净水厂设计计算说明书

合集下载

净水厂设计计算书

净水厂设计计算书

净水厂设计计算书设计计算书:净水厂设计一、引言净水厂是为了提供清洁、安全、可靠的饮用水供应服务而建立的设施。

本设计计算书旨在对净水厂的设计进行全面的计算和说明,以确保其设计符合相关标准和要求。

二、设计流程1.确定供水规模和水质要求:根据用户需求确定净水厂的设计处理量,并确定水质要求,包括对悬浮物、有机物、微生物和化学成分的要求。

2.水源调查和选择:对供水水源进行调查和评估,确定其水质和水量,并选择最适合的水源。

3.工艺流程选择:选择适当的净水工艺流程,包括预处理、混凝、絮凝、过滤、消毒等环节,并根据水源水质和水量要求进行计算。

4.工艺设备选择:根据工艺流程选择适当的设备,并进行设备数量和尺寸的计算。

常用设备包括澄清池、絮凝池、滤池、曝气池、消毒装置等。

5.设备布置和管道设计:根据工艺设备的尺寸和数量,进行设备布置和管道设计,以确保净水效果和流程的顺畅。

6.水源保护措施:根据供水水源的特点,设计并实施相应的水源保护措施,确保供水水源的安全和可靠性。

7.操作和维护方案:制定净水厂的操作和维护方案,包括设备的日常操作、维护保养和定期检查等,以确保净水厂的正常运行。

三、设计计算1.净水流程计算:根据设计处理量和工艺流程,计算净水的流程和时间,并确定各个环节的处理效果。

2.设备尺寸计算:针对各种设备,进行尺寸计算,包括澄清池的容积、滤池的面积、消毒装置的处理量等,以确保设备能够满足设计要求。

3.管道设计计算:根据净水厂的布置和管道的长度、直径等参数,进行管道设计计算,并确定管道的材料和压力等级。

4.水力计算:针对净水流程、设备和管道,进行水力计算,包括管道的流速、压力损失、泵的扬程和功率等。

5.投资和运行成本计算:根据设备和材料的价格以及净水厂的运行成本,进行投资和运行成本的计算,并进行经济效益评估。

四、设计结果与讨论根据以上计算,得到净水厂的设计结果,并对其进行讨论,包括工艺流程的合理性、设备的选择和尺寸、管道的布局以及经济效益等方面。

某县净水厂给水处理设计计算书

某县净水厂给水处理设计计算书

某县净水厂给水处理设计计算书县净水厂给水处理设计计算书1.项目背景和目的县净水厂给水处理设计的目的是为了解决该县居民饮水问题。

该县面临着水资源短缺和水质污染的双重挑战。

通过建设一座净水厂,可以有效地提高水质,保障居民的健康饮水需求。

2.设计参数(1)城市规模:县人口约30万人,预测未来15年内增长10%。

(3)水质要求:根据国家标准,出水水质需要符合饮用水标准。

3.工艺流程根据给水处理的工艺要求,设计采用以下流程:原水进水池→格栅→调节池→自流式砂滤池→混凝沉淀池→滤水池→消毒池→供水。

其中,原水经过格栅、调节池预处理后,进入砂滤池进行过滤。

滤后水进入混凝沉淀池,经过混凝沉淀后再进入滤水池,最后经消毒处理后供水。

4.工艺参数计算(4)滤水池:滤水池的水层深度一般为1~2.5m,本设计采用1.5m。

(5)混凝剂投加量:根据原水悬浮物浓度和水质要求,确定混凝剂投加量。

一般情况下,混凝剂投加量为铝盐的0.8~1.0 mg/L。

本设计按照0.9 mg/L来计算。

5.工艺图纸根据上述设计参数和工艺流程,绘制出净水厂给水处理流程图纸。

6.总结和展望通过对县净水厂给水处理的设计计算,我们可以得出合理的设施规模和工艺参数。

通过提供高效的净水处理流程,该县居民可以获得更干净、更健康的饮用水。

然而,未来水资源短缺和水质污染问题仍然存在,需要进一步加强水资源保护和管理工作。

以上是县净水厂给水处理设计计算书,设计过程中考虑到了城市规模、水质要求等因素,为解决该县的饮水问题提供了有力的支持。

希望该设计能够对相关领域的学生和专业人士有所帮助。

净水厂设计说明书

净水厂设计说明书

净水厂设计说明书班级:给水排水级1班姓名:学号:……大学市政与环境工程系20 年1月目录第一章总论第二章工艺流程的确定及论证(评价)第三章混凝剂投配设备的设计第四章.水厂管线设计第五章絮凝池设计第六章沉淀池设计第七章过滤工艺设计第八章清水池设计第九章吸水井设计第十章二泵站设计第十一章净水厂总体布置设计依据净水厂设计说明书第一章总论1.1.设计题目某市净水厂设计1.2.设计时间第七学期第十七,十八两周(12.24-01.06)1.3.设计任务水厂平面布置及高程布置1.4.原始资料(1)设计供水量为5000+13*1000=6.3万m 3 /d.(2)水厂所在地:长春地区(3)设计地面标高:13.00(4)水源为河水,河水受到污染,水质分析报告如下:编号指标单位分析结果1 浊度 NTU 最大800,平均1102 色度度 133 水温℃最高22,最低14 PH - 7.0-8.55 总硬度 mg/L(以CaCO3计) 3806 总大肠菌群 CFU/L 6507 细菌总数 CFU/mg 15008 耗氧量 mg/L 79 BOD5 mg/L 410 氨氮 mg/L 0.911 COD mg/L 1112 氯仿 mg/L 0.08第二章.工艺流程的确定及论证(评价)2.1 设计方案方案一KMno4 PAM助凝 Cl2原水→静态混合器→机械絮凝池→平流沉淀池→V型滤池→清水池混凝剂粉炭城市管网二泵站方案二KMno4 PAM助凝 Cl2原水→静态混合器→网格絮凝池→斜板沉淀池→普通快滤池→清水池混凝剂粉炭城市管网二泵站2.2. 各构筑物凝聚剂消毒剂选择依据及优点2.2.1 方案技术比较2.2.1.1 消毒剂水的消毒处理是生活饮用水处理工艺中的最后一道工序,其目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。

氯: 消毒灭细菌,病毒效果好,而且原水水质PH=7,消毒效果更理想,在配水管网中有剩余消毒作用, 应用广泛,适用于极大多数净水厂。

净水厂课程设计说明书

净水厂课程设计说明书

二、设计计算内容 2.1. 设计水质水量(1)、设计水质:本设计给水处理工程设计水质满足国家生活饮用水卫生标准(GB5749-2006),处理的目的是去除原水中悬浮物质,胶体物质、细菌、病毒以及其他有害万分,使净化后水质满足生活饮用水的要求。

生活饮用水水质应符合下列基本要求:水中不得含有病原微生物;水中所含化学物质及放射性物质不得危害人体健康;水的感官性状良好。

(2)、设计水量水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以水质最不利情况进行校核。

水厂自用水量主要用于滤池冲洗和澄清池排泥等方面。

城镇水厂只用水量一般采用供水量的5%—10%,本设计取6%,则设计处理量为:dQ=q ×(1+0.06)=55000×(1+0.06)=58300(m3/d ) 式中: Q ——水厂日处理量;a ——水厂自用水量系数,一般采用供水量的5%—10%,本设计取6%; Qd ——设计供水量(m3/d ),为5.5万m3/d 。

