紫外可见分光光度计原理及应用
紫外可见分光光度计的原理是怎样的?

紫外可见分光光度计的原理是怎样的?
紫外可见分光光度计具有灵敏度高、准确度高、选择性好、适用浓度范围广等优点,广泛地应用于化工、冶金、地质、医学、食品、制药等部门及环境监测系统。
紫外可见分光光度计的原理:
物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同;
因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。
紫外可见分光光度计的使用方法:
(1)接好线路后,先检查各开关是否在“关”处,光路闸门放在黑点处,再将电源插头插入220V交流电源上,打开电源开关和光源开关,将光路闸门放在红点处。
(2)取出比色皿,将其中一只装空白溶液,其余三只装待测溶液,放在定位盒内,盖上暗箱盖,装溶液前比色皿用蒸馏水洗净;
并用溶液荡洗数次后,再盛至体积,池外应赶紧,若有水滴,应用镜头纸吸干,取用时用手捏住比色皿的毛玻璃面。
(3)用波长调节器调到所需的波长,将空白溶液正对光路,调光量调节器,使检
流计上光点准线对准透光率为100的位置;
拉动拉杆,使待测溶液进入光路,读取微电计标尺上的透光率,测定完毕,及时关闭光路闸门,检查电计的零点位置,保护硒光电池。
(4)紫外可见分光光度计应安放在清洁、干燥、无腐蚀气体和较暗的室内;
仪器使用完毕后应擦拭干净,各开关关闭,紫外可见分光光度计连续使用时间不应超过4h。
标签:
紫外可见分光光度计。
紫外—可见分光光度计的原理

紫外—可见分光光度计的原理紫外—可见分光光度计是一种常用的分析仪器,广泛应用于化学、生物、医药、环境等领域的定性和定量分析。
它能够测量样品在紫外和可见光波段的吸收光谱,从而获得样品的光学性质和化学组成信息。
本文将介绍紫外—可见分光光度计的工作原理及其应用。
紫外—可见分光光度计的工作原理基于光的吸收现象。
当一束光通过样品时,样品会吸收特定波长的光。
通过测量光的强度变化,可以获得样品的吸收光谱。
光度计的核心部件是光源、样品室、光栅、光电传感器和信号处理器。
光源是紫外—可见分光光度计的光的来源。
常见的光源有氘灯和钨灯。
氘灯主要用于紫外光的产生,而钨灯则用于可见光的产生。
光源发出的光通过样品室,样品室的作用是容纳样品,并保持光的传输路径。
样品室通常由透明的石英或玻璃制成,以确保光可以透过样品。
光通过样品室后,会经过光栅。
光栅是由许多平行的凹槽组成的,它可以将光按照不同的波长分散成光谱。
光栅的参数,如刻线数和刻线间距,决定了光栅的分辨率和光谱范围。
分散后的光谱会被光电传感器接收并转换为电信号。
光电传感器的工作原理是光的能量被转化为电荷或电流。
常见的光电传感器有光电二极管和光电倍增管。
光电传感器将电信号传递给信号处理器,信号处理器会将电信号转换为光的强度,并进行放大和滤波等处理。
紫外—可见分光光度计的应用广泛。
在化学分析中,光度计可用于测定物质的浓度。
根据比尔-朗伯定律,光的吸光度与物质的浓度成正比。
通过测量样品的吸光度,可以推算出物质的浓度。
光度计在环境监测中也有重要应用,例如测量水中溶解有机物的浓度和监测大气中的污染物。
生物和医药领域是光度计的主要应用领域之一。
在生物化学实验中,光度计可以用于测量酶促反应的速率和测定蛋白质的浓度。
在药物研发中,光度计可以用于药物的质量控制和稳定性评价。
此外,紫外—可见分光光度计还可以用于物质的结构表征。
不同的化合物对光的吸收具有特定的光谱特征,称为吸收光谱指纹。
通过比较未知物质的吸收光谱与已知物质的光谱,可以确定未知物质的化学组成和结构。
紫外可见分光光度计的使用

比 值
显 示
组成:光源、单色器、样品池、检测器
1.光源: ①能提供连续的辐射;②光强度足够大;③在整个光谱区
内光谱强度不随波长有明显变化;④光谱范围宽;⑤使用
寿命长,价格低。 钨灯——可见光区 320~2500nm
氢灯或氘灯——紫外光区 195-375nm
U3010(碘钨灯、氘灯)波长范围190-900nm
。
二 分光光度计的使用-光度法
开始
方法正
将样品放入样品池 开始测量
打印数据 开始测量
测量参数设置
在[Edit]菜单中选择[Method…]选项。出现下列设置窗口.
具体操作程序
Method:
1. 2. general: 计测量) Quantitation定量参数设置页面: Measurement测量方式选择Photometry(光度
在measure中选择波长wavelength,在Calibration中选择 “1st order”, “2st order”, “3st order”,也可以不校准。 在concertration中键入标准浓度单位。 3. Instrument
4 standards标准参数设置 键入标系的样品浓度及名称
三 注意事项
1. 2. 开机预热15分钟左右。 测定时应注意:
参照池和吸收池应是一对经校正好的匹配的吸收
池,材料和规格一致。
使用前后应将洗手池洗净,测量时不能用手接触 窗口。
已匹配好的比色皿不能用炉子和火焰干燥,不能 加热,以免引起光程长度上的改变。
3.
测量条件的选择:
选择适宜波长的入射光:由于有色物质对光有选择性吸收, 为了使测定结果有较高的灵敏度,必须选择溶液最大吸收波 长的入射光。 控制吸光度A的准确的读数范围:由朗伯-比耳定律可知,吸 光度只有控制在0.2~0.7读数范围内时,测量的准确度较高.
紫外可见分光光度计的工作原理与应用 光度计工作原理

