(完整版)构造函数法证明导数不等式的八种方法

合集下载

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!导数中的不等式证明导数中的不等式证明是高考中的一个经典考点。

由于不等式证明的灵活性和多样性,该考点备受命题者的青睐。

本文将从五个方面系统地介绍一些常规的不等式证明手段。

命题角度1:构造函数典例1】(赣州市2018届高三摸底考试)已知函数$f(x)=1-\ln x+\frac{e}{x}$,$g(x)=x-\frac{e}{x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。

求$a,b$的值,并证明当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。

解析】(1)$a=b=-1$;2)$g(x)=-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$f(x)+g(x)\geq\frac{2}{x}$ $\Leftrightarrow 1-\frac{1}{x}+\frac{e}{x}-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}\geq\frac{2}{x}$ $\Leftrightarrow\frac{1}{x}+\frac{ e}{2\ln x}-\frac{x}{2}+\frac{e}{2x}\leq1$。

令$h(x)=f(x)+g(x)-\frac{2}{x}$,则$h(x)=1-\frac{1}{x}+\frac{e}{x}-\ln x-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$h'(x)=-\frac{1}{x^2}+\frac{e}{x^2}-\frac{1}{x}-\frac{e}{2x^2}+\frac{1}{2}-\frac{e}{2x^2}$,$h''(x)=\frac{2}{x^3}-\frac{3e}{x^3}+\frac{2e}{x^3}$。