根据水厂设计水量1万~5万dm3小型水厂,5万~10万d m 3为中型水厂,10万d m 3以上为大型水厂的标准可知水厂为中型水厂。

2.2. 水厂工艺方案确定及技术比较(1)、给水处理厂工艺流程方案的选择及确定方案一:原水 → 一泵房 → 静态混合器 →往复式隔板絮凝池 →平流沉淀池 → 普通快滤池 → 清水池 → 二泵房 → 用户 方案二:原水 → 一泵房 → 扩散混合器 →机械搅拌絮凝池往复式隔板絮凝池 → 平流沉淀池 → V 型滤池 → 清水池 → 二泵房 → 用户(2)、方案技术比较:综上所述:根据以上各构筑物的特点以及实际情况并进行比较,本设计选用方案一较合理。

2.3给水单体构筑物设计计算 2.3.1 混凝剂配置和投加 (1)、设计参数根据原水水质及水温,参考有关水厂的运行经验,选精致硫酸铝为混凝剂。

最大投加量为20mg/L ,精致硫酸铝投加浓度为10%。

20万吨净水厂设计计算说明书

20万吨净水厂设计计算说明书

目录一、总论 (2)1.设计任务及要求 (2)2.设计原始资料 (2)二、总体设计概况 (3)1、水厂规模 (3)2、总体设计 (3)2.1确定给水处理厂工艺流程 (3)2.2水厂工艺方案确定及技术比较 (3)三、给水单体构筑物设计计算 (5)(一)、混凝剂配制和投加 (5)(1)、设计参数 (5)(2)、溶液池设计及计算 (5)(二)、混合设备的设计 (6)(三)、反应设备的设计 (6)1、回转式隔板絮凝池 (6)2、平流沉淀池 (9)3、滤池 (12)4、进出水系统 (20)四、消毒 (21)五、其他设计 (21)1、清水池 (21)2、吸水井的设计 (24)3、二级泵房的设计 (24)4、辅助建筑物面积设计 (24)5、水厂管线 (24)6、道路及其它 (24)六、水厂总体布置 (25)参考文献 (25)一、总论1.设计任务及要求给水处理课程设计的目的,一方面在于培养学生的工程思想,另一方面在于学习给水处理工艺设计的基本方法。

具体表现为巩固与运用所学的理论知识,熟悉设计步骤与内容,培养分析问题和解决问题的能力。

2.设计的原始资料该城镇地处北京东部,是北京的一座重要的卫星城市,现有一座地下水源水厂和相应配套的供水系统。

近年来,由于人口的增多及工业发展,城镇规模不断扩大,现有的城市基础设施,特别是城市供水系统难以满足供水要求。

目前生活供水严重不足,大部分地区采用定时供水措施勉强维持,楼房二层无水,一些平房在高峰用水时也常发生停水现象,严重影响了市民的正常生活和工业生产发展,急需开发新水源以解决供水不足的问题。

(1)地理条件:地形平坦,稍向西倾斜,地势平均标高为22米(河岸边建有防洪大堤)(2)厂位置占地面积:水厂位置距河岸200米,占地面积充分。

(3)水文资料:河流年径流量3.76――14.82亿立方米,河流主流量靠近西岸。

取水点附近水位:五十年一遇洪水位:21.84米;百年一遇洪水位:23.50米;河流平常水位:15.80米;河低标高:10米。

净水厂设计计算说明书

净水厂设计计算说明书

1自然条件地形、地质福州市地处闽江下游福州盆地,盆地总面积约200Km2,四周有鼓山、旗山、五虎山莲花峰等群山环抱。

地貌类型以平原为主,地势由西北向东南倾斜,市中心散落有乌山、于山和屏山等小山,南台岛上有仓山、盖山和城门山。

市区高程一般为5~15m(黄海高程系),闽江横贯市区,由于地势较低,易受洪涝灾害,需沿江、河筑堤。

市区主要有两类地质:一是靠山的丘陵地区,主要在于于山、乌山、屏山一带以及市区四周群山余脉高地和仓山区丘陵地带,容许承载力约;二是淤积、冲积地区为高压缩性土,范围较广,淤泥埋藏浅,容积承载力为~,地下水位高,一般在地面下~2.0m。

气象条件福州市属于亚热带海洋性季风气候,夏季炎热多雨,冬季温暖少雨。

(1)气温年平均:19.6摄氏度极端最高:41.1摄氏度(1950年7月19日)极端最低:-2.5摄氏度(1940年1月25日)(2)水量年平均:1355.8mm年平均降水天数:天24小时最大降水量:167.4mm暴雨主要出现月份:5~9月(3)霜冻年无霜期326天(4)风常年主导风向为西北风和东南风,冬季多西北风,夏季盛行东南风。

平均风速:2.8m/s极大风速:40.7m/s基本风压:m2台风影响本市始于5月,结束于11月中旬,以7月中旬至9月中旬次数最多。

(5)湿度年平均相对湿度77%最大相对湿度84%最小相对湿度5%(6)蒸发量年平均蒸发量 1451.1mm水文条件闽江是福建省最大河流,水量充沛。

闽江在淮安以下分为两支,北支为北港,穿越市区至马尾,将中心城区分为江北平原和南台岛两部分,长为30.5km,平均水面坡降‰,枯水季水面宽150~200m。

南支为南港,又名乌龙江,经洪塘、湾边、纳入大漳溪河以后,出峡兜于马尾、长乐营前与北港又合二为一,南港长34.4km,进入河口段经亭江、倌口、琅歧流入东海。

闽江流域面积60992Km2,水系全长2959Km,流经36个县、市。

根据竹歧水文站1936年至1980年统计资料:闽江下游年平均径流总量为亿m3,1992年7月7日最大洪峰流量30300m3/s,1971年8月30日最枯流量196m3/s,水口电站建成后,水库对洪峰调节作用不显著,最大下泄流量(坝下保证流量)为308m3/s。

净水厂设计计算说明书

净水厂设计计算说明书

净水厂设计计算说明书一、引言净水厂是指将海水、淡水或含有杂质的水进行过滤、净化处理,以获得符合饮用水及工业用水标准的设施。

本设计计算说明书旨在提供一个完整的净水厂的设计计算方案,确保净水厂的正常运行和满足水质要求。

二、设计要求1.处理水质要求:根据当地的水质标准,确定净水厂需要处理水的主要指标,并确保出水质量符合国家及相关标准;2.处理能力要求:根据预计的供水量,确定净水厂的处理能力,确保满足市场需求;3.设计方案要求:考虑经济性、可行性和可持续发展,确定合适的净水厂设计方案。

三、设计计算内容1.进水水质分析及处理方案进水水质分析是净水厂设计的重要基础工作。

通过对原水水质的分析,确定需要去除的污染物种类及其浓度,以便选择合适的处理工艺和设备。

-对原水水质进行逐项分析,包括悬浮物、溶解物、微生物、有机物和无机物等;-根据原水水质分析结果,确定合适的处理工艺,如预处理、混凝、沉淀、过滤和消毒等;-计算所需处理量,确定处理设备的规格和数量。