紫外可见分光光度计的工作原理与应用光度计工作原理产品原理分子的紫外可见吸取光谱是由于分子中的某些基团吸取了紫外可见辐射光后,发生了电子能级跃迁而产生的吸取光谱。
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸取光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸取光谱曲线,可依据吸取光谱上的某些特征波优点的吸光度的高处与低处判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。
分光光度分析就是依据物质的吸取光谱讨论物质的成分、结构和物质间相互作用的有效手段。
它是带状光谱,反映了分子中某些基团的信息。
可以用标准光图谱再结合其它手段进行定性分析。
依据Lambert—Beer定律说明光的吸取与吸取层厚度成正比,比耳定律说明光的吸取与溶液浓度成正比;假相像时考虑吸取层厚度和溶液浓度对光吸取率的影响,即得朗伯—比耳定律。
即A=bc,(A为吸光度,为摩尔吸光系数,b为液池厚度,c为溶液浓度)就可以对溶液进行定量分析。
将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸取光谱。
若两者是同一物质,则两者的光谱图应完全一致。
假如没有标样,也可以和现成的标准谱图对比进行比较。
这种方法要求仪器精准,精密度高,且测定条件要相同。
试验证明,不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判定化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。
产品应用在水和废水监测中的应用,对于一个水系的监测分析和综合评价,一般包括水相(溶液本身)、固相(悬浮物、底质)、生物相(水生生物)。
在水质的常规监测中,紫外可见分光光度法占有较大的比重。
由于水和废水的成分多而杂多变,待测物的浓度和干扰物的浓度差别很大,在实在分析时必需选择好分析方法。
在农产品和食品分析中可用于检测的组分或成分有蛋白质、赖氨酸、葡萄糖、维生素C、硝酸盐、亚硝酸盐、砷、汞等;在植物生化分析中可用于检测叶绿素、全氮和酶的活力等;在饲料分析中可用于检测烟酸、棉酚、磷化氢和甲酯等。
(完整版)紫外可见分光光度计--原理及使用

应用分光光度计已经成为现代分子生物实验室常规仪器。
常用于核酸、蛋白定量以及细菌生长浓度的定量。
我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。
基本原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。
它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。
朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即A= kcl式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。
c为吸光物质浓度,l为透光液层厚度。
组成各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。
1.光源在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。
热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。
2.单色器单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于色散元件的质量。
色散元件常用棱镜和光栅。
3.吸收池吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。
吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。
4、检测器检测器的作用是检测光信号,并将光信号转变为电信号。
现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。
5、信号显示系统常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。
操作步骤操作之前1.1开启电源进行初始化开启主机电源,分光光度计将按屏幕所显示的项目进行自检和初始化,如下图所示。
所有项目检测完毕,初始化结束,整个过程大约需要4min(若使用多池检测需5min)。
每个项目进行初始化操作时将被加亮显示,当初始化完成后,该项右边的星标也将加亮显示。
紫外可见分光光度计 普析

紫外可见分光光度计普析紫外可见分光光度计(UV-Vis spectrophotometer)是一种常用的分析仪器,广泛应用于化学、生物、环境等领域的研究和实验中。
本文将从紫外可见分光光度计的原理、应用以及操作步骤等方面进行介绍。
一、紫外可见分光光度计的原理紫外可见分光光度计是利用物质对紫外可见光的吸收特性进行定量分析的仪器。
根据光的波长范围,可分为紫外光区和可见光区两部分。
紫外光区的波长范围为200-400 nm,可见光区的波长范围为400-800 nm。
紫外可见分光光度计的工作原理是通过光源产生的光经过样品后,被光电二极管或光电倍增管接收,形成光谱图,再通过计算机进行数据处理和分析。
在分析过程中,样品溶液的吸收特性会使光强发生变化,根据吸光度与物质浓度之间的线性关系,可以通过测量吸光度来确定物质的浓度。
二、紫外可见分光光度计的应用紫外可见分光光度计在科研和实验中有着广泛的应用。
以下是其中几个常见的应用领域:1. 生物化学分析:紫外可见分光光度计可用于蛋白质、核酸、酶等生物大分子的浓度测定和纯度分析,如蛋白质含量的测定、核酸的纯度检测等。
2. 药物分析:紫外可见分光光度计可用于药物的含量测定、质量控制和稳定性研究,如药物溶液的吸光度测定、药物的光解动力学研究等。
3. 环境监测:紫外可见分光光度计可用于水质、大气和土壤等环境样品的污染物分析和监测,如水中重金属离子的测定、大气中挥发性有机物的测定等。
4. 食品安全检测:紫外可见分光光度计可用于食品中添加剂、农药残留、重金属等有害物质的检测,如食品中硝酸盐含量的测定、食品中防腐剂的测定等。
三、紫外可见分光光度计的操作步骤使用紫外可见分光光度计进行实验时,需要按照以下步骤进行操作:1. 打开仪器电源,并预热一段时间,使光源和光电二极管稳定工作。
2. 根据实验需要选择合适的光源和检测器,设置光的波长范围。
3. 取一定量的样品溶液,注入样品池中,并调节样品池的位置,使光线通过样品溶液。
(完整版)紫外可见分光光度计--原理及使用