函数构造法

函数构造法

北京华罗庚学校为全国学生提供优质教育函数构造法利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出 与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、 极值、最值 (值域 ),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可 有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.当试题中给出简单的基本初等函数,例如 f(x)=x 3,g(x)= ln x ,进而证明在某个取值范围内不等 式 f(x)≥g(x)成立时,可以类比作差法,构造函数h(x)=f(x)-g(x)或 φ(x)= g(x)- f (x) ,进而证明h(x)min ≥ 0 或 φ(x)max ≤ 0 即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明 g(x)>0(f(x)>0)的前提下,也可以 类比作 商法, 构造函数 h(x)= f x φx = gx h(x)min ≥ 1(φ(x)max ≤ 1).[典例] (2018 广·州模拟 )已知函数 f(x)=e x -ax(e 为自然对数的底数, a 为常数)的图象在点 (0,1)处的 切线斜率为- 1.(1) 求 a 的值及函数 f(x)的极值; (2) 证明:当 x >0时, x 2< e x . [ 方法演示 ]解: (1)由 f(x)=e x -ax ,得 f ′(x)=e x -a. 因为 f ′(0)=1- a =- 1,所以 a =2, 所以 f(x)=e x -2x ,f ′(x)=e x -2,令 f ′ (x)= 0,得 x =ln 2,当 x <ln 2 时,f ′(x)<0,f(x)单调递减;当 x >ln 2 时,f ′(x)>0,f(x)单调递增.所以当 x =ln 2 时, f(x)取得极小值,且极小值为 f(ln 2) =e ln 2-2ln 2=2-ln 4,f(x)无极大值.(2)证明:令 g(x)=e x -x 2,则 g ′(x)=e x -2x. 由(1)得g ′(x)=f(x)≥f(ln 2)>0,故 g(x)在R 上单 调递增.所以当 x >0 时, g(x)>g(0)=1>0,即 x 2<e x .[ 解题师说 ]在本例第 (2)问中,发现“ x 2, e x ”具有基本初等函数的基因,故可选择对要证明的“ x 2< e x ”构 造函数,得到“ g(x)= e x - x 2”,并利用 (1)的结论求解.[ 应用体验 ]21.已知函数 f(x)= xln x -2x ,g(x)=-ax 2+ax -2(a >1).(1) 求函数 f(x)的单调区间及最小值; (2) 证明: f(x)≥g(x)在[1,+∞ )上恒成立.比较法 ” 构造函数证明不等式g fx x ,进而证 明北京华罗庚学校 为全国学生提供优质教育 解: (1)f(x)的定义域为 (0,+ ∞),∵ f(x )= xln x -2x ,∴f ′(x)=ln x +1-2=ln x -1, 由 f ′ (x) >0,得 x > e ;由 f ′ (x)< 0,得0<x < e ,∴函数 f(x)的单调递增区间为 (e ,+ ∞ ) ,单调递减区间为 (0, e), ∴函数 f(x)的最小值为 f(e)= eln e - 2e =- e.(2)证明:令 h(x)=f(x)-g(x),∵f(x)≥g(x)在[1,+ ∞)上恒成立,∴ h(x) min ≥ 0, x ∈ [1,+∞), ∵ h(x)= xln x +ax 2-ax -2x +2,∴h ′(x)=ln x +1+2ax -a -2=ln x +2ax -a -1.1令 m(x)=ln x +2ax -a -1,x ∈[1,+∞),则 m ′(x)=x +2a ,∵x >1,a >1,∴ m ′(x)>0,x∴ m(x)在[1,+ ∞)上单调递增,∴ m(x)≥m(1)=a -1,即 h ′(x)≥a -1, ∵a >1,∴a -1>0,∴ h ′(x)>0,∴ h(x)= xln x +ax 2-ax -2x +2 在[1,+∞)上单调递增, ∴ h(x)≥ h(1) = 0,即 f(x)- g(x)≥ 0,故 f(x)≥g(x)在[1,+ ∞ )上恒成立 .“ 拆分法 ”构造函数证明不等式当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时, 如果对其直接求导, 得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为f(x)≤g(x)的形式,进而证明 f(x)max ≤g(x)min 即可,此时注意配合使用导数工具.在拆分的过程中,一 定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.x bex - 1[典例] 设函数 f(x)=ae xln x + x ,曲线 y =f(x)在点(1,f(1))处的切线为 y =e(x -1)+2.x(1) 求 a ,b ; (2) 证明: f(x)>1.[ 方法演示 ] 解: (1)f ′ (x)= ae x ln由于直线 y = e(x -1)+ 2 的斜率为 e ,图象过点 (1,2),x 2e - x2(2)证明:由 (1)知 f(x)=e x ln x + x (x > 0),从而 f(x)>1 等价于 xln x >xe x - e .构造函数 g(x)=xln x ,则 g ′(x)= 1+ln x ,故 g(x)在 0, e 1 上单调递减,在 e 1,+ ∞ 上单调递增,所以f f ′1=12=,e ,即 b = 2, 解得a =1,ae = e ,b =2.所以当 x ∈ 0,1e 时, g ′ (x)< 0,当 x ∈ x +x 1 + x)+∞g ′(x)>0,1 从而g(x)在(0,+∞)上的最小值为e- x2- x构造函数 h(x)=xe -x -2,则 h ′(x) =e -x (1-x).e所以当 x ∈(0,1)时,h ′(x)>0;当 x ∈(1,+ ∞)时,h ′(x)<0;故 h(x)在(0,1)上单调递增,在 (1,+ ∞ )上单调递减, 从而 h(x)在(0,+∞)上的最大值为 h(1)=- 1. e综上,当 x >0 时, g(x)>h(x),即 f(x)>1.[ 解题师说 ]x - 1x - 1 对于第 (2)问“ ae xln x +bex> 1”的证明, 若直接构造函数 h(x)= ae x ln x +bex- 1,求导以后不xxbe x -1易分析, 因此并不宜对其整体进行构造函数, 而应先将不等式“ ae x ln x + be> 1”合理拆分为“ xln x x >xe -x -2”,再分别对左右两边构造函数,进而达到证明原不等式的目的.e[ 应用体验 ] 2.已知函数 f(x)=x a +ln 1x +x b ,曲线 y =f(x)在点(1,f(1))处的切线方程为 x +2y -3=0.(1) 求 a ,b 的值; ln x(2)证明:当 x >0,且 x ≠1 时, f(x)> x - 1x +1- ln xx b 1x +1 2 -x 2(x >0).由于直线 x +2y - 3= 0 的斜率为- 2,且过点 (1,1),ln x 1(2) 证明:由 (1)知 f(x)= +x (x >0),x + 1 x所以 f(x)-x ln - x 1=1-1x 2 2ln x -h ′ (x)=2x -2x2-xx2-1x -1 xx所以当 x ≠1时,h ′(x)<0. 而 h(1)=0,1故当 x ∈(0,1)时, h(x)>0,可得 2h(x)>0;当 x ∈(1,+ ∞)时, 1 - x从而当 x >0,且 x ≠1 时, f(x)- ln x > 0,即 f(x)> ln x .x -1 x - 12-1x - 1考虑函数 h(x)=2ln x - x (x > 0),则 xf1 =1, 1 f ′ 1 =- 2,即b = 1,a 2-b =- 12. 解得22a =1,b = 1.a解: (1)f ′ (x)=x2-1x .1h(x)< 0,可得 1- x 2h(x)>0.1- x若两个变元 x 1,x 2 之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化 为关于 m(x 1,x 2)的表达式 (其中 m(x 1,x 2)为 x 1,x 2组合成的表达式 ),进而使用换元令 m(x 1,x 2)= t , 使所要证明的不等式转化为关于 t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.ln x[典例] 已知函数 f(x)= (a ∈R),曲线 y =f(x)在点 (1, f(1))处的切线与直线 x +y +1=0垂直.x + a(1)试比较 2 0172 018与 2 0182 017的大小,并说明理由;(2)若函数 g(x)=f(x)-k 有两个不同的零点 x 1, x 2,证明: x 1x 2>e 2. [ 方法演示 ] 又曲线 y =f(x)在点 (1, f(1))处的切线与直线所以 f ′ (1)=1,即 1 =1,解得 a =0. 故 f(x)= ln x ,f ′(x)=1-l 2n x . 1+ a x x由 f ′ (x) >0,得 0<x < e ;由 f ′(x)< 0,得 x > e , 所以函数 f(x)的单调递增区间为 (0, e),单调递减区间为 (e ,+ ∞ ).