2.设备选型与计算净水厂的设备选型与计算是确保设备运行正常并满足水质要求的重要环节。

对每个处理工艺的设备进行选型与计算,并设计出合理的设备配置方案。

-根据处理工艺,选取适合的设备,如加药装置、混凝剂投加设备、过滤设备和消毒设备等;-根据处理工艺参数和运行条件,计算设备的规格,如滤料的直径、厚度和过滤速度等;-确定设备配置方案,进行设备布置图的设计。

3.过程设计与计算过程设计与计算是净水厂设计的核心内容之一,包括净水厂的流程设计、设备布置和运行参数计算等。

-确定净水厂的处理流程,包括原水处理、混凝、沉淀、过滤和消毒等;-进行净水厂的流量和压力计算,确定管道和泵站的规格和数量;-进行各处理工艺设备的运行参数计算,如沉淀池的泥泵流量、混凝剂用量和消毒剂用量等。

4.安全与环保设计净水厂的安全与环保设计是确保净水厂运行安全和环保的重要环节。

针对净水厂可能面临的危险和环境污染问题,进行相应的设计和措施。

净水厂设计计算书

净水厂设计计算书

二 设计计算内容一、 水厂规模及水量确定综合生活用水量:Q 1=270000×250×96%=64800000L/d=64800m 3/d 生产用水量:Q 2=12000+12000+12000+8000=44000m 3/d 工业企业用水量:Q 3=[(25×1600×3+35×400×3+60×400×3)+(25×1600×3+35×400×3+40×400×3)+(25×1000×3)+(25×1600×3)]/1000=639m 3/d 浇洒绿地用水量:Q 4=(Q 1 +Q 2 +Q 3 )×10%=(64800+44000+639) ×10%=10944m 3/d 未预见用水及管网漏水量: Q 5=20%×(Q 1+Q 2+Q 3+Q 4)=24077 m 3/d 设计水量:Q d =Q 1+Q 2+Q 3+Q 4+Q 5=144460 m 3/d=6019 m 3/h=1.67 m 3/s 水厂自用水量取5% Q I =1.05×TQd=6320.125 m 3/h 消防水量:Qx=55×2=110L/s=9504 m 3/d二. 给水工艺流程的确定及构筑物的选择 2.1工艺流程的确定水厂以地表水作为水源,工艺流程如图1所示。

原水混 合絮凝沉淀池滤 池混凝剂消毒剂清水池二级泵房用户图1 水处理工艺流程2.2构筑物形式的选择根据已选工艺流程,在设计中混合设施选用机械混合池,反应池选用折板絮凝池,沉淀池选用平流式沉淀池,滤池选用V 型滤池,采用加氯消毒。

三、 给水单体构筑物设计计算 (一) 混凝剂配制和投加 1. 设计参数根据原水水质及水温,参考有关净水厂的运行经验,选聚合氯化铝为混凝剂。

(完整word版)5万立方米净水厂设计计算书

(完整word版)5万立方米净水厂设计计算书

第一章:设计原始资料一、地理条件:地形平坦,稍向西倾斜,地势平均标高22m (河岸边建有防 洪大堤).二、水厂位置占地面积:水厂位置距离河岸200m,占地面积充分。

三、水文资料:河流年径流量3。

76-14.82亿立方米,河流主流量靠近西岸。

取水点附近水位:五十年一遇洪水位:21.84m ; 百年一遇洪水位:23.50m ;河流平常水位:15。

80m ; 河底标高:10m 。

四、气象资料及厂区地址条件:全年盛行风向:西北;全年雨量:平均63mm ;冰冻最大深度1m 。

厂区地基:上层为中、轻砂质粘土,其下为粉细沙,再下为中砂.地基允许承载力:10-12t/m 2。

厂区地下水位埋深:3-4m 。

地震烈度位8度。

五、水质资料:浊度:年平均68NTU ,最高达3000NTU ;pH 值:7。

4-6.8;水温:4.5-21.5℃;色度:年平均为11-13度;臭味:土腥味;总硬度:123。

35mg/L CaCO 3;溶解氧:年平均10.81 mg/L;Fe :年平均0.435 mg/L ,最大为0。

68 mg/L ;大肠菌群:最大723800个/mL,最小为24600个/ mL;细菌总数:最大2800个/ mL,最小140个/ mL.六、水质、水量及其水压的要求:设计水量:根据资料统计,目前在原地下水源继续供水的情况下,每天还需 5万立方米。

水质:满足现行生活饮用水水质标准。

水压:二级泵站扬程按50米考虑.第二章:用水量的计算设计给水工程首先耍确定设计水量,通常将设计用水量作为设计水量.设计用水量是根据设计年限内用水单位数、用水定额和用水变化情况所预测的用户日用水总量。

设计用水量包括下列用水:综合生活用水量1Q ,包括居民生活用水量和公共建筑及设施用水;工业用水量2Q ;浇洒道路和绿地用水量3Q ; 未预见水量及管网漏失量4Q .本设计为日供水量为50000 m 3/d ,城镇水厂自用水量一般采用供水量的5%~10%,本设计取7%,,时变化系数h K 取1。

(完整版)直饮水净化装置工艺设计说明计算书:自来水,24吨每天,反渗透膜

(完整版)直饮水净化装置工艺设计说明计算书:自来水,24吨每天,反渗透膜

一、用水量计算用水定额取3L/人.d,总用水人数3000人,取时变化系数Kh=2.5,用水时间T=10小时。

最大日用水量为:Qdmax=3×3000=9000L/d=9m3/d最大时用水量为:Qhmax=2.5×9/10=2.25m3/h二、设备选型计算1、制水量Qh净水站设计制水能力按最高日平均时流量考虑。

因Qh=9/10 m3/h=0.9 m3/h,净水站制水能力按1.0 m3/h设计。

2、水处理流程自来水→原水箱→原水泵→砂滤罐→炭滤罐→软水器→精滤器→↑回水高压泵→一级反渗透→高压泵→二级反渗透→臭氧混合塔→成品水箱→供水泵→稳压罐→用户。

3、设备选型计算假设反渗透装置的水回收率为50%,则前处理阶段净水设备设计净水能力应为2.0 m3/h。

(1)原水箱取调节时间T=1.5h,则水箱容积V=2×1.5=3.0 m选用不锈钢水箱一个,水箱尺寸为φ1400×H2000mm。

(2)原水泵水量Q2.0 m3/h,扬程H按砂滤罐所需进水压力及管路水损考虑,选择丹麦格兰富不锈钢立式多级离心泵CR2-30型一台,流量Q2.0 m3/h,扬程H30m,功率P0.37KW。

(3)砂滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。

砂滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。

(4)炭滤器处理水量2.0 m3/h,滤速设为7m/h,则过滤面积F为:F=Q/v=2.0/7=0.286m2 过滤器直径D=(4F/π)1/2=600mm。

炭滤层厚度1.5m,选择美国OSMONICS型砂滤器一台(带多路阀),外形尺寸为φ600×H1800mm。

(5)软水器由于没有详细的水质资料,无法进行计算,根据经验选择OSMONICS型软水器一台(带多路阀),外形尺寸为φ350×H1650mm。

净水厂设计说明书

净水厂设计说明书

设计计算书1.混合设备的设计设计流量 设计流量某水厂水工艺设计,处理规模:2.7×104m 3/d,自用水量系数取5%,总处理量为28350m 3/d 。

Q=28350m 3/d=1181.25m 3/h=0.328m 3/s根据原水水质及水温,参考有关净水厂的运行经验,选精制硫酸铝为混凝剂。

最大投加量为50mg/l ,溶液浓度10%,一天调制次数n =3。

采用泵前投加。

不需加助凝剂。

溶液池一般以高架式设置,以便能依靠重力投加药剂。

池周围应有工作台,底部应设置放空管。

必要时设溢流装置。

溶液池容积按下式计算:s m cn Q W /02.4310417118150417a 32=⨯⨯⨯==溶液池设置两个,每个容积为,以便交替使用,保证连续投药,每个容积都为W 2(考虑交替使用,保证连续投药)。