应用分光光度计已经成为现代分子生物实验室常规仪器。
常用于核酸、蛋白定量以及细菌生长浓度的定量。
我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。
基本原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。
它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。
朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即A= kcl式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。
c为吸光物质浓度,l为透光液层厚度。
组成各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。
1.光源在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。
热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。
2.单色器单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于色散元件的质量。
色散元件常用棱镜和光栅。
3.吸收池吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。
吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。
4、检测器检测器的作用是检测光信号,并将光信号转变为电信号。
现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。
5、信号显示系统常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。
操作步骤操作之前1.1开启电源进行初始化开启主机电源,分光光度计将按屏幕所显示的项目进行自检和初始化,如下图所示。
所有项目检测完毕,初始化结束,整个过程大约需要4min(若使用多池检测需5min)。
每个项目进行初始化操作时将被加亮显示,当初始化完成后,该项右边的星标也将加亮显示。
紫外可见分光光度计范围

紫外可见分光光度计范围紫外可见分光光度计是一种常用的光谱分析仪器,用于测量物质在紫外可见光波段的吸收和透过性质。
它能够提供物质吸收光谱的信息,帮助我们了解物质的组成和结构。
本文将介绍紫外可见分光光度计的基本原理、应用范围以及其在科学研究和工业生产中的重要意义。
一、紫外可见分光光度计的基本原理紫外可见分光光度计的基本原理是利用物质对特定波长光的吸收和透过性质来测量其浓度或含量。
它通过光源产生的连续光束,经过样品后,被光电传感器接收并转换为电信号。
根据样品的吸收特性,我们可以得到样品的吸光度,从而推算出其浓度或含量。
二、紫外可见分光光度计的应用范围紫外可见分光光度计广泛应用于医药、化学、生物、环境科学等领域。
它可以用于测定药品的纯度和含量,监测水质和空气质量,分析生物样品中的成分等。
以下是几个具体的应用范例:1.药物分析:紫外可见分光光度计可用于测定药物的纯度、含量和稳定性。
通过测量药物在特定波长下的吸收光谱,我们可以判断药物的质量,并及时调整生产工艺,确保药品的安全性和有效性。
2.环境监测:紫外可见分光光度计可用于监测水体和大气中的污染物含量。
例如,我们可以通过测量水体中溶解有机物的吸光度来评估水质状况,或者通过测量大气中气体的吸光度来监测空气污染物的浓度。
3.生物分析:紫外可见分光光度计可用于测定生物样品中的蛋白质、核酸和其他生物分子的浓度。
通过测量这些分子在紫外可见光波段的吸收光谱,我们可以了解其结构和功能,并进一步研究生物过程和疾病机制。
4.食品安全:紫外可见分光光度计可用于检测食品中的添加剂、污染物和有害物质。
例如,我们可以通过测量食品中色素的吸光度来判断其是否合格,或者通过测量食品中残留农药的吸光度来评估其安全性。
三、紫外可见分光光度计的重要意义紫外可见分光光度计在科学研究和工业生产中具有重要的意义。
它不仅为我们提供了分析物质的工具,还为我们研究物质的性质和反应机制提供了重要的信息。
以下是紫外可见分光光度计的几个重要意义:1.质量控制:紫外可见分光光度计可以用于药品、食品、化妆品等产品的质量控制。
紫外可见分光光度计原理及操作.ppt

吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或
测定该物质的含量,这就是分光光度定性和定量分析的基础。 3)紫外分光光度法使用基于朗伯-比耳定律(Lambert-Beer)。
朗伯-比耳定律是光吸收的基本定律,俗称光吸收定律,是分光光度法
定量分析的依据和基础。
朗伯-比耳定律
一、透射率T%
dT d lg T 0.434 bdc T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c T lg T
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸光度读数误差最小! 通常可通过调节溶液浓度或改变光程 b来控制A的读数在0.15~1.00范类型来自3.比例双光束分光光度计
由同一单色器发出的光被分成两束,一束直接到达检测器,另一束 通过样品后到达另一个检测器。这种仪器的优点是可以监测光源变化带
来的误差,但是并不能消除参比造成的影响
UV-2550的特点
6 挡狭缝可选
PC 控制存储、调用方便 可采用复制、拷贝方法在电子表格和字处理软件中处理数据和打印报 告 可加载膜厚、动力学、多波长、色彩分析等软件 DDM(双闪耀波长双单色器)降低杂散光,提高长波长区的能量响应 (UV-2550)
它的作用是放大信号并以适当方式指示或记录下来。现在一般的紫
外可见分光光度计有计算机控制和主机单片机控制两种类型,功能基本 类似。
类型
紫外-可见分光光度计的类型很多,但可归纳为三种类 型,即单光束分光光度计、双光束分光光度计和比例双光束 分光光度计。
1.单光束分光光度计 经单色器分光后的一束平行光,轮流通过参比溶液和样品溶液,以 进行吸光度的测定。这种简易型分光光度计结构简单,操作方便,维修 容易,适用于常规分析。
紫外可见光分光光度计在环保检测领域的应用探讨