所以 f(2 017) > f(2 018) ,即ln 2 017>ln 2 018. 整理得 ln 2 0172 018>ln 2 0182 017, 2 017 2 018 所以 2 0172 018>2 0182 017.ln x(2)证明: g(x)= x -k ,设 x 1>x 2>0,由 g(x 1)=g(x 2)=0,x可得 ln x 1-kx 1=0, ln x 2- kx 2= 0,两式相加减, 得 ln x 1+ln x 2=k (x 1+x 2),ln x 1-ln x 2= k (x 1-x 2).ln x1--l xn x2> +2 x ,即证 ln x1>2 x1+-xx2.x 1-x2x 1+x2x 2 x 1+x2令x x 1=t(t >1),则只需证 ln t >2t t +-11(t >1).令 h(t)=ln t -2t t +-11(t >1), 则 h ′(t)=1- 4 2= t -1 2> 0,故函数 h(t)在(1,+ ∞)上单调递增, t t + 1 2 t t + 1 22 t - 1所以 h(t) >h(1)= 0,即 ln t > . 所以 x 1x 2> e 2.t +1[ 解题师说 ](1)由题意易知 f ′(1)=1,可列出关于 a 的方程,从而求出 a 的值,得到函数 f(x)的解析式.欲换元法 ” 构造函数证明不等式解: x +a- ln x x (1)依题意得 f ′(x)= x 2 ,所以x +a 2 f ′(1)=1+ a 1 2= 1+a 1+ a x +y +1=0 垂直,要证 x 1x 2>e 2,即证 ln x 1x 2>2,只需证 ln x 1+ln x 2> 2,也就是证k(x 1+x 2)> 2,即证 k >2 x 1+ x因为 k =ln x1--xln x2,所以只需证x 1-x 2北京华罗庚学校为全国学生提供优质教育比较 2 0172 018与 2 0182 017的大小,只需比较f(2 017) ,f(2 018)的大小,即需判断函数y=f(x)的单调性.(2)不妨设x1>x2> 0,由g(x1 )=g(x2)=0,可得ln x1-kx1=0,ln x2-kx2=0,两式相加减,利用分析法将要证明的不等式转化为ln x1-ln x2> 2,再利用换元法,通过求导证明上述不等式成立.x1-x2x1+x2[ 应用体验]23.已知函数f(x)=x2ln x.(1) 求函数f(x)的单调区间;(2)证明:对任意的t> 0,存在唯一的s,使t=f(s);(3) 设(2)中所确定的s关于t的函数为s=g(t),证明:当t> e2时,有25< ln l n g t t<21.解:(1)由已知,得f′ (x)=2xln x+x=x(2ln x+1)(x>0),令f′(x)=0,得x=. e当x 变化时,f′ (x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间是0,e e.(2)证明:当0<x≤1时,f(x)≤0,∵t>0,∴当0<x≤1时不存在t=f(s) .令h(x)=f(x)-t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)上单调递增.h(1)=-t<0,h(e t)=e2t ln e t-t=t(e2t-1)>0. 故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而ln gt=ln s=ln2s=ln s=u,其中u=ln s.ln t ln f s ln s ln s 2ln s+ln ln s 2u+ln u要使2<ln g t< 1成立,只需0< ln u< u.5 ln t 2 2当t> e2时,若s=g( t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾.所以s>e,即u> 1,从而ln u> 0 成立.另一方面,令F(u)=ln u-2u,u>1,F′(u)=u1-12,令F′(u)=0,得u=2. 当1<u<2时,F′(u)>0;当u>2时,F′(u)<0.故对u>1,F(u)≤F(2)<0,因此ln u<u2成立.综上,当t>e2时,有25<ln l n g t t<21.e值,也是最小值,f(e)=ln e+e=2,故f(x)的最小值为 2.e(2)g(x)=f′(x)-x3=x1-x m2-3x(x>0),令g(x)=0,得m=-31x3+x(x>0).13φ(x)=-3x3+x(x≥0),则φ′ (x)=-(x-1)(x+1),x∈(0,1)时,φ′ (x)>0,φ(x)在(0,1)上单调递增;x∈(1,+∞ )时,φ′(x)<0,φ(x)在(1,+∞)上单调递减,x=1 是φ(x) 的唯一极值点,且是极大值点,故φ(x)的最大值为φ(1)=φ(0)=0,画出函数y =φ(x)的图象如图所示.①当m>23时,函数g(x)无零点;②当m=32时,函数g(x)有且只有一个零点;③当0<m<23时,函数g( x)有两个零点;④当m≤0 时,函数g(x)有且只有一个零点.22综上所述,当m>32时,函数g( x)无零点;当m=23或m≤0 时,函数g(x)有且只有一个零点;当3320<m<32时,函数g(x)有两个零点.3(3) 对任意的b>a>0,f b b--f a a <1等价于f(b)-b<f(a)-a恒成立.(*) b- a转化法构造函数在关于x1,x2 的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x1,x2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.[典例] 设函数f(x)=ln x+m x,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)-x3零点的个数;(3) 若对任意b> a>0 ,f bb--faa <1 恒成立,求m的取值范围.[ 方法演示]e x- e解:(1)当m=e 时,f(x)=ln x+x,则f′ (x)=x2 ,故当x∈(0,e)时,xxf′(x)<0,f(x)在(0,e) 上单调递减,当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上单调递增,故当x=e时,f(x)取到极小23.设 h(x)=f(x)-x =ln x +m x -x(x>0),故(*)等价于 h(x)在(0,+ ∞)上单调递减.x1m由 h ′(x)=x -x 2-1≤0 在(0,+ ∞ )上恒成立,得xx1 1 1 m ≥14,当且仅当 x =12时等号成立,所以 m 的取值范围为 41,+ ∞ .[ 解题师说 ]本例第 (3)问中,利用不等式的性质, 将“fb -f a <1”等价转化为“ f(b)-b<f(a)-a ”,进而构 b -a 造函数“ h(x)=f(x)-x ”,通过研究函数的单调性求解实数 m 的取值范围.[ 应用体验 ] 4.已知函数 f(x)= ax -1-ln x(a ∈ R).(1) 讨论函数 f(x)的单调性;(2)若函数 f(x)在 x =1处取得极值,不等式 f(x)≥bx -2对? x ∈(0 ,+∞ )恒成立,求实数 b 的取值范围;2m ≥ -x +x =x - 21 2+14(x>0)恒成立,故(3)当 x>y>e -1时,证明不等式 e x ln(1+y)>e y ln(1+ x).解: (1)函数 f(x)的定义域是 (0,+∞),且 f ′(x)=a -1x =ax -x 1当 a ≤0 时, ax -1<0,从而 f ′ (x)<0,函数 f(x)在(0,+ ∞)上单调递减.当 a>0 时,由 f ′ ( x)<0 ,得 0<x<1a ,由 f ′ (x)>0 ,得 x>a 1,所以函数 f(x)在0 0,1a 上单调递减,在 a1,+ ∞ 上单调递增.(2)因为函数 f(x)在 x =1 处取得极值,所以 f ′ (1)= 0,解得 a =1,1 ln x 1 ln xln x - 2所以 f(x)≥bx -2? 1+x 1-ln x x ≥b ,令 g(x)=1+x 1-ln x x ,则 g ′(x)=ln x x-22,令 g ′(x)=0,得 x =e 2. 则 g(x)在(0, e 2)上单调递减,在 (e 2,+ ∞ )上单调递增,-∞,1-e 122 1 1所以 g(x)min =g(e 2) =1- e 2,即 b ≤1- e 2,故实数 b 的取值范围y +1e x +1(3)证明:由题意可知,要证不等式 e x ln(1 + y)>e y ln(1 + x)成立,只需证ln ex +1 >ln e y + 1成立.x e xln x - ee xln x -e x 构造函数 h(x)=ln e x (x>e),则 h ′(x)= ln 2x 1x ln 2x >0. 所以 h(x)在 (e ,+ ∞ )上单调递增,x +1 e y +1e 由于 x>y>e -1,所以 x +1>y +1>e ,所以lnx +1>lny +1,即 e xln(1+y)>e y ln(1+x).2x 1.已知函数 f(x)= (x - 1)(x 2+2)e x-2x.(1)求曲线 y =f(x)在点 (0,f(0))处的切线方程;2(2)证明: f(x)>- x 2-4.解: (1)因为 f ′(x)=2x(x -1)e x +x(x 2+2)e x -2=x 2(x +2)e x -2,所以 f ′(0)=- 2. 因为 f(0) =- 2,所以曲线 y =f(x)在点 (0,f(0))处的切线方程为 2x +y +2=0.