取有效水深H 1=1.10m ,总深H =H 1+H 2+H 3=1.10+0.2+0.1=1.40m 。

(式中H 2为保护高,取0.2m ;H 3为贮渣深度,取0.1m )溶液池形状采用矩形,尺寸为长×宽×高=2.0×1.5×1.4m 。

(2)溶解池容积W 1=0.3×W 2=0.3×4.02=1.2 m 3 设置2个,每个容积为W 1(考虑交替使用,保证连续投药)。

溶解池一般取正方形,有效水深H 1=1.2m ,则: 面积F =W 1/H 1→边长a =F 1/2=1.0m ;溶解池深度H =H 1+H 2+H 3=1.2+0.2+0.1=1.50m 。

(式中H 2为保护高,取0.2m ;H 3为贮渣深度,取0.1m )形状为正方形长宽高为1.0×1.0×1.5m 。

池底坡度0.025.溶解池放水时间30min 2.絮凝絮凝池设计(近期)2组,每池设计流量为: Q =0.5m 3/s 。

絮凝时间t =12min ,设计平均水深h =4 m 。

净水工程设计计算书

净水工程设计计算书

净水工程设计计算书一、双阀滤池1) 设计数据(1)设计规模:10万吨/日,分两期实施,水厂的用水系数1.05;(2)设计流量:Q =1.05×5×104m 3/d =2187.5 m 3/h =0.6076m 3/s ;(3)设计滤速:按规模要求,单层石英砂滤料的滤速V =8~10m/h ,这里取8.1 m/h ;(4)冲洗强度:12~15L /s·m 2,取13 L /s·m 2;(5)冲洗时间:t =6min ; 2) 主要计算(1)滤池面积及尺寸滤池工作时间为24h ,冲洗周期按12h 计;滤池实际工作时间T =24-(0.1×1224)=23.8(h );(注:式中只考虑反冲洗时间,未考虑初滤水的排放时间);滤池面积:2433.2728.231.805.1100.5m VT Q F ===;采用滤池格数:N =8,布置成对称双行;则单格滤池面积:204.34833.2728m F f ===;采用滤池长宽比3.1=BL,规范要求:1.25:1~1.5:1;每格滤池尺寸:L=6.6m ,B =5.1m ;复核:因此,每格滤池实际过滤面积f =B ×L =6.6×5.1=33.66m 2;滤池实际的正常滤速h m F Q V h /12.866.3385.2187=?==校核强制滤速h m N NV V /28.912.81881=?-=-=' (2)滤池高度支承层高度 H 1采用0.58m (d10~d32的支承层顶面应高于配水系统孔眼100mm );滤料层高度 H 2采用0.7m ;砂面以上水深 H 3采用1.90m ;超高(干管) H 4采用0.27m ;故滤料总高度 H =H 1+H 2+H 3+H 4=3.45m ;(3)配水系统(每格滤池)Ⅰ、干管干管流量 =?=q f q g 13.5 L /s·m 2×33.66 m 2=0.454m 3/s; 采用管径 d g =700mm (干管应埋入池底,顶部开孔接配水支管,详大样水施1-5-5);因此,干管起端流速V g =1.18m/s ;(注:若采用d g =800mm ,则V g =0.91m/s <1.0 m/s =;Ⅱ、支管支管中心间距采用 a j =0.25m ;每格滤池支管数 n j =5225.06.622=?=?j a L 根;每根支管入口流量 s L n q q jg j /73.852454===;采用管径 d j =80mm (公称外径90mm ,查《塑料给水管水力计算表》P86);支管始端流速 V j =1.56m/s ;Ⅲ、孔眼布置支管孔眼总面积与滤池面积之比K 采用0.25%;则孔眼总面积 F k =K f =0.25%×33.66=0.08415m 2=84150mm 2;采用孔眼直径 d k =9mm ;每个孔眼面积 f k =2225.639785.041mm d k =?=π;孔眼总数 13255.6384150===k k k f F N 个;每根支管孔眼数 26521325===j k k n N n 个;支管孔眼布置:设两排,与垂线成45°夹角,向下交错排列;每根支管长度 L j =0.5B =2.55m (注:两端除去间隙,L j =2.31m );每排孔眼中心距:m n L a k j k 178.0262131.221=?==Ⅳ、孔眼水头损失支管壁厚δ=5mm ;孔眼直径与壁厚之比8.159==δkd ,查《流量系数μ值表》得流量系数μ=0.68;水头损失 m g k q g h k 2.325.068.0105.1321102122=??=???? ??=μ;Ⅴ、复核配水系统支管长度与直径之比不大于60,60875.28080.031.2<==jj d L ;孔眼总面积与支管总横截面积之比小于0.5,()5.0322.008.0785.05208415.02<=??=j j k f n F ;干管横截面积与支管横截面积之比为1.75~2.0,()()47.108.0785.0527.0785.022==j j gf n f ;孔眼中心距应小于0.2m ,a k =0.178m<0.2m ;(4)洗砂排水槽洗砂排水槽中心距采用a 0=1.70m ;排水槽根数n 0=7.11.5=3根;排水槽长度m L l 6.60==;每根排水槽排水量s L a ql q /47.1517.16.65.13000=??==;采用三角形标准断面槽中流速采用V 0=0.6m/s ;横断面尺寸m V q x 251.06.0100047.1512110002100=?==,取0.25m ;排水槽槽底厚度采用δ=0.005m ;砂层最大膨胀率e =45%;砂层厚度H 2=0.70m ;洗砂、排水槽顶距砂面厚度H e =eH 2+2.5x +δ+0.075 =0.45×0.70+2.5×0.25+0.08 =1.02m ;洗砂、排水槽总平面面积00002n l x F ==2×0.25×6.6×3=9.9m 2;复核:排水槽总平面面积与滤池面积之比,一般小于25%,%25%4.29%10066.339.90≈=?=f F ;排水槽底高出集水槽底的高度2.0100081.03 2+??=b fg H=0.56+0.2=0.76m ;槽底距集水槽起端水面的高度不小于0.05~0.20m ;(5)滤池各种管渠计算Ⅰ 进水进水总流量 Q 1=52500m 3/d =0.6076m 3/s ;采用进水渠断面:渠宽B 1=0.8m ,水深为0.6m (两根进水管);渠中流速V 1=0.66m/s ,水力坡降2.7‰;进水总管管径(每5万吨设两根进水管)Q 2=h m /75.109324205.1100.534=,则进水管采用DN700,管中流速V 2=0.79m/s ;Ⅱ 冲洗水冲洗水流量Q 3=qf =13.5×33.66=0.454m 3/s ;采用管径D 3=500mm ;管中流速V 3=2.26m/s ;Ⅲ 清水清水总流量Q 4=Q 1=0.6076m 3/s ;清水总管管径采用D 4=800mm ,则V 4=1.21m/s ;每格滤池清水管流量Q 5=Q 2=86076.0=0.076m 3/s ;采用管径D 5=300mm ,则V 5=1.04m/s ;强制滤速下,5V '=1.19m/s ;Ⅳ 排水排水流量Q 6=Q 3=0.454m 3/s ;排水渠断面:渠宽B 6=0.8m ,水深为0.6m ;渠中流速V1=0.66m/s ;(6)进水虹吸管虹吸管进水量()s m Q /0868.01824360005.1100.534=-=进;事故冲洗进水量()s m Q /101.028********.1100.534=-=事;断面面积20.217m0.40.0868===进进进V Q ω;取用断面尺寸进ω=B ×L =0.4×0.5=0.2m 2;进水虹吸管局部水头损失∑?1.22gV 2进事局=ξf h0.505m/s 0.21.01Q V ===进事进事ω ∑?=++=出口弯头进口ξξξξ290 0.5+0.8×2+1.0=3.10.048m 1.29.8120.5053.12==局f h进水虹吸管的沿程水头损失L RC V 22?进事沿=f hm 111.0)5.04.0(22.0R =+?==进χω 32.63)111.0(012.0116161===R n CL 取2m0.00115m20.11163.322=??=沿f h 则局沿+f f f h h h ==0.048+0.00115=0.049m 取f h =0.1m;(7)进水槽及配水槽进水虹吸管出口至槽底h 1取0.25m ;进水虹吸管淹没水深h 2取0.25m ;配水槽出水堰宽b 1取1.2m ;配水堰堰顶水头0.128m 1.21.840.101)b 1.84(32323=)=(进事??=Q h ;进水堰超高C 取0.35m ;则H 进=h 1+h 2+h 3+h f +C =0.25+0.25+0.128+0.1+0.35 =1.078m ,取1.05m ;(8)排水虹吸管冲洗排水量Q 排=qf =13.5×33.66=0.454m 3/s ;排水虹吸管滤速V 排=1.4~1.6m/s ,取V 排=1.5m/s ;则220.303m1.50.454===排V qf ω;采用矩形断面,其尺寸为B 2×L 2=0.45×0.675=0.3015m 2;排水虹吸管管长L=10m ;∑2g V 2排局=ξf h 0.36m 9.8121.513.12==?? L RC V 22排沿=f hm 134.0)675.054.0(23015.0R 2=+?==χω 61.59)134.0(012.0116161===R n C0.05m 100.13459.612=??=沿f h则局沿+f f f h h h ==0.36+0.05=0.41m (9)反冲洗水泵计算水泵所需的供水量Q =qf =13.5×33.66=0.454m 3/s =1634.4m 3/h ;水泵所需扬程H=H 0+h 1+h 2+h 3+h 4+h 5H 0—排水槽顶与清水池最低水位之差;(5.45m )1h —从清水池至滤池间冲洗管道中的总水头损失,计算可得h 1=1.82m ;2h —滤池配水系统的水头损失;(3.2m )3h —承托层的水头损失;(0.13m ) 4h —滤料层膨胀时水头损失m h 68.07.0)41.01)(1165.2(4=?--=; 5h —富裕水头损失;(1.5m )则H=5.45+1.82+3.2+0.13+0.68+1.5=12.78m ;选冲洗水泵两台,一用一备。