紫外可见光分光光度计在环保检测领域的应用探讨一、紫外可见光分光光度计的基本原理和特点紫外可见光分光光度计是一种用于测量样品溶液浓度以及化学反应速率等的光学仪器。
其工作原理是通过光的吸收特性来研究物质的性质和结构。
紫外可见光分光光度计主要利用紫外可见光谱的原理,测量样品溶液对光的吸收程度,从而得出目标物质的浓度。
其主要特点是快速、高灵敏度和广泛的应用范围。
二、紫外可见光分光光度计在环保检测中的应用1. 水质监测水是人类生活中不可或缺的资源,而水质的好坏直接关系到人们的健康和生活质量。
紫外可见光分光光度计可以用于监测水中重金属、溶解有机物和水中污染物的含量。
通过测量水中有害物质的浓度,可以及时发现水质的改变,并采取相应的措施进行处理,保护饮用水的安全。
2. 大气污染监测随着工业化进程的加快,大气中的污染物也越来越多。
紫外可见光分光光度计可以用于监测大气中各种污染物的浓度,如二氧化硫、氮氧化物和臭氧等。
通过监测大气污染物的含量,可以及时采取措施减少污染,保护大气环境的质量。
3. 土壤污染监测在农业和工业生产中,土壤污染也是一个严重的问题。
紫外可见光分光光度计可以用于监测土壤中重金属、有机物和其他污染物的含量,通过测量土壤样品对光的吸收程度来判断土壤的污染程度,从而制定相应的治理措斀,保护土壤资源和农产品的品质。
三、紫外可见光分光光度计在环保检测中的重要性紫外可见光分光光度计在环保检测中起到了至关重要的作用。
它能快速、准确地测量样品中目标物质的含量,为环保工作提供了重要的数据支持。
紫外可见光分光光度计的高灵敏度,使其能够检测到微量的污染物,保障了环境监测的全面性和准确性。
紫外可见光分光光度计的广泛应用范围,可以满足不同环境的检测需求,为环保监测工作提供了多样化的技术支持。
四、紫外可见光分光光度计在环保检测中的未来发展方向随着科技的不断发展,紫外可见光分光光度计在环保检测领域也将不断向前发展。
未来,紫外可见光分光光度计的灵敏度和分辨率将进一步提高,可以检测到更低浓度的目标物质。
UV-3型紫外分光光度计的原理及应用

紫外分光光度计应用系统
样品测定
1.在定量分析窗口中,单击“测量方法” 输入测量点数和相应的波长值及K0,K1 值,即可完成标准曲线的建立。
样品测量
2.单击“样品测量”选项进入测 试界面。
3.将参比溶液放入光路并校满刻度
紫外分光光度计应用系统
样品测定
4.将待测样品放入多联池架中,样品走到光路,单击工具栏中“ ” 弹出“样品测试”窗口,测试完成后输入样品名称,单击“确认” 添加到样品测试列表中,单击“取消”放弃本次测量值。
紫外可见分光光度计
内容导览
1
UV-3紫外可见分光光度计基本介绍
2
紫外可见分光光度计应用系统简易操作
UV-3紫外可见分光光度计
是分析试验行业中重要的质量控制仪器 之一,是常规实验室的必备仪器。
波长范围宽 190-1100nm 特 点
灵敏度高 功能强大
UV-3紫外可见分光光度计
分光光度法分析的原理
紫外分光光度计应用系统
应用系统操作(标准曲线的建立)
3.单击“标准样品”选项进入标样 测试界面.
4.将参比溶液放入光路,点击工具栏B 图标校满刻度。
紫外分光光度计应用系统
应用系统操作(标准曲线的建立)
5.将待测标准样品放入多联池架中
6.将待测标样走到光路中,单击“启动”按钮弹出 “标准样品测试”窗口,测试完成后输入标准样品 浓度和样品名称,单击“确认”添加到结果测试列 表中,单击“取消”放弃本次测量。
7.重复步骤6 完成所有标样测试,标准 曲线建立完成.
紫外分光光度计应用系统
应用系统操作(标准曲线的建立)
8.在“拟合参数”中记录K0,K1值。 如图1 9.单击“拟合曲线”选项可查看到建立 的标准曲线和拟合方程,图二示
紫外可见分光光度计的结构、工作原理与应用