(2)证明: 要证 f(x)>- x 2- 4,只需证 (x -1)(x 2+2)e x >- x 2+2x -4,设 g(x)=-x 2+2x -4=- (x -1)2-3,h(x)=(x -1)(x 3+2)e x ,则 h ′(x)=x 4(x +2)e x . 由 h ′(x)≥0,得 x ≥-2,故 h(x)在[-2,+∞ )上单调递增; 由 h ′(x)<0,得 x <- 2,故 h(x)在(-∞,- 2)上单调递减, 所以 h(x)min =h(-2)=- 1e 28. 因为 e ≈ 2.718,所以- 5e 82>- 3.又 g(x)max =-3,所以 g(x)max <h(x)min ,从而 (x -1)(x 2+2)e x >-x 2+2x -4,即 f(x)>-x 2-4. 2.(理)已知函数 f(x)=e x +m -x 3,g(x)= ln(x + 1)+2.(1)若曲线 y =f(x)在点(0,f(0))处的切线斜率为 1,求实数 m 的值;3(2)当 m ≥1 时,证明: f( x)> g(x)- x 3.解: (1)因为 f(x)=e x m - x 3,所以 f ′ (x)=e x m - 3x 2.因为曲线 y =f(x)在点 (0,f(0))处的切线斜率为 1,所以 f ′(0)=e m =1,解得 m =0. (2)证明:因为f(x)= e x m -x 3, g(x) = ln( x + 1)+ 2, 所以 f(x)>g(x)-x 3等价于 e x +m -ln(x +1)-2> 0.当 m ≥1 时, e x +m - ln( x + 1)- 2≥ e x +1 -ln( x + 1)- 2.要证 e x m - ln( x +1)- 2> 0,只需证明 e x 1- ln( x + 1)- 2> 0. 设 h(x) = e x 1-ln(x +1)-2,则 h ′(x)=e x 1-x +11.x + 1所以函数 p(x)=h ′(x)=e x +1- 1 在(-1,+ ∞)上单调递增.x +1因为 h ′ -21 =e 12-2<0,h ′(0)= e -1>0,所以函数 h ′(x)=e x +1- 1 在(-1,+∞)上有唯一零点 x 0,且 x 0∈ -1,0 . x + 1 2因为 h ′(x 0)=0,所以 ex 0+1=x +1 1,即 ln( x 0 +1) =- (x 0+ 1). 当 x ∈ (- 1,x 0)时, h ′ (x)< 0,当 x ∈(x 0,+∞)时, h ′(x)>0, 所以当 x = x 0 时, h(x)取得最小值 h(x 0),5设 p(x)= e x +11 x +1 1,则 p ′ (x)= e x 1+ 1 x +12>0,1所以 h(x)≥ h(x 0)=ex 0+ 1- ln(x 0+ 1)- 2= x +6 1+ (x 0+1)-2>0. 综上可知,当 m ≥1 时,f(x)> g(x)- x 7.2x (文)已知函数 f(x)=(ax -1)ln x + 2.(1)若a =2,求曲线 y =f(x)在点(1, f(1))处的切线 l 的方程;4 (2)设函数g(x)= f ′ (x )有两个极值点 x 1,x 2,其中 x 1∈(0,e ],证明 g(x 1)-g(x 2)≥- e . 11解: (1)当 a =2时,f ′(x)=2ln x +x -x +2,f ′(1)=2,f(1)=2,x21∴切线 l 的方程为 y -2=2(x -1),即 4x -2y - 3=0.21 a 1 x+ax + 1 (2)函数 g(x)=aln x +x -x +a ,定义域为 (0,+ ∞),则g ′ (x)=1+x +x 2=x 22 令 g ′(x)=0,得 x 8+ax +1=0,其两根为 x 1,x 2,且 x 1+x 2=- a ,x 1x 2=1,故 x 2= x 11, a =- x 1+x 11 .当 x ∈ (0,1]时, h ′(x)≤0,当 x ∈(1,e ]时, h ′(x)<0,即当 x ∈ (0, e ]时,h(x)单调递减,44∴ h(x) min = h(e) =- e ,故 g(x 1)-g(x 2)≥-e1- x3.(2018 ·兰州诊断 )已知函数 f(x)= +ln x 在 (1,+∞ )上是增函数,且 a>0.ax(1)求 a 的取值范围;1 a + b a(2) 若 b>0,试证明 1 <ln b <b a .a +b b b解: (1)f ′(x)=- a 1x 2+ 1x = a-x 2,因为 f ′ (x)≥ 0,且 a>0,所以 ax -1≥0,即 x ≥a 1.ax x ax a1 因为 x ∈(1,+∞),所以1≤1,即 a ≥1. 所以 a 的取值范围为 [1,+ ∞). aa + b1 - x(2)证明:因为 b>0,a ≥1,所以 a +b b >1. 又f(x)=1a-xx+ln x 在(1,+ ∞)上是增函数,令 h(x)=2 x -x 1 -2 x +x 1 ln x ,x ∈(0,e ],h ′ (x)=x 2,8 1+x 1- x ln x∴ g(x 1)- g(x 2)=g(x 1)-g11 aln x 1+x 1- +a - aln + -x 1+a =2 x 1-x 1 + 2aln x 1=x 1x 1 x 1 2 x 1- x 11 - 2 x 1+ x 11 ln x 1.则 [ g( x 1 )- g( x 2)] min=h(x)min ,x 2ln x 2-x 1ln x 1 x 1+ x 2 x2-x1 <ln 2 + 1? x 2ln x 2-x 1lnx 1<x 2ln x1+x2-x 1ln x1+x2+x 2-x 1? x 2ln 9+x2x <x 1ln 2+x1x +x 2-x 1,2 2x 1+ x 2 x 1+ x 2令 g(t)=tln 12+t t -ln 1+2 t -t +1, 则 g ′(t)=ln 2t +t ·1+ t·2 2+1+t21+t2t 1+ t 2t - 11 -x令t +1=x(x>0),h(x)= ln(1+ x)- x ,则 h ′(x)=1+x-1=1+x <0,h(x)在(0,+∞)上单调递减. 所 t - 1 t -1(2)证明:不妨设 x 1<x 2, f x x 2 --f x x1 <f ′x 2-x 1所以 f 1-a +ba +b -b a + b 1 a +ba +b b >f(1),即 a +b b +ln a +b b >0,化简得 a +1b <ln a +b b.a ·ba +b a a + b a a a ln b <b 等价于 ln b -b =ln 1+b - b <0,令 g(x)= ln(1+x)-x(x>0), aabb 1 - x则 g ′(x)=1+1 x -1=1+x <0,所以函数 g(x)在(0, + ∞ ) 上为减函数,所以 g a b = a a a + b a ln 1+ b -b =ln b -b<g(0)=0, 综上, a +1 b <ln a +b b <a b 得证4.(理 )已知函数 f(x)=xln x.(1) 求 f(x)的单调区间和极值;(2)设 A(x 1,f(x 1)),B(x 2,f(x 2)),且 x 1≠x 2,证明:f x2-f x1<f ′x 2- x 1 ′1解: (1)f(x)的定义域为 (0,+ ∞),f ′ (x)= ln x+x ·x =1+ln x.x11由 f ′ (x)>0 ,得 x>1;由 f ′ (x)<0 ,得 0<x<1,ee 所以 f(x) 的单调递增区间是 1,+ ∞ ,单调递减区间是 0, 1e , f (x)极小值=1 1 11e ln 1e =-e 1,f(x)无极大值. x 1+x 22 x 2x 2·x 2 2 x两边同除以 x 1 得, x2ln x1 <ln 2 + x2- 1,x 1 x 2 x 2 x 1 x1 1+x x12 1+x x12 x1令x x12= t ,则 t>1,即证: tln 12+t t <ln 1+2t +t -1.t -1- t -1,t +1 - t +1,2-1=ln 2t +1-t =ln 1+2 1+ t 2 1+ t 1+t以h(x)<h(0)=0,即ln(1+x)<x,即g′(t)=ln 1+t+1-t+-1<0 恒成立.所以g(t)在(1 ,+∞ )上是减函数.所以g(t)<g(1)=0,所以tln12+t t<ln1+2t+t-1得证.(1)若f(x)在区间(-∞,2)上为单调递增函数,求实数 a 的取值范围;(2)若a=0,x0< 1,设直线y=g( x)为函数f(x)的图象在x=x0 处的切线,求f( x)≤g(x).证:x-1- a解:(1)易得f′(x)=-e x ,由已知知f′(x)≥0 对x∈(-∞,2)恒成立,e故x≤1-a 对x∈(-∞,2)恒成立,∴ 1-a≥2,∴ a≤-1.故实数 a 的取值范围为(-∞,-1].x(2) 证明:a=0,则f(x)=e x.e函数f( x)的图象在x=x0 处的切线方程为y=g(x)=f′(x0)(x-x0)+f(x0).令h(x)=f(x)-g(x)=f(x)-f′(x0)(x-x0)-f(x0),x∈R,则h′(x)=f′(x)-f′(x0)=1-x x-1-x0=1-x ex0-1-x0ex.e ex0 ex+x0设φ(x)=(1-x)ex0-(1-x0)e x,x∈R,则φ′ (x)=-ex0-(1-x0)e x,∵ x0< 1,∴ φ′ ( x)< 0,∴ φ(x)在R 上单调递减,而φ(x0) =0,∴当x<x0时,φ(x)> 0,当x>x0时,φ(x)<0,∴当x<x0时,h′(x)>0,当x>x0时,h′(x)<0,∴ h(x)在区间(-∞,x0)上为增函数,在区间(x0,+∞)上为减函数,∴x∈R时,h(x)≤h(x0)=0,∴ f(x)≤g(x).。