净水厂设计计算说明书

净水厂设计计算说明书

课程设计计算说明书课题名称《水质工程学》—净水厂课程设计学院(系)建筑工程学院管理与市政工程系专业给水排水工程学号学生姓名2010 年7 月 3 日至2009 年7 月17 日共 2 周一、设计目的及任务1.目的城市给水处理设计室给水工程课程教学环节之一,其目的在于加深理解所学的知识,培养学生运用所学的理论和技术知识分析和解决实际工程设计问题的初步能力,使学生在设计、运算、绘图、查阅资料设计手册及使用设计规范等基本技能上得到初步训练和提高,初步树立技术经济意识。

2.任务根据所给的资料和设计要求进行系统设计,并对主要构筑物或设备的工艺尺寸进行计算,确定平面布置和高程布置,最后绘制出系统图、平面布置图和高程图,并简要写出一份设计说明书和工艺计算书,给出设备清单和材料清单。

二、水厂总体设计水厂厂址的选择,应符合城镇总体规划和相关专项规划,并根据下列要求综合确定:1.给水系统布局合理;2.不受洪水威胁;3.有较好的废水排除条件;4.有良好的工程地质条件;5.有便于远期发展控制用地的条件;6.有良好的卫生环境,并便于设立防护地带;7.少拆迁,不占或少占良田;8.施工、运行和维护方便。

水厂总体布置应结合工程目标和建设条件,在确定的工艺组成和处理构筑物形式的基础上进行。

平面布置和竖向设计应满足各构筑物的功能和流程要求;水厂附属建筑和附属设施应根据水厂规模、生产和管理体制,结合当地实际情况确定。

三、给水处理厂的设计规模及流程选择1.根据《室外给水设计规范》(GB50013-2006)可知:水处理构筑物的设计水量,应按最高日供水量加水厂自用水量确定。

水厂自用水率应根据原水水质、所采用的处理工艺和构筑物类型等因素通过计算确定,一般可采用设计水量的5%-10%。

当滤池反冲洗水采取回用时,自用水率可适当减小。

本设计水厂最高日供水量为Q=20×104m3/d,滤池反冲洗水采取回用,水厂自用水系数1取5%。

水厂自用水量Q2=20×104×5%=1.0×104 m3/d则给水处理厂处理规模为Q=Q1+Q2=21.0×104 m3/d2.给水处理厂的主要构筑物拟分为2组,2组平行设置,同时运行,每组处理规模为10.5×104 m3/d。

净水厂设计计算说明书

净水厂设计计算说明书

一、工程概述1.1设计任务及要求给水厂课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规范等基本技能上得到初步训练和提高。

课程设计的内容是根据所给资料,设计华东地区某给水厂设计,要求对初步方案进行设计,对主要处理构筑物的工艺尺寸进行计算,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图、管线布置图、绿化施工图和某个单项处理构筑物(澄清池或过滤池)的单体图(包括平面图、剖面图,达到施工图深度)及设备选型,并简要写出一份设计计算说明书。

1.2基本资料1.2.1 工程概况本设计为华东地区某城市给水工程设计,水厂规模:日处理水量20 万吨。

设计中采用位于城市西南的河流上游作为水源地。

城市土壤种类为亚粘土。

地下水位深度6 m。

冰冻线深度0.2m。

年降水860mm。

城市最高气温38℃,最低气温-6℃,年平均气温15℃。

主导风向为冬季西北风,夏季东南风。

城区起伏较小,城市西南部预留水厂用地9.138公顷,地势平坦,高程为83.00m。

预留地平面图如下:高位冲洗水箱的容积1.2.2 地面水源(1)流量最大流量620 m³/s;最小流量230 m³/s(2)最大流速2.1 m/s(3)水位最高水位(1%)79.00m,常水位77.00m,最低水位(97%)75.00m,河岸地质条件良好,河槽平坦,最低处高程为72.00m。