紫外可见分光光度计紫外可见分光光度计原理是:分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。
它是带状光谱,反映了分子中某些基团的信息。
可以用标准光谱图再结合其它手段进行定性分析。
根据Lambert-Beer定律:A=εbc,(A为吸光度,ε为摩尔吸光系数b为液池厚度,c为溶液浓度)可以对溶液进行定量分析。
你可以用紫外可见分光光度计测定定三种农药的波长在某溶液中的最大、最小吸收波长。
配制溶液-在光谱检测项下进行-调整检测光谱范围及速度--扫描光谱图--吸光度最大处对应波长为最大吸收波长,吸光度最小处对应的波长为最小吸收波长。
1.光源灯;2.滤光片;3.球面反射镜;4.入射狭缝;5.保护玻璃;6.平面反射镜;7.准直镜;8.光栅;9.保护玻璃;10.出射狭缝; 11.聚光镜;12.试样室; 13.光门;14.光电管.分光光度计工作原理:由光源灯(1)发出连续辐射光线,经滤光片(2)和球面反射镜(3)至单色器的入射狭缝(4)聚焦成像,光束通过入射狭缝(4)经平面反射镜(6)到准直镜(7)产生平行光,射至光栅(8)上色散后又以准直镜(7)聚焦在出射狭缝(10)上形成一连续光谱,由出射狭缝选择射出一定波长的单色光,经聚光镜(11)聚光后,通过试样室(12)中的测试溶液部分吸收后,光经光门(13)再照射到光电管(14)上.调整仪器,使透光度为100%,再移动试样架拉手,使同一单色光通过测试溶液后照射到光电管上.如果被测样品有光吸收现象,光量减弱放大器处理,将光能的变化程度通过数字显示器显示出来.可根据需要直接在数字显示器上读取透光度(T),吸光度(A)或浓度(C).基本操作:(1)通电---仪器自检----预热20min;(2)用键设置测试方式:透射比(T),吸光度(A),已知标样浓度方式(C)和已知标样浓度斜率(K)方式;(3)波长选择:用波长调节旋钮设置所需的单色光波长;(4)放样顺序:打开样品室盖,在1~4号放置比色皿槽中,依次放入%T校具(黑体),参比液,样品液1和样品液2.(5)校具(黑体)校"0.000":将%T校具(黑体)置入光路,在T方式下按"%T"键,此时仪器自动校正后显示"0.000"(6)参比液校"100"%T或"0.000"A:将参比液拉入光路中,按"0A/100%T"键调0A/100%T,此时仪器显示"BLA",表示仪器正在自动校正,校正完毕后显示"100"%T 或"0.000"A后,表示校正完毕,可以进行样品测定.(7)样品测定:将两样品液分别拉入光路中,此时若在"T"方式下则可依次显示样品的透射比(透光度)若在"A"方式下,则显示测得的样品吸光度.7200型光栅分光光度计的使用注意事项(1)(1) 预热是保证仪器准确稳定的重要步骤.(2) 比色皿的清洁程度,直接影响实验结果.因此,特别要将比色皿清洗干净.先用自来水将用过的比色皿反复冲洗,然后用蒸馏水淋洗,倒立于滤纸片上,待干后再收回比色皿盒中.必要时,还要对比色皿进行更精细的处理,如用浓硝酸或铬酸洗液浸泡,冲洗.(3) 比色皿与分光光度计应配套使用,否则会引起较大的实验误差. 比色皿不能单个调换 1.3 7200型光栅分光光度计的使用注意事项(2)(4) 比色皿内盛液应为其容量的2/3,过少会影响实验结果,过多易在测量过程中外溢,污染仪器. 比色皿中试样装入量应为2/3~3/4之间(5) 拿放比色皿时,应持其"毛面",杜绝接触光路通过的"光面".如比色皿外表面有液体,应用绸布拭干,以保证光路通过时不受影响.(6) 若待测液浓度过大,应选用短光径的比色皿,一般应使吸光度读数处于0.1~0.8范围内为宜.由于测定空白,标准和待测溶液时使用同样光径的比色皿,故不必考虑因光径变化而引起的影响.UV-754型紫外-可见分光光度计正确使用方法2.1 紫外分光光度计法概述(1)2.1.1定义用紫外光源通过分光光度技术对物质进行测定的方法叫作紫外分光光度法.所使用的仪器叫作紫外分光光度计.2.1.2原理因为许多化合物的分子结构中存在共轭双键,在200~400nm的紫外光区具有吸收光的特性,所以无需进行显色反应便能直接测定.2.1.3应用常用于对蛋白质和核酸进行定性,定量测定.蛋白质分子中所含酪氨酸,色氨酸和苯丙氨酸等芳香族氨基酸残基在波长280nm处具有最大吸收峰.故常用波长280nm处的吸光度测定蛋白质的浓度.2.1.4特点(1) 组成核酸的碱基也含有共轭双键,其最大吸收峰的波长在260nm处.但在280nm处也有一定的光吸收,对蛋白质的测定有一定的干扰作用.若分别测定280nm和260nm处的吸光度,可通过经验公式消除核酸对蛋白质测定的影响. (2)可对微量蛋白质(1~10g/L)不需显色,进行直接定量测定.因此操作简便,而且可回收样品.此外,盐类在280nm处无光吸收,少量盐类也不会影响测定结果.(3)紫外分光光度法完全符合Lambert-Beer定律的基本原理.在其它条件保持一致的情况下,被测溶液的吸光度与被测溶液的浓度成正比.2.2 UV-754型分光光度计的结构和工作原理2.2.1仪器结构由光源(钨灯或氚灯),单色器,试样室,接受器(光电管),微电流放大器,A/C 转换器,打印机,键盘和显示器等部件组成.微处理机(CPU)通过输入,输出口(I/O)对微电流放大器,显示器和打印机等部件进行控制,实现仪器的整体功能.2.2.2工作原理UV-7 5 4型紫外-可见分光光度计光学系统1.氚灯;2.钨灯;3.滤光镜;4.聚光镜;5.入射狭缝;6.平面;7.准直镜;8.光栅;9.出射狭缝; 10.聚光镜; 11.试样室; 12.光门; 13.光电管2.2.2工作原理由光源氚灯或钨灯(1或2)发出连续辐射光线经滤光镜(3)和聚光镜(4)至单色器入射狭缝(5)处聚焦成像,再经平面反射镜(6)反射至准直镜(7)产生平行光射至光栅(8)在光栅上色散后又经准直镜(7)聚焦在出射狭缝(9)上成一连续光谱,经出射狭缝射出的光在聚光镜(10)聚光后分别通过试样室 (11)中的空白溶液(或对照溶液),标准溶液或样品溶液,被部分吸收后光经光门(12)再照射到光电管(13)上.被光电管接收的光信号再被转换成电信号,后者通过输入,输出口(I/O).进入微处理机进行调零,变换对数,浓度计算以及打印数据等处理,将检测结果通过显示器和打印系统显示出来.2.3 UV-754型分光光度计使用方法(外型)2.3.1 UV-754型紫外可见分光光度计1.试样架拉手;2.键盘部分;3.数据打印;4.波长刻度盘;5.波长手轮;6.电源汗关;7.氚灯触发按钮;8.光源室.2.3 UV-754型分光光度计使用方法(键盘) UV-754型紫外-可见分光光度计键盘详细内容说明如下:2.3 UV-754型分光光度计使用方法(键盘内容1) ①功能键: F1~F8,暂无功能,备扩展使用. ② T键: 具有三种透光度状态调节功能.③ A/C键:吸光度/浓度转换键,按此键可分别表示"吸光度0~3A","吸光度0~","吸光度0~0.1A"和"浓度"四种状态.④送入键:只在"A/C键"处于"浓度"状态时才起作用. ⑤打印键:手动方式时有效,每按一次,便打印一次数据.⑥控制键:在分别使用"设定+","设定一","倍率","显示方式"和"打印方式"各键时,需与控制键分别联合使用才起作用.⑦设定+键:在"A/C键"处于"浓度"状态时才能设定"标准浓度值","斜率K值"或"斜率B值"等数据.其功能是将设定数值增加.2.3 UV-754型分光光度计使用方法(键盘内容2) ⑧设定- 键:是使设定数值减小,操作与"设定+键"类同.⑨倍率键:用来设定标准溶液浓度的放大倍数.有"1","0.1"和"0.01"三档,与"控制键"同时按下,倍率便发生相应的变化.⑩显示方式键:可表示"积分","浓度"和"样品号"三种状态.(11) 打印方式键:存在"自动"(每移动一次试样架,仪器自动打印一次数据),"方式1"(手动方式,每按一次此键,仪器打印一次数据)和"方式2"(每分钟定时打印一次数据)三种状态.每与"控制键"同时按一次此键便改变一个状态.(12) 送纸键:每按一次此键,仪器移动一次打印纸. (13) TAC:数字显示器显示测定结果或输入的数据. 2.3.2 UV-754型紫外可见分光光度计使用方法(1) (1)测试准备①将盛有"空白"或"对照"溶液的比色皿处于试样室光路位置; ②选择波长旋动波长手轮选定所需波长;③确定光源波长在200~290nm时,选择氚灯为光源;波长在290~360nm时,同时以氚灯和钨灯为光源;波长在360~850nm时,选择钨灯为光源;若使用氚灯,需按氚灯触发按钮启动;④仪器自检显示器显示"754"后,数字显示出现"100.0",表明仪器通过自检程序,此时仪器进入"0~100%","连续"和"自动"状态(打印系统处于自动打印状态)⑤仪器预热30min后方可进行测试.2.3.2 UV-754型紫外可见分光光度计使用方法测试过程①数字显示透光度"100.0"(或吸光度"0.00")2~3s后,将盛有标准溶液的比色皿移至光路,打印系统便自动打印出所得数据;②将盛有样品溶液的比色皿移至光路,打印系统即自动打印出该样品的数据.待第一个样品数据打印完毕后,将第二个样品置于试样室光路………,若有多个样品,操作以此类推。
紫外可见分光光度计的原理与使用方法