导数不等式方法总结

导数不等式方法总结

导数不等式方法总结今天咱们来唠唠导数不等式的那些方法呀。

一、构造函数法。

这就像是搭积木一样呢。

当你看到一个导数不等式,你要想着怎么去构造一个合适的函数。

比如说,要是不等式一边是f(x),另一边是g(x),你就可以构造个新函数h(x)=f(x) - g(x)。

然后呢,对这个h(x)求导,通过导数的正负去判断h(x)的单调性。

要是h(x)单调递增,而且h(x)在某个点的值大于等于0,那在这个区间上h(x)就大于等于0,不等式就成立啦。

就像你找到一个小助手(构造的函数),让它帮你去搞定不等式。

二、放缩法。

这个方法有点像把东西变大或者变小来让不等式更容易看清楚。

比如说,我们知道一些常见的不等式放缩关系,像e^x≥x + 1这个,当你遇到有e^x和其他式子比较的不等式时,就可以把e^x放缩成x + 1来处理。

但是宝子们要小心哦,放缩的时候得保证方向是对的,不能乱放大或者缩小。

就像你给东西穿衣服,不能把大衣服套在小娃娃身上,也不能把小衣服硬往大娃娃身上套呀。

三、分类讨论法。

这个就有点麻烦,但是也很有用啦。

当导数里面有参数的时候,咱们就得根据参数的不同取值范围来讨论。

比如说参数a,当a大于0、等于0、小于0的时候,函数的导数情况可能完全不一样呢。

就像对待不同性格的小宠物,有的小宠物(参数取某个值时)很温顺,函数的导数很好处理,有的小宠物(参数取其他值)就有点调皮,导数的正负情况就复杂一些。

咱们得一个一个情况去分析,最后把各种情况综合起来,才能解决不等式。

四、利用函数的极值和最值。

函数的极值和最值可是很有用的小秘密武器哦。

你先求出函数的极值点,看看在这些极值点和区间端点处函数的值。

如果一个不等式要成立,你可以看这个函数在某个区间上的最小值或者最大值是不是满足不等式的要求。

就好比你要看看你养的小花朵(函数),在它最漂亮(极值、最值)的时候是不是能达到你想要的那个标准(不等式成立的条件)。

导数不等式的这些方法都很有趣呢,宝子们要多练习,多琢磨,这样遇到各种导数不等式就都不怕啦。

(完整版)构造函数法证明导数不等式的八种方法

(完整版)构造函数法证明导数不等式的八种方法

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点.2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证),现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可. 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数与构造函数是微积分中的重要概念,它们在证明不等式中起着重要作用。

本文将介绍一些导数与构造函数在证明不等式中的技巧,并通过具体的例子来加深理解。

1. 利用导数的性质进行不等式证明在证明不等式时,可以通过导数的性质来进行推导。

当需要证明一个函数在某个区间上单调递增或单调递减时,可以通过求导数并分析导数的正负性来进行证明。

假设一个函数f(x)在区间[a, b]上可导,求出其导数f'(x)并分析f'(x)的正负性,如果f'(x)恒大于零,那么函数f(x)在区间[a, b]上就是单调递增的;如果f'(x)恒小于零,那么函数f(x)在区间[a, b]上就是单调递减的。

通过这种方法,可以利用导数的性质来证明函数的单调性质,从而进一步推导出不等式。

2. 构造函数进行不等式证明构造函数是指通过一些技巧将原函数进行变形,从而更好地应用各种数学性质来进行不等式证明。

当需要证明一个不等式时,可以通过构造一个辅助函数来简化原不等式的证明过程。

通过巧妙地构造函数,可以使得不等式的证明更加直观、简单。

例1:证明当x>0时,有e^x>1+x。

解:可以通过在函数f(x) = e^x - (1+x)上应用导数的性质来证明这个不等式。

求导数得f'(x) = e^x - 1,显然f'(x)恒大于零,因此f(x)在区间(0, +∞)上单调递增。

又当x=0时,有f(0) = e^0 - (1+0) = 0,因此在区间(0, +∞)上有f(x)>0,即e^x>1+x。

通过导数的性质,成功证明了不等式e^x>1+x。

通过以上两个例子,可以看到导数与构造函数在不等式证明中的重要作用。

通过分析导数的性质以及巧妙地构造辅助函数,可以更好地理解、应用和证明各种不等式。

在实际的数学问题中,通常会遇到各种复杂的不等式,通过灵活运用导数与构造函数的技巧,可以更加轻松地解决这些问题。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。

例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。

2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。

例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

3. 构造反函数法:通过构造一个特定的反函数来证明不等式。

例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。

例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。

5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。

例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。

6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。

例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。

导数应用构造函数解不等式课件

导数应用构造函数解不等式课件
• 导数与不等式的基本概念 • 导数在不等式中的应用 • 构造函数解不等式的策略 • 构造函数解不等式的实例分析 • 总结与展望
导数的定义与性质
定义 性质
不等式的分类与性质
分类
性质
不等式具有传递性、可加性、可乘性 等性质,这些性质在构造函数解不等 式中具有重要应用。
利用导数研究函数的单调性
实例二:利用导数求解不等式
总结词
导数在求解不等式中具有关键作用,通过求导可以找 到不等式的解集。
详细描述
利用导数求解不等式时,首先需要找到满足不等式的解 集,然后通过求导数来判断函数的单调性,从而确定解 集的范围。例如,求解不等式$x^3 - x^2 - x + 1 < 0$,可以构造函数$f(x) = x^3 - x^2 - x + 1$,对其 求导得到$f'(x) = 3x^2 - 2x - 1$,令$f'(x) = 0$得到 $x = -1/3$或$x = 1$,当$x < -1/3$或$x > 1$时, $f'(x) > 0$,所以函数在区间$( -infty, -frac{1}{3}) $ 和$(1, +infty)$上单调递增;当$-1/3 < x < 1$时, $f'(x) < 0$,所以函数在区间$( -frac{1}{3}, 1)$上单调 递减。因此,不等式的解集为$( -infty, -frac{1}{3}) cup (1, +infty)$。
要点一
总结词
要点二
详细描述
导数在证明不等式中具有重要作用,通过构造函数和求导 可以找到不等式的证明方法。
构造函数是证明不等式的一种常用方法,通过构造函数并 对其求导,我们可以研究函数的单调性、极值等性质,从 而证明不等式。例如,要证明$a + b leq ab$,可以构造 函数$f(x) = x - frac{1}{x} - 2$,对其求导得到$f'(x) = 1 + frac{1}{x^2}$,由于$f'(x) > 0$,所以$f(x)$在$(0, +infty)$上单调递增,因此$f(a) geq f(b)$,即$a frac{1}{a} - 2 geq b - frac{1}{b} - 2$,整理得到$a + b leq ab$。