1.2.3 源水水质资料编号名称单位分析结果1 浑浊度度平均17NTU;雨季高峰42NTU2 色度度183 总硬度度114 碳酸盐硬度度75 非碳酸盐硬度度76 PH值77 细菌总数个/毫升25008 大肠菌群个/升68二、设计计算2.1水厂规模:根据资料,水厂日处理水量20万m3/d,考虑到水厂自用水量,要乘以安全系数K=1.05。

则净水处理构筑物总设计流量:Q=1.05⨯20=21万m 3/d=8750m 3/h=2.43 m 3/s2.2总体设计2.2.1确定给水处理厂工艺流程根据水源水质和《生活饮用水卫生标准》(GB5749-2006)及《生活饮用水卫生规范》,根据设计的相关原始资料如水厂所在地区的气候情况、设计水量规模、原水水质和水文条件等因素,通过调查研究,参考相似水厂的设计运行经验,经技术经济比较确定采用地表水净化工艺:水厂以地表水作为水源,工艺流程如下图所示:2.2.2处理构筑物及设备型式选择 2.2.2.1取水构筑物1.取水构筑物位置选择取水构筑物位置的选择,应符合城市总体规划要求,从水源水质考虑,水质应该良好,取水构筑物应选择在水质良好的河段,一般设在河流的上游,从河床考虑,取水构筑物应设在凹岸,位置可选在顶冲点的上游或稍下游15~20m 主流深槽且不影响航运处。

净水厂课程设计计算说明书.

净水厂课程设计计算说明书.

城固县给水工程设计摘要本设计为城固县给水工程设计,工程设计规模为76923 m3/d。

净水工程的设计主要包括配水厂的设计计算和净水厂的设计计算。

净水厂的设计包括净水厂的位置选择、水处理工艺流程的确定、处理构筑物的设计计算以及水厂的平面和高程布置。

通过技术经济比较,确定净水厂的工艺流程选用方案:原水—→静态混合器—→网格絮凝池—→斜管沉淀池—→V型滤池—→消毒—→清水池—→二级泵站—→城市管网关键词:给水工程设计、水厂工艺、V型滤池、城市管网。

设计说明书一设计水量第一节最高日用水量一、各项用水量设计给水工程首先要确定设计水量。

通常将设计用水量作为设计水量。

设计用水量是根据设计年限内用水单位数,用水定额和用水变化情况所预测的用户用水总量。

设计用水量包括下列用水:1、综合生活用水量Q1,包括居民生活用水量和公共建筑及设施用水;2、工业企业生产用水量Q2;3、浇洒道路和绿地用水量Q3;4、工业企业工作人员生活用水量Q4;5、未预见水量及管网漏失水量Q5;6、消防用水量Qx;各用水量计算结果如下:Q 1=3×104(m3/d) Q2=3×104(m3/d) Q3=3000(m3/d) Q4=6930(m3/d)Q5=6993(m3/d)最高日用水量Qd =Q1+Q2+Q3+Q4+Q5=76923 m3/d三净水厂第一节混合1.溶液池分成2格,每格的有效容积为3.7 m³。

有效高度为1.2m,超高0.2m,每格实际尺寸为1.8×1.8×1.4m,置于室内地面上。

2.溶解池分成2格,每格的容积为1.1 m3,有效高度为0.8m,超高0.2m,每格实际尺寸为1.2×1.2×1.0m。

池底坡度采用2.5%,池底设排渣管。

3.溶解池搅拌设备采用中心固定式平浆板式搅拌机。

浆板直径400mm,浆板深度为0.7mm,质量100kg. 溶解池置于地下,池顶高出室内地面0.5m。

净水厂设计说明书计算书

净水厂设计说明书计算书

广东工业大学课程设计任务书题目名称万吨/日净水厂设计学生学院土木与交通工程学院专业班级给水排水工程 11 级(1)班姓名陈梓君学号3211003484一、课程设计的内容根据所给定的原始资料,设计某城镇生活给水水厂,该设计属初步设计。

设计的内容有:1.净水厂的处理工艺流程的选择。

2.净水构筑物及设备型式的选择。

3.净水构筑物的工艺计算。

4.净水厂的总平面布置和高程布置。

5.编写设计说明书和计算书。

6.绘制净水厂的总平面布置图和高程布置图。

7.绘制处理构筑物工艺图。

二、课程设计的要求与数据要认真阅读课程设计任务书,并复习教材有关部分章节并熟悉所用规范、手册、标准图等文献资料。

要求设计选用参数合理,计算正确;说明书要有净水厂处理工艺流程及净水构筑物型式选择的理由,净水厂的总平面布置图和高程布置图要有详尽的阐述。

叙述简明扼要,文理通顺;设计计算书、说明书包括必要的计算公式、草图和图表。

图纸内容完整,布局合理,制图要规范。

保证在规定时间内,质量较好地完成任务书中所规定的设计任务。

三、课程设计应完成的工作应完成上述课程设计的内容,达到初步设计的程度。

提交设计成果,包括设计计算书、说明书及设计图纸。

设计图纸有:(1)净水厂平面布置图(1张);(2)净水厂处理流程高程布置图(1张)。

四、课程设计进程安排五、应收集的资料及主要参考文献任务书给出的原始资料、手册、标准、规范及有关的专著。

主要参考资料:1.《给水排水工程快速设计手册.给水工程》,严煦世编;2.《给水排水设计手册.城镇给水》(第3册);3.《给水排水工程师常用规范选》(上册);4.《室外给水设计规范》;5.《给水排水简明设计手册》;6.《给水工程》,严煦世编。

7.《给水排水标准图集》发出任务书日期:2014 年 6 月 23 日指导教师签名:计划完成日期: 2014 年 6 月 27 日基层教学单位责任人签章:主管院长签章:附录:一、设计资料1.水厂近期净产水量为25.2 万m3/d,要求远期发展到40 万m3/d。

净水厂设计计算说明书2

净水厂设计计算说明书2

净水厂设计计算说明书2净水厂设计计算说明书2一、引言净水厂是负责处理水源,将其转化为适合供给给城市居民使用的水的设施。

本文档将详细介绍净水厂的设计计算。

二、设计计算1.原水水质分析首先,需要对原水的水质进行分析。

通过收集水质样本,进行水质分析,包括浊度、PH值、氨氮、色度、溶解氧、硬度等指标的测定。

这些数据将用于后续的设计计算。

2.水量计算3.设计流程根据水质分析和水量计算结果,设计净水厂的处理流程。

通常包括原水进厂、预处理、混凝、沉淀、过滤、消毒等步骤。

每个步骤的操作参数、设备选型、设计流程等都需详细说明。

4.设备选型和容量计算根据处理流程,选择合适的设备进行净水处理。

对于每个处理步骤中的设备,需要进行容量计算,确保其能够满足设计时的处理需求。

例如,根据进厂水量和处理效率,计算出预处理设备的容量。

对于过滤设备,需要考虑水质要求和操作参数来确定其选型和容量。

5.设计计算示例以混凝和沉淀过程为例,进行详细的设计计算说明。

首先,根据原水的浊度和PH值,确定混凝剂的种类和投加量。

然后,根据混凝后的絮凝物去除率要求,计算出设置的沉淀池容积。

在计算过程中,需要考虑絮凝物的提升速度、沉淀池的滞留时间等因素。

6.安全运行计算三、结论本文档详细介绍了净水厂设计的计算内容,包括原水水质分析、水量计算、设计流程、设备选型和容量计算、设计计算示例以及安全运行计算等。

这些计算将确保净水厂的正常运行和安全供水。

在实际设计中,还需根据具体情况进行调整和改进。

某5万净水厂设计说明书

某5万净水厂设计说明书

一、设计原始资料1、处理厂近期处理规模1万m3/d(学号每增大4号,水量增加10000m3/d),水厂自用水量为5%。

则18号为5万m3/d Q=50000×1.05=52500m3/d=2187.5m3/h2、水源为河水,河水的水质符合二类水源水的水质指标,水温最高为24o C,最低为5 o C,水的浊度见下表,细菌总数为3000个/L。