紫外可见分光光度计的原理与使用方法单光束分光光度计的原理是:光源发出光束通过准直系统,经过光栅
的分光作用后进入样品池,与样品发生相互作用后经过检测器,最后由显
示器显示吸光度数值。
双光束分光光度计的原理是:光源发出光束,一部分经过参比池进行
比较,另一部分经过样品池与样品相互作用,分别被检测器检测后与参比
值进行比较,最后由显示器显示吸光度数值。
使用紫外可见分光光度计的方法如下:
1.准备工作:
-检查仪器是否处于正常工作状态,确认光源、检测器和显示器的功
能正常。
-清洁样品池,确保无杂质和残留。
2.样品处理:
-准备需要测量的样品溶液,并将其转移到清洁的样品池中。
-如果样品浓度过高,可能会引起光透过度低,此时可进行适当稀释。
3.测量步骤:
-打开仪器电源,进行预热,通常需要一段时间让光源稳定。
-选择合适的波长范围和检测模式(吸光度/透过度)。
-调节仪器,使得显示器上的示数为零或基线稳定。
-将样品池放入样品室,尽量避免空气泡存在。
-记录或保存测量数据,可以进行后续数据处理和分析。
4.清洁和维护:
-测量完成后,及时清洁样品池和其他相关部件,防止污染和积累。
-关闭仪器电源,注意安全操作。
总结一下,紫外可见分光光度计是一种基于比尔-朗伯定律原理的实验仪器,主要用于测量物质溶液或气体的光吸收特性。
使用时需要进行准备工作,处理样品并进行测量,同时注意仪器的清洁和维护。
紫外可见分光光度计技术与检定

紫外可见分光光度计技术与检定紫外可见分光光度计是一种广泛应用于化学、生物、医学等领域的分析仪器,它能够对溶液中的物质吸收和透射进行定量分析。
紫外可见分光光度计技术与检定是确保该仪器准确性与可靠性的重要环节,下面我们将重点介绍紫外可见分光光度计技术与检定的相关内容。
一、紫外可见分光光度计技术原理紫外可见分光光度计是基于溶液中物质对紫外和可见光的吸收作用进行分析的仪器。
在可见光和紫外光范围内,许多物质都会发生电子跃迁吸收现象,因此该仪器可以用于测定金属离子、有机化合物、无机化合物等物质的浓度和组成。
典型的紫外可见分光光度计由光源、单色器、样品室、检测器、信号处理系统等部分组成。
从技术原理上讲,紫外可见分光光度计通过光源产生一定波长的光,经过单色器选择出所需的波长,然后通过样品室中的样品,根据被测溶液对特定波长光的吸收或透射程度,最后由检测器将其转换成电信号进行处理,得到溶液中物质的浓度值。
紫外可见分光光度计的准确性和可靠性对于实验数据的准确性和信任度至关重要,因此对该仪器进行定期检定是十分必要的。
紫外可见分光光度计的检定方法主要包括以下几个方面:1. 波长准确度检定:对紫外可见分光光度计的波长准确度进行检定,通常采用标准溶液进行测试,通过测定标准溶液在设定波长下的吸光度值来判断波长准确度。
2. 光强度校准:对光源的光强度进行检定,通过标准光度计测定光源的光强度,确保光源能够产生稳定的光强度,保证检测结果的准确性。
3. 吸光度零点校准:对紫外可见分光光度计的吸光度零点进行校准,保证在没有样品的情况下检测结果为零值。
4. 线性范围检定:测定紫外可见分光光度计的线性范围,即在一定浓度范围内,仪器的检测结果与浓度呈线性关系。
5. 稳定性检定:检定紫外可见分光光度计的稳定性,包括温度稳定性、时间稳定性等方面,确保仪器在不同环境条件下检测结果的稳定性。
随着科学技术的不断发展,紫外可见分光光度计技术也在不断更新和改进。
紫外可见分光光度计原理及应用