导数应用----构造函数解不等式

导数应用----构造函数解不等式

A.e2017 f (2017 ) f (0), f (2017 ) e2017 f (0) B.e2017 f (2017 ) f (0), f (2017 ) e2017 f (0)
C.e2017 f (2017 ) f (0), f (2017 ) e2017 f (0)
D.e2017 f (2017 ) f (0), f (2017 ) e2017 f (0)
下面的不等式在 R 上恒成立的是( )
A. f (x) >0 B.f (x) <0 C. f (x) > x D f (x) < x
对于 xf '(x) f (x) 0 ,可构造 F(x) xf (x) ,
则 F ( x) 单调递增; 原型: F(x)' [xf (x)]' xf '(x) f (x)
常见的构造函数模型:
4. f (x)g(x) f (x)g(x) F(x) f (x) b g(x)
特别地:xf (x) f (x) F(x) f (x) b x
常见的构造函数模型:
5. f (x) f (x) F(x) ex f (x) b
6. f (x) f (x) f (x)
f (x) >2,则 f (x) >2 x +4 的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
构造函数:设 h(x)=f(x)-(2x+4),
则 h′(x)=f′(x)-2>0,故 h(x)在 R 上单调递增,
又 h(-1)=f(-1)-2=0,
所以当 x>-1 时,h(x)>0,
分析:lgx 相当于变式训练 1 中的 x

A新高考数学 高考重难专攻(一) 导数与不等式的证明

A新高考数学   高考重难专攻(一) 导数与不等式的证明

成立.
适当放缩法
已知函数f(x)=aex-ln x-1. (1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间; (2)证明:当a≥1e时,f(x)≥0. [解] (1)f(x)的定义域为(0,+∞),f′(x)=aex-1x. 由题设知,f′(2)=0,所以a=21e2. 从而f(x)=21e2ex-ln x-1,f′(x)=21e2ex-1x. 当0<x<2时,f′(x)<0;当x>2时,f′(x)>0. 所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
1.待证不等式的两边含有相同的变量时,一般地,可以直接构造“左减右” 或“右减
2.利用构造差函数证明不等式的基本步骤 (1)作差或变形; (2)构造新的函数g(x); (3)利用导数研究g(x)的单调性或最值; (4)根据单调性及最值,得到所证不等式.
x=ln 2.
于是当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln 2)
ln 2
(ln 2,+∞)
f′(x)

0

f(x)
2(1-ln 2+a)
故 f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞). 所以 f(x)在 x=ln 2 处取得极小值,极小值为 f(ln 2)=2(1-ln 2+a),无极大值.
(2)证明:当a=0,x∈(0,1)时,x2-1x<fexx等价于-elnx x+x2-1x<0, ∵当x∈(0,1)时,ex∈(1,e),-ln x>0,∴-elnx x<-ln x, ∴只需要证-ln x+x2-1x<0在(0,1)上恒成立. 令g(x)=-ln x+x2-1x,x∈(0,1), ∴g′(x)=-1x+2x+x12=2x3-x2x+1>0, 则函数g(x)在(0,1)上单调递增,于是g(x)<g(1)=-ln 1+1-1=0, ∴当x∈(0,1)时,x2-1x<fexx.

利用导数证明不等式的常用方法

利用导数证明不等式的常用方法

利用导数证明不等式的常用方法导数是微积分中的重要理论工具,其应用十分广泛,其中一项应用就是证明不等式。

下面将介绍一些利用导数证明不等式的常用方法。

首先,我们需要明确一些基本概念和定理。

设函数f(x)在区间[a,b]上连续,(a,b)上可导,那么:1.如果f'(x)>0,那么f(x)在[a,b]上单调递增;如果f'(x)<0,那么f(x)在[a,b]上单调递减。

2.如果在(a,b)上f'(x)>g'(x),则f(x)>g(x)。

3.如果在(a,b)上f'(x)≥g'(x),则f(x)≥g(x)。

基于以上定理,我们将介绍三种常用的利用导数证明不等式的方法。

方法一:使用函数性质和导数的单调性这种方法适用于证明比较简单的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造一个连续函数f(x)。

2.然后,求出f'(x),根据导数的正负确定f(x)的单调性。

3.最后,根据f(x)的单调性和不等式的要求,得出不等式的成立。

例如,我们来证明当x>0时,有e^x>1+x:1.构造函数f(x)=e^x-1-x。

2.求导得到f'(x)=e^x-1,由于e^x>0,所以f'(x)>0。

3.根据f(x)的单调性,得出e^x-1-x在x>0时为递增函数。

4.由于f(0)=e^0-1-0=0,所以当x>0时,有f(x)>0,即e^x>1+x成立。

方法二:使用导数的比较性质这种方法适用于需要比较多个函数的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造多个连续函数。

2.然后,求出这些函数的导数。

3.利用导数的比较性质,确定函数之间的大小关系。

4.最后,根据函数之间的大小关系和不等式的要求,得出不等式的成立。

例如,我们来证明当0 < x < 1时,有x < ln(1 + x):1.构造函数f(x) = ln(1 + x) - x。

利用导数证明不等式之构造函数法【有答案】

利用导数证明不等式之构造函数法【有答案】

利用导数证明不等式之构造函数法题型一:移项作差构造函数1、解题思路第一步:判断所证明不等式是否符合移项作差构造函数的特点 将证明不等式()()f xg x >(()()f xg x <( 的问题转化为证明()()0f xg x ->(()()0f x g x -< ,进而构造函数()()()h x f x g x =-。

第二步:符合后构造函数,利用导数研究函数的单调性; 第三步:函数问题转化回不等式问题,得出结论。

[点拨]构造的函数前提是要可导,求导过程较容易,多是整式且最多利用二次求导研究其单调性问题。

比如:不等式11ln 2x x x -+<(证明时,直接移项作差构造的函数()11ln 2x x f x x -+=-(求导过于复杂且无法利用导数快速研究其单调性;2、经典例题例1:(2019春-苏州期末)已知函数()ln(1)f x x x =+-,求证:当1x >-时,恒有11ln(1)1x x x -≤+≤+.[思路分析]第一步:判断不等式特点,右边不等式移项作差直接可以利用已知函数证明,左边不等式移项作差构造函数1()ln(1)11g x x x =++-+(,可直接求导研究函数单调性,都符合移项作差构造函数特点;第二步:分别利用导数求解函数()y f x =和()y g x =的单调性和最值; 第三步:转化回不等式问题,得出结论. [解析]证明:()1()1111xf x x x x '=-=->-++( ∴当10x -<<时,()0f x '>,即()f x 在(1,0)x ∈-上为增函数 当0x >时,()0f x '<,即()f x 在(0,)x ∈+∞上为减函数, 故函数()f x 的单调递增区间为(1,0)-,单调递减区间(0,)+∞, 于是函数()f x 在(1,)-+∞上的最大值为max ()(0)0f x f ==,因此,当1x >-时,()(0)0f x f ≤=,即ln(1)0x x +-≤,∴ln(1)x x +≤(右边得证),现证左边,令1()ln(1)11g x x x =++-+,则2211()1(1)(1)xg x x x x '=-=+++ 当(1,0)x ∈-时,()0g x '<;当(0,)x ∈+∞时,()0g x '>,即()g x 在(1,0)x ∈-上为减函数,在(0,)x ∈+∞上为增函数, 故函数()g x 在(1,)-+∞上的最小值为min ()(0)0g x g ==, ∴当1x >-时,()(0)0g x g ≥=,即1ln(1)101x x ++-≥+( ∴1ln(1)11x x +≥-+,综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+。