月份 1 2 3 4 5 6 7 8 9 10 11 12 NTU 30 20 40 55 400 750 670 520 300 150 200 253、处理后的水符合国家的《生活饮用水卫生标准》。

4、水厂用地面积参照规范确定,可以为正方形或长方形。

5、平面布置的建筑物有净水构筑物,综合楼(生产管理用房、行政办公房、化验室、值班室、仓库、机修间、食堂、传达室、浴室、锅炉房等)。

确定给水处理厂工艺流程根据水源水质和《生活饮用水卫生标准》(GB5749-85)及《生活饮用水卫生规范》(卫生部,2001年6月),根据设计的相关原始资料如水厂所在地区的气候情况、设计水量规模、原水水质和水文条件等因素,通过调查研究,参考相似水厂的设计运行经验,经技术经济比较确定采用地表水净化工艺:原水→(混凝剂、助凝剂)混合→过滤→(消毒)→清水池→→用户取水构筑物取水构头部要设格栅,拦截水中漂浮的浮渣、杂草等,防止取水头部被撞击或堵塞。

其中格栅栅条间净距应根据取水最大小、冰絮和漂浮物等情况确定,小型取水构筑物宜为30~50mm,大、中型取水构筑物宜为80~120mm。

当江河中冰絮或漂浮物较多时,栅条间净距宜取大值。

而本设计中格栅可按顺水流方向成45°布置,采用40X10 mm扁钢栅条,且栅条间隙宽度为40mm。

药剂溶解池(1)投药设备采用计量泵投加的方式。

采用计量泵(柱塞泵或隔膜泵),不必另备计量设备,泵上有计量标志,可通过改变计量泵行程或变频调速改变药液投量,最适合用于混凝剂自动控制系统。

水厂设计计算说明书

水厂设计计算说明书

净水处理构筑物设计计算宾川县二水厂工程的设计规模为2.0万m 3/d ,分两期实施。

一期工程规模为1.0万m 3/d 。

一期工程设计流量Q=2410.110000⨯=458.33 m 3/h=0.127 m 3/s 。

1.配水混合井配水井按二期设计,一次修建完成。

分为3格,每格均为正方形(2.0m ×2.0m ),有效水深2.0m ,保护高度0.5m 。

原水进入配水井中间一格后通过池壁底端的连通渠向两边均匀分流,并在外侧的两格装有推进式机械浆板混合装置,搅拌器直径0.68m ,外缘线速度4.6 m/s ,搅拌功率2.5Kw 。

向配水井内投加混凝剂后,经机械混合器快速混合,混合时间1min ,然后由配水井上端连接的DN400配水管向网格絮凝池均匀配水。

在浊度较低季节或水厂网格絮凝-斜管沉淀池检修时,可以超越网格絮凝-斜管沉淀池,投药后配水混合井直接配水到无阀滤池进行直接过滤。

]2.网格反应池 2.1设计数据(1)设计流量Q=0.127 m 3/s ; (2)反应时间t =12.5min ; (3)每个反应池有6个竖井;(4)过网流速分四档,分别为:0.25m/s ,0.19m/s ,0.10m/s ,0.07m/s ;2.2主要计算(5)平面尺寸反应池容积ϖ=Qt =0.127×12.5×60=95.25 m 3 反应池有效水深H ’=3.6 m反应池的总面积F =46.266.325.95'==H ϖm 2 反应池分6格,每格的面积f = 41.4646.266==F m 2 单格平面尺寸2.1 ×2.1m (6)反应池的总高度HH =H 1+H 2+ H 3H 1——排泥斗高度,取1.1m ; H 2——池中有效水深,取3.6m ; H 3——保护高,取0.4m ; H =1.1+3.6+0.4=5.10m根据泥斗尺寸验算斗底坡度为52.3°,排泥顺畅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市西区水厂一期扩建工程设计说明书1自然条件1.1地形、地质市地处闽江下游盆地,盆地总面积约200Km2,四周有鼓山、旗山、五虎山莲花峰等群山环抱。

地貌类型以平原为主,地势由西北向东南倾斜,市中心散落有乌山、于山和屏山等小山,南台岛上有仓山、盖山和城门山。

市区高程一般为5~15m(黄海高程系),闽江横贯市区,由于地势较低,易受洪涝灾害,需沿江、河筑堤。

市区主要有两类地质:一是靠山的丘陵地区,主要在于于山、乌山、屏山一带以及市区四周群山余脉高地和仓山区丘陵地带,容许承载力约0.25Mpa;二是淤积、冲积地区为高压缩性土,围较广,淤泥埋藏浅,容积承载力为0.05~0.08MPa,地下水位高,一般在地面下0.5~2.0m。

1.2气象条件市属于亚热带海洋性季风气候,夏季炎热多雨,冬季温暖少雨。

(1)气温年平均:19.6摄氏度极端最高:41.1摄氏度(1950年7月19日)极端最低:-2.5摄氏度(1940年1月25日)(2)水量年平均:1355.8mm年平均降水天数:151.2天24小时最大降水量:167.4mm暴雨主要出现月份:5~9月(3)霜冻年无霜期326天(4)风常年主导风向为西北风和东南风,冬季多西北风,夏季盛行东南风。

平均风速:2.8m/s极大风速:40.7m/s基本风压:0.6KN/m2台风影响本市始于5月,结束于11月中旬,以7月中旬至9月中旬次数最多。

(5)湿度年平均相对湿度77%最大相对湿度84%最小相对湿度5%(6)蒸发量年平均蒸发量 1451.1mm1.3水文条件闽江是省最大河流,水量充沛。

闽江在以下分为两支,北支为北港,穿越市区至马尾,将中心城区分为江北平原和南台岛两部分,长为30.5km,平均水面坡降0.15‰,枯水季水面宽150~200m。

南支为南港,又名乌龙江,经洪塘、湾边、纳入大漳溪河以后,出峡兜于马尾、长乐营前与北港又合二为一,南港长34.4km,进入河口段经亭江、倌口、琅歧流入东海。

闽江流域面积60992Km2,水系全长2959Km,流经36个县、市。

根据竹歧水文站1936年至1980年统计资料:闽江下游年平均径流总量为552.7亿m3,1992年7月7日最大洪峰流量30300m3/s,1971年8月30日最枯流量196m3/s,水口电站建成后,水库对洪峰调节作用不显著,最大下泄流量(坝下保证流量)为308m3/s。

