进一步学习新知识的积极性,渗透化归思想)
问题3:怎样才能将它转化为x=a(常数)的形式呢?
师生活动:1、学生思考、探索解决问题的方法
2、教师说明:这种变形相当于把等式一边的某项变号后移到另一边,它叫做移项。

(设计意图:通过学生的思考、观察和教师的讲解,认识“移项”变形,得出移项的方法,便于学生理解移项的原理)
3、教师规范这个方程的具体过程:
3x+20=4x-25
移项,得
3x-4x=-25-20
合并同类项,得
–x=-45
系数化为1,得
X=45
(设计意图:教师通过书写解方程的过程,可以提高学生解题的规范性。


问题4:移项的依据是什么?
(设计意图:使学生进一步认识移项法则是由于解方程的需要而产生的,能在理解的基础上记忆法则。


问题5:以上解方程中“移项”起了什么作用?
师生活动:学生思考回答,师生共同整理:通过移项,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a 的形式。

(设计意图:结合解方程的过程,让学生思考移项的作用,让学生体会化归的思想。


问题6:课本P86第二段
教师回答:“对消”和“还原”指的就是我们所学习的“合并同类项”和“移项”。

(设计意图:回答教科书本节最初提出的问题,让学生重视移项的作用,同时感受数学知识悠久的历史。


(三)例题示范,巩固新知
例2 解方程:(1)3X+7=32-2X (2)X-3=例2 解方程(1)3x=7=32-2x (2)x-3=
+132
师生活动:学生口述解题,教师板书规范思路、格式
(设计意图:进一步巩固利用移项、合并同类项解方程的方法。


(四)基础训练,巩固应用
练习: 课本P88 1、列方程:(1)3x-2x=9 (2)
13722x x += (3)-3x+0.5x=10 (4) 7x-4.5x=2.5×3-5
(设计意图:通过练习,及时巩固新知识,加深对化归思想的理解)
(五)小结
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:
(1)本节课学习了哪些主要内容?
(2)移项的依据是什么?移项起到什么作用?移项时应该注意什么问题》
(3)解ax+b=cx+d 型方程的步骤是什么?
(4)用方程来解决实际问题的关键是什么?
(设计意图:教师引导学生归纳本节课的知识要点和思想方法,使学生对列方程和解方程有一个整体全面的认识,同时也帮助学生养成良好的学习习惯。


(六)布置作业
课本:P91 习题3.2 第3(3)(4)题,
第4、5、7题。

相关文档
最新文档