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。

构造函数法是通过构造函数来证明不等式的真实性。

构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。

构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。

本文将介绍构造函数法证明不等式的八种方法。

一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。

线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。

例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。

因此,原不等式成立。

二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。

对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。

例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。

导数证明不等式的几个方法

导数证明不等式的几个方法

导数证明不等式的几个方法
1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有
x x x ≤+≤+-)1ln(1
11
如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可
2、作差构造函数证明 已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33
2)(x x g =的图象的下方;
构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。

3、合理换元后构造函数可大大降低运算量以节省时间
(2007年,山东卷)
证明:对任意的正整数n ,不等式321)1ln(n n n n ->+ 都成立.
4、从特征入手构造函数证明
若函数y=)(x
(x
f恒成立,且常
f >-)
f在R上可导且满足不等式x)(x
数a,b满足a>b,求证:.a)(a
f
f>b)(b
几个构造函数的类型:
5、隔离函数,左右两边分别考察。

(完整版)导数证明不等式题型全

(完整版)导数证明不等式题型全

导数题型一:证明不等式不等式的证明问题是中学数学教学的一个难点,传统证明不等式的方法技巧性强,多数学生不易想到,并且各类不等式的证明没有通性通法.随着新教材中引入导数,这为我们处理不等式的证明问题又提供了一条新的途径,并且在近年高考题中使用导数证明不等式也时有出现,但现行教材对这一问题没有展开研究,使得学生对这一简便方法并不了解.利用导数证明不等式思路清晰,方法简捷,操作性强,易被学生掌握。

下面介绍利用单调性、极值、最值证明不等式的基本思路,并通过构造辅助函数,证明一些不等式。

一.构造形似函数型例1.求证下列不等式(1))1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x (相减)(2)πx x 2sin > )2,0(π∈x (相除两边同除以x 得π2sin >x x )(3)x x x x -<-tan sin )2,0(π∈x(4)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(换元:设x x t 1+=)(5)已知函数()ln(1)f x x x =+-,1x >-,证明:11ln(1)1x x x -≤+≤+巩固练习:1.证明1>x 时,不等式xx 132-> 2.0≠x ,证明:x e x +>13.0>x 时,求证:)1ln(22x x x +<- 4.证明: ).11(,32)1ln(32<<-+-≤+x x x x x 5.证明: 331an x x x t +>,)2,0(π∈x .二、需要多次求导例2.当)1,0(∈x 时,证明:22)1(ln )1(x x x <++例3.求证:x >0时,211x 2x e x ->+例4.设函数f (x )=ln x +2a x 2-(a +1)x (a >0,a 为常数).若a =1,证明:当x >1时,f (x )<12x 2-21x x +三、作辅助函数型例5.已知:a 、b 为实数,且b >a >e ,其中e 为自然对数的底,求证:a b >b a .例6.已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(i)求函数f(x)的最大值;(ii)设0<a<b,证明0<g(a)+g(b)-2g(2b a +)<(b-a)ln2.巩固练习6、证明 (1) )0(ln b a a ab a bb ab <<-<<-(2)0,0>>b a ,证明b a b a b a b a ≤++)2((3)若2021π<<<x x ,证明:1212tan tan x x x x >四、同增与不同增例7.证明:对任意21ln 0,1e e x x x x x ---><+.例8.已知函数1()1,()ln x x f x g x x x e-=-=-证明:21(ln )()1x x f x e ->-.五、极值点偏移(理科)例9.已知函数.如果且证明.例10.已知函数()(1)e x f x x x -=-∈R ,,其中e 是自然对数的底数.若12x x ≠,且12()()f x f x =,求证:12 4.x x +>六、放缩法例11.已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。

高考数学必杀技系列之导数5构造函数证明不等式

高考数学必杀技系列之导数5构造函数证明不等式

高考数学必杀技系列之导数5构造函数证明不等式
专题5 构造函数证明不等式
一、考情分析
函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.
二、解题秘籍
(一) 把证明转化为证明
此类问题一般是有最小值且比较容易求,或者有最小值,
但无法具体确定,这种情况下一般是先把的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围
此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.
(五) 改变不等式结构,重新构造函数证明不等式
此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:
①去分母,把分数不等式转化为整式不等式;
②两边取对数,把指数型不等式转化为对数型不等式;
③两边同时除以,此方法适用于以下两类问题:
(i)不等式为类型,且的符号确定;
(ii)不等式中含有,有时为了一次求导后不再含有对数符号,可考虑此法.
(六) 通过减元法构造函数证明不等式
对于多变量不等式,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.
(七) 与数列前n项和有关的不等式的证明
此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,,n代换,然后用叠加法证明.
完整电子版可关注下载。

构造函数证明不等式

构造函数证明不等式

突破疑难点1构造函数证明不等式构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x<x<e x(x>0),xx+1≤ln(x+1)≤x(x>-1);(3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.突破疑难点2利用分类讨论法确定参数取值范围一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若a<f(x)对x∈D恒成立,则只需a<f(x)min.若存在x0∈D,使a>f(x0)成立,则只需a>f(x)min;若存在x0∈D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围.常见有两种情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另外一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.突破疑难点3两法破解函数零点个数问题两类零点问题的不同处理方法:利用零点存在性定理的条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.突破疑难点4两法破解由零点个数确定参数问题已知函数有零点求参数范围常用的方法:(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.。

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。

【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=,则x x x x F 12)(2--='=xx x x )12)(1(2++- 当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。

读者也可以设)()()(x g x f x F -=做一做,深刻体会其中的思想方法。

3、换元法构造函数证明【例3】 证明:对任意的正整数n ,不等式3211)11ln(nn n ->+ 都成立. 分析: 从所证结构出发,只需令x n=1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(23++-=x x x x h ,求导即可达到证明。

【解】令)1ln()(23++-=x x x x h ,则1)1(31123)(232+-+=++-='x x x x x x x h 在),0(+∞∈x 上恒正, 所以函数)(x h 在),0(+∞上单调递增,∴),0(+∞∈x 时,恒有,0)0()(=>h x h 即0)1ln(23>++-x x x,∴32)1ln(x x x ->+对任意正整数n ,取3211)11ln(),0(1nn n n x->++∞∈=,则有 【警示启迪】我们知道,当()F x 在[,]a b 上单调递增,则x a >时,有()F x ()F a >.如果()f a =()a ϕ,要证明当xa >时,()f x >()x ϕ,那么,只要令()F x =()f x -()x ϕ,就可以利用()F x 的单调增性来推导.也就是说,在()F x 可导的前提下,只要证明'()F x >0即可.4、从条件特征入手构造函数证明【例4】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.a)(a f >b )(b f【解】由已知 x)(x f '+)(x f >0 ∴构造函数 )()(x xf x F =,则=)('x Fx )(x f '+)(x f >0, 从而)(x F 在R 上为增函数。

b a > ∴)()(b F a F > 即 a )(a f >b )(b f【警示启迪】由条件移项后)()(x f x f x +',容易想到是一个积的导数,从而可以构造函数)()(x xf x F =,求导即可完成证明。