紫外可见分光光度计原理及应用1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。
1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。
到1918年,美国国家标准局制成了第一台紫外可见分光光度计。
此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。
紫外可见分光光度计法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围 1.原理物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。
分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。
紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。
即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比2 应用2.1 检定物质根据吸收光谱图上的一些特征吸收,特别是最大吸收波长和max摩尔吸收系数是检定物质的常用物理参数。
这在药物分析上就有着很广泛的应用。
在国内外的药典中,已将众多的药物紫外吸收光谱的最大吸收波长和吸收系数载入其中,为药物分析提供了很好的手段。
紫外可见分光光度计原理及操作

紫外可见分光光度法的原理及应用原理:紫外可见分光光度法基于物质对紫外-可见光的吸收特性进行测定。
当光线通过样品时,样品中的分子会吸收特定波长的光,从而产生吸收峰。
通过测量样品吸收的光强,可以得到样品在不同波长下的吸光度。
常用的光谱仪器是分光光度计,它能够实现对不同波长光的选择和测量。
应用:1.定量分析:紫外可见分光光度法可以用于定量分析各种物质。
根据比尔定律,吸光度与物质浓度之间存在一定的线性关系,因此可以根据吸光度测量值推算出物质的浓度。
这在医药、环境监测、食品安全等领域中具有重要意义。
2.药物分析:紫外可见分光光度法广泛应用于药物分析中。
例如,可以利用紫外光谱测定药物的浓度、纯度和含量,评价药物的质量。
同时,通过分析药物在不同波长下的吸收特性,可以了解药物的结构和反应机理,为新药的研发提供重要的信息。
3.生化分析:生物体内的很多生物分子都具有紫外可见吸收特性,这使得紫外可见分光光度法成为生化分析中常用的工具。
例如,可以通过测定蛋白质和核酸在特定波长下的吸光度来研究其构象和浓度。
此外,也可以用于测定血液中的代谢产物、激素和维生素等的浓度。
4.环境监测:在环境监测中,紫外可见分光光度法可用于分析水质、空气中的有害物质和污染物。
例如,可以利用其测定水中化学需氧量(COD)、氨氮(NH3-N)和磷酸盐等的浓度。
这对于环境保护和水质安全具有重要意义。
5.食品检测:紫外可见分光光度法在食品行业中也具有广泛应用。
可以通过测定食品中的营养成分和添加剂的含量来评价食品质量和安全性。
例如,可以测定维生素、氨基酸、酚类和色素等在食品中的含量。
总之,紫外可见分光光度法具有简单、快速、高灵敏度和高选择性等优点,且适用范围广泛。
它在化学、制药、环保、医疗和食品等领域中都有不可替代的地位,对于研究物质性质和反应机理,以及保障人类健康和环境安全都起着重要作用。
紫外可见分光光度计原理及应用