若题目中的条件改为)()(x f x f x >',则移项后)()(x f x f x -',要想到是一个商的导数的分子,平时解题多注意总结。

5、主元法构造函数例.(全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=(1) 求函数)(x f 的最大值;(2) 设b a<<0,证明 :2ln )()2(2)()(0a b b a g b g a g -<+-+<.分析:对于(II )绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下: 证明:对x x x g ln )(=求导,则1ln )('+=x x g .在)2(2)()(b a g b g a g +-+中以b 为主变元构造函数,设)2(2)()()(xa g x g a g x F +-+=,则2ln ln )]2([2)()('''x a x x a g x g x F +-=+-=. 当a x <<0时,0)('<x F ,因此)(x F 在),0(a 内为减函数.当a x>时,0)('>x F ,因此)(x F 在),(+∞a 上为增函数.从而当a x=时, )(x F 有极小值)(a F .因为,,0)(a b a F >=所以0)(>b F ,即.0)2(2)()(>+-+ba gb g a g 又设2ln )()()(a x x F x G --=.则)ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=. 当0>x时,0)('<x G .因此)(x G 在),0(+∞上为减函数.因为,,0)(a b a G >=所以0)(<b G ,即2ln )()2(2)()(a b ba gb g a g -<+-+. 6、构造二阶导数函数证明导数的单调性 例.已知函数21()2xf x ae x =-(1)若f(x)在R 上为增函数,求a 的取值范围; (2)若a=1,求证:x >0时,f(x)>1+x 解:(1)f ′(x)= ae x -x,∵f(x)在R上为增函数,∴f ′(x)≥0对x∈R恒成立, 即a≥xe-x对x∈R恒成立记g(x)=xe-x,则g′(x)=e-x-xe-x=(1-x)e -x , 当x>1时,g′(x)<0,当x<1时,g′(x)>0. 知g(x)在(-∞,1)上为增函数,在(1,+ ∞)上为减函数, ∴g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, ∴a ≥1/e, 即a 的取值范围是[1/e, + ∞) (2)记F(X)=f(x) -(1+x) =)0(1212>---x x x e x则F ′(x)=e x -1-x,令h(x)= F ′(x)=e x -1-x,则h ′(x)=e x -1当x>0时, h ′(x)>0, ∴h(x)在(0,+ ∞)上为增函数, 又h(x)在x=0处连续, ∴h(x)>h(0)=0即F ′(x)>0 ,∴F(x) 在(0,+ ∞)上为增函数,又F(x)在x=0处连续, ∴F(x)>F(0)=0,即f(x)>1+x .小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题.不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为)(x f m >(或)(x f m <)恒成立,于是m 大于)(x f 的最大值(或m 小于)(x f 的最小值),从而把不等式恒成立问题转化为求函数的最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.7.对数法构造函数(选用于幂指数函数不等式) 例:证明当2111)1(,0x x ex x ++<+>时8.构造形似函数例:证明当a b b a e a b >>>证明,例:已知m 、n 都是正整数,且,1n m <<证明:m n n m )1()1(+>+【思维挑战】1、设x a x x x f a ln 2ln 1)(,02+--=≥ 求证:当1>x 时,恒有1ln 2ln 2+->x a x x , 2、已知定义在正实数集上的函数,ln 3)(,221)(22b x a x g ax x x f +=+=其中a >0,且a a a b ln 32522-=, 求证:)()(x g x f ≥ 3、已知函数xxx x f +-+=1)1ln()(,求证:对任意的正数a 、b , 恒有.1ln ln ab b a -≥- 4、)(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a <b ,则必有 ( )(A )af (b )≤bf (a ) (B )bf (a )≤af (b )(C )af (a )≤f (b )(D )bf (b )≤f (a )【答案咨询】1、提示:xa x x x f 2ln 21)(+-=',当1>x ,0≥a 时,不难证明1ln 2<x x ∴0)(>'x f ,即)(x f 在),0(+∞内单调递增,故当1>x 时,0)1()(=>f x f ,∴当1>x 时,恒有1ln 2ln 2+->x a x x2、提示:设b x a ax x x f x g x F --+=-=ln 3221)()()(22则x a a x x F 232)(-+='=xa x a x )3)((+- )0(>x 0>a ,∴ 当a x =时,0)(='x F ,故)(x F 在),0(a 上为减函数,在),(+∞a 上为增函数,于是函数)(x F 在),0(+∞上的最小值是0)()()(=-=a g a f a F ,故当0>x 时,有0)()(≥-x g x f ,即)()(x g x f ≥3、提示:函数)(x f 的定义域为),1(+∞-,22)1()1(111)(x x x x x f +=+-+='∴当01<<-x 时,0)(<'x f ,即)(x f 在)0,1(-∈x 上为减函数当0>x时,0)(>'x f ,即)(x f 在),0(+∞∈x 上为增函数因此在)(,0x f x 时=取得极小值0)0(=f ,而且是最小值于是x x x f x f +≥+=≥1)1ln(,0)0()(从而,即xx +-≥+111)1ln( 令a b x b a x -=+->=+1111,01则 于是abb a -≥1ln因此abb a -≥-1ln ln4、提示:x x f x F )()(=,0)()()(2'≤-='x x f x xf x F ,故xx f x F )()(=在(0,+∞)上是减函数,由b a < 有bb f a a f )()(≥⇒ af (b)≤bf (a) 故选(A )1、由f(x)=ln(1+x)-x的导数为1/(x+1)-1=-x/(x+1)<0得知f(x)在(-1,∞)上单调减少.2、所以bn=ln(1+n)-n,an=ln(n+1)-bn=n一、√n<√(n+2)-c/√(n+2) 得 c=1+(√(n+2)-√n)^2/2由于队所有n成立,而√(n+2)-√n可以任意小,且当c=1时,不等式依然成立,所以c的范围是(-∞,1]二、分两步证明,先用归纳法证明不等式(1) a1a3...a(2n-1)/[a2a4...a(2n)]<1/√(2n+1)n=1时a1/a2=1/2=1/√4<1/√3设n=k时成立,即a1a3.a(2k-1)/[a2a4...a(2k)]<1/(√2k+1)所以a1a3...a(2k-1)a(2k+1)/[a2a4...a(2k)a(2k+2)]<(2k+1)/[√(2k+1)(2k+2)]=√(2k+1)√(2k+3)/[(2k+2)√(2k+3)]<(2k+1+2k+3)/[2(2k+2)√(2k+3)]=1/√(2k+3)所以当n=k+1时,不等式(1)成立.所以对任意n>0不等式(1)成立.第二步运用第一问的不等式(c=1)时,1/√(n+2)<√(n+2)-√n得a1/a2+a1a3/[a2a4]+...+a1a3...a(2n-1)/[a2a4...a(2n)<√3-√1+√5-√3+...+√(2n+1)-√(2n-1) =√(2n+1)-1=√[a(2n)+1]-1证毕.。

相关文档
最新文档