紫外可见分光光度计原理及应用紫外可见分光光度计是一种常用的光谱仪器,主要用于测量样品溶液的吸光度。
它利用紫外可见光的吸收特性来分析物质的结构和浓度,并在化学、生物、药学和环境监测等领域有广泛的应用。
紫外可见分光光度计的原理基于比尔-朗伯定律和兰伯特-比尔定律。
紫外可见分光光度计的工作原理是利用可见光和紫外光穿过溶液时,溶液中的分子或离子会吸收特定波长的光线。
光的吸收会使得光通过溶液的强度减弱,即溶液中的吸光度增加。
光度计测量的就是经过溶液前后的光强度差值,也就是吸光度。
从而根据吸光度的变化来推断溶液中所含的分析物的浓度或结构。
紫外可见分光光度计可以在190nm至1100nm的波长范围内测量光强度的变化。
常用波长为190nm至800nm之间。
紫外可见分光光度计的光源通常是一束连续的白光,经过光栅或棱镜分散成不同波长的光束,然后通过一个进样室和样品溶液接触。
样品溶液会吸收特定波长的光,其余波长的光会通过样品溶液,最后被一个光敏探测器接收。
光敏探测器会将光信号转换成电信号,并转化成数字信号通过计算机处理。
应用方面,紫外可见分光光度计广泛应用于化学、生物、药学和环境监测等领域。
在化学领域,它可以用于分析溶液中化合物的浓度,并用于酸碱度的测量。
生物领域常用紫外可见分光光度计来测量DNA和蛋白质的浓度,以及酶促反应的速率。
在药学领域,它用于药物的质量控制,测量药物和其他添加剂在制剂中的含量。
在环境监测领域,紫外可见分光光度计被用于测量水体和大气中污染物的浓度,如有机物、重金属和氮浓度等。
总之,紫外可见分光光度计利用吸光度的测量原理,能够准确测量样品溶液中特定波长的光线的吸收程度,从而推断出溶液中所含的分析物的浓度或结构。
它在化学、生物、药学和环境监测等领域中都有重要的应用价值,并在科学研究和工业生产中发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外可见分光光度计及其应用仪器分析进展结业作业
学院:化学学院
年级:2008级
姓名:阿地力·吾布力
学号:1233408001
紫外可见分光光度计及其应用
摘要
主要介绍了紫外—可见分光光度计的结构、原理、特点及应用。
关键词紫外—可见分光光度计;结构;原理;特点;应用
分光光度计是杜包斯克(1)uboscq)和奈斯勒(Nessler)等人在1854年将朗伯比尔定律应用于定量分析化学领域,并且设计了第一台比色计。
到1918年,美国国家标准局制成了第一台紫外可见分光光度计。
此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。
紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。
目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。
1、结构
一般地,紫外可见分光光度计主要由光源系统、单色器系统、样品室、检测系统组成(图1)。
光源发出的复合光通过单色器被分解成单色光,当单色光通过样品室时,一部分被样品吸收,其余未被吸收的光到达检测器,被转变为电信号,经电子电路的放大和数据处理后。
通过显示系统给出测量结果。
图1紫外可见分光光度计结构
分光光度计的主要部件:
光源:发出所需波长范围内的连续光谱,有足够的光强度,稳定。
可见光区:钨灯,碘钨脚~25a硒);
紫外区:氢灯,锹q(180~375,Ⅱn)氙灯:紫外、可见光区均可用作光源。
单色器:将光源发出的连续光谱分解为单色光的装置。
棱镜:依据不同波长光通过棱镜时折射率不同。
光栅:在镀铝的玻璃表面刻有数量很大的等宽度等间距条痕(600、1200、2400条/mm)。
利用光通过光栅时发生衍射和干涉现象而分光。
吸收池:用于盛待测及参比溶液。
可见光区:光学玻璃池;紫外区:石英池。
检测器利用光电效应,将光能转换成电流讯号。
光电池,光电管,光电倍增管。
检流计(指示器):刻度显示或数字显示、自动扫描记录。
2、原理
物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。
由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础㈣。
分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质问相互作用的有效手段。
紫外可见分光光度法的定量分析基础是朗伯一比尔(Lambert—Beel-)定律。
即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下:
A=abc
式中:A—吸光度;a—摩尔吸光系数;b—吸收介质的厚度;c—吸光物质的浓
2.1光学系统原理
由光源钨灯和氘灯发出的复合光经由步进电机控制带动反光镜M 1,反射通过入射狭缝,并进人单色器中,光栅衍射出的单色光经准直镜M2调焦,会聚通过出射狭缝,光束到达斩光器时,一段时间内的光射成为参比光路,另一段时间内的光透射成为样品光路。
最后两光交替地照射在检测器(光电倍增管)(图2)。
2.2电器系统原理
图2光学系统原理图
光电倍增管检测出的信号经由前置放大器,驱动卡传递给微机控制器,由微机控制器推动驱动卡居中协调各部分(图3)。
图3电气原理图
3、特点
分光光度法对于分析人员来说,可以说是最常用和有效的工具之一。
几乎每一个分析实验室都离不开紫外可见分光光度计。
分光光度法具有以下主要特
3.1灵敏度高
由于新的显色剂的大量合成,并在应用研究方面取得了可喜的进展,使得对元素测定的灵敏度有所推进,特别是有关多元络合物和各种表面活性剂的应用研究,使许多元素的摩尔吸光系数由原来的几万提高到数十万。
3.2选择性好
目前已有些元素只要利用控制适当的显色条件就可直接进行光度法测定,如钴、铀、镍、铜、银、铁等元素的测定,已有比较满意的方法了。
3.3准确度高
对于一般的分光光度法,其浓度测量的相对误差在l~3%范围内,如采用示差分光光度法进行测量,则误差可减少到0.X%。
3.4适用浓度范围广
可从常量(1%一50%)GE其使用示差法)到痕量(10.8—10.6%)(经预富集后)。
3.5分析成本低、操作简便、快速、应用广泛
由于各种各样的无机物和有机物在紫外可见区都有吸收,因此均可借此法加以测定。
到目前为止,几乎化学元素周期表上的所有元素滁少数放射性元素和惰性元素之外)均可采用此法。
在国际上发表的有关分析的论文总数中,光度法约占28%,我国约占所发表论文总数的33%。
4、应用
4.1检定物质
根据吸收光谱图上的一些特征吸收,特别是最大吸收波长入max和摩尔吸收系数,是检定物质的常用物理参数。
4.2与标准物及标准图谱对照
将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。
若两者是同一物质,则两者的光谱图应完全一致。
如果没有标样,也可以和现成的标准谱图对照进行比较。
这种方法要求仪器准确,精密度高,且测定条件要相同。
4.3比较最大吸收波长吸收系数的一致性
由于紫外吸收光谱只含有2~3个较宽的吸收带,而紫外光谱主要是分子内的发色团在紫外区产生的吸收,与分子和其它部分关系不大。
具有相同发色团的不同分子结构,在较大分子中不影响发色团的紫外吸收光谱,不同的分子结构有可能有相同的紫外吸收光谱,但它们的吸收系数是有差别的。
如果分析样品和标准样品的吸收波长相同,吸收系数也相同,则可认为分析样品与标准样品为同一物质。
4.4反应动力学研究
借助于分光光度法可以得出一些化学反应速度常数,并从两个或两个以上温度条件下得到的速度数据,得出反应活化能。
4.5纯度检验
紫外吸收光谱能测定化合物中含有微量的具有紫外吸收的杂质。
如果化合物的紫外可见光区没有明显的吸收峰,而它的杂质在紫外区内有较强的吸收峰,就可以检测出化合物中的杂质。
4.6氢键强度的测定
不同的极性溶剂产生氢键的强度也不同。
这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。
4.7络合物组成及稳定常数的测定
金属离子常与有机物形成络合物,多数络合物在紫外可见区是有吸收的,我
们可以利用分光光度法来研究其组成。
5、结语
紫外可见分光光度法具有仪器价格低廉适用性广泛,尤其是采用微机控制以来,该技术得到了突飞猛进的发展。
紫外可见分光光度计的光、机、电、算等任何一方面的新技术都可能再推动紫外可见分光光度计整体性能的进步。
在追求准确、快速、可靠的同时,小型化、智能化、在线化、网络化成为了现代紫外可见分光光度计新的增长点。
紫外可见分光光度计作为一项产业,用户的需求是其发展的根本动力。