市区西端洪山桥最高水位8.441m、最低水位1.181m。

1.4地震发生情况市区位于沿海长乐——诏安深大断裂带北段,为中等地震潜在震源区(M=6级),在未来100年具有发生大于M=5.5级以上地震的危险性。

在活动断裂带附近地段可能会局部放震效应,故在断裂带附近的建筑物除7度地震烈度抗震设防外,还应因地制宜采用有效的构造加强措施。

2城市概况2.1城市经济发展情况市市省省会,我国东南沿海重要的经贸中心之一,国家级历史文化名城,是国务院批准的沿海十四个开放城市之一。

市中心城围包括江北的鼓台区、鼓山区、新店区和江南的金山区、建新区、盖山区、城门区、仓山区。

1995年市区人口150.3万人,其中中心城区133万人,2000年规划人口166万,其中中心城区144万。

改革开放后,市城市建设和经济建设发展迅速,1996年以来市曾两次调整城市总体规划。

为进一步加大改革力度,继续改善投资环境,加强和完善功能建设,使之成为具有坚实基础的全省政治、经济、科技、信息和文化中心。

充分发挥侨乡和区位优势,大力发展外向型经济,建设全方位开放的现代化大都市。

建设以高新技术为先导,第三产业发达,产业结构合理,具有高效益、高素质的经济格局。

形成公共设施配套、基础设施完善、生态环境良性循环、适应对外开放大都市的需要。

市经济发展计划确定,2000年全市城乡人均各项主要指标水平达到国先进城市水平,人均国民生产总值比1990年翻两翻多,即国民生产总值达到700亿元(1990年不变价)。

1995年中心城GNP达到195.34亿元,人均GNP为14687元。

2.2 城市用水资料市中心城现有六座水厂,实行联网供水,水源均取自闽江,设计供水能力共为74.0万m3/d。

其中江北总供水量为60.5万m3/d,江南总供水量为14.0万m3/d。

1997年最高日用水量为84.12万m3/d,平均日用水量74.84万m3/d,日变化系数为1.12。

现规划建设西区水厂一期扩建工程,设计水量为25万m3/d。

水厂出水水压为40~55m,以缓解城市的高峰用水量。

3工程方案设计及计算3.1设计依据依据的规规程室外给水设计规(GB50013-2006)城镇给水厂附属建筑和附属设备设计标准(GJJ41-91) 生活饮用水水源水质标准(CJ3020-1993) 生活饮用水卫生标准(GB5749-2006)给水排水设计手册 第3册 城镇给水(第二版) 给水排水制图标准(GB/T50106-2001) 给水排水设计基本术语标准(GBJ125-89)3.2工艺设计流程的选择水厂的工艺流程采用:原水→混合→絮凝池→沉淀池→过滤池→清水池,在混合之前投加絮凝剂;在清水池之前投加消毒剂。

工艺流程图如图1。

图1 工艺流程图3.3各处理构筑物设计计算3.3.1药剂投配与混合设施混凝剂选用固体硫酸铝混凝剂,设置溶解池与溶液池(2个),并采用压缩空气搅拌调制药剂。

1)溶液池容积bnuQW 4171=取混凝剂最大投加量L mg u /20=,药液浓度%15=b ,混凝剂每日配制次数2=n ,水厂设计流量s m h m d m Q /89.2/7.6.1041/25333===万。

带入数据计算得溶液池容积317.16m W =按规,溶液池设置2个,交替使用,每个容积都为37.16m ,形状采用矩形,尺寸为:m m 15m 5⨯⨯=⨯⨯高宽长。

其中超高为0.2m 。

2)溶解池容积3120.57.163.03.0m W W =⨯==溶解池设置1个,形状采用矩形,尺寸为:m m 2.12m 5.2⨯⨯=⨯⨯高宽长,其中超高为0.2m 。

3)搅拌空气量根据规,溶解池空气供给强度为)/(1082m s L ⋅-,取)/(102m s L ⋅;溶液池空气供给强度为)/(532m s L ⋅-,取)/(52m s L ⋅。

溶液池需要的空气量)/(2505)55(221m s L nFq Q ⋅=⨯⨯⨯==溶解池需要的空气量)/(5010)25.2(122m s L nFq Q ⋅=⨯⨯⨯==需要空气总量)/(3002210m s L Q Q Q ⋅=+=根据规,空去管流速为s m /1510-,取s m /12。

4)投加方式由于水射器投加法使用方便、设备简单、工作可靠,适用于大中型水厂药剂的投加,所以本次设计采用水射器投加方式,进水压力为Pa 5104516.2⨯。

示意图见图2。

图2 水射器投药系统图5)混合方式管式静态混合器设备简单,维护管理方便;不需土建构筑我;不需外加动力设备;混合效果好,适用于各种规模的水厂,所以本次设计混合方式采用管式静态混合器。

6)药库与加药间布置方式:采用加药间与药库合并布置,按规,药剂存储期为15-30天,取30天。

3.3.2絮凝池 1)絮凝池的选取由于往复式隔板絮凝池絮凝效果好,构造简单,适用于水量大于3万d m /3,的水厂,所以选用往复式絮凝池。

设絮凝池数4个,絮凝时间T=20min ,池平均水深2.4m ,超高0.3m 。

廊道流速采用6档:s m v s m v s m v s m v /3.0,/35.0,/4.0,/5.043211====s m v s m v /2.0,/25.065==2)池体的计算 总容积:3347260m QtW ==单池平面面积:213624.243472m nH W f =⨯==池宽B:按沉淀池长(详见沉淀池计算)算,取B=20.4m 。

池长(隔板间净距之和)L :m B fL 7.17==隔板间距:按廊道流速不同分成6档,对应廊道宽度为n a 。

nn n n v v H nv Q a 301.04.2436007.1041636001=⨯⨯⨯==求得m a 60.01=,取m a 60.0'1=,则实际流速s m a v /5.0301.01'1== 各廊道宽度与流速计算值见表1。

每一种间隔采用3条廊道,共18条。

水流转弯17次,则实际池长(隔板间净距之和):m a a a a a a L 9.17)(3'6'5'4'3'2'1'=+++++=隔板厚按0.2m 计,池实际总长:m L L 3.21172.0'0=⨯+=3)水头损失的计算按廊道地饿不同流速分成6段,分别计算每一段的水头损失。

第一段:水力半径:m H a H a R 27.04.226.04.26.0211111=⨯+⨯=+=流速系数:1111y R nC =粗糙系数n=0.013,15.0)10.0(75.013.05.211=---=n R n y计算得1.631=C 。

第一段廊道长度:m B l 2.614.20331=⨯==第一段水流转弯的次数:31=S (前5段为3,第6段为2) 絮凝池第一段水头损失:121201122l gv g v S h +=ξ其中 ξ为局部阻力系数。

取3.0 0v 为转弯处的平均流速s m nH a Qv /419.02.136001'10=⨯=带入数据。

计算得第一段水头损失:m h 095.01=其余各段水头损失计算结果见表2。

表2 各段水头损失计算表总水头损失:m h h n 256.0==∑4)GT 值的计算水密度取3/1000m kg =ρ,水动力粘度在20℃时取24/10029.1m s kg ⋅⨯=-μ。

所以G 值:s thG 4660==μρ GT 值:55200602046=⨯⨯=GTGT 值在541010- 围,满足要求。

3.3.3沉淀池1)沉淀池及其参数的选取斜管沉淀池沉淀效率高,占地面积少,本次设计选用斜管沉淀池。

根据规,沉淀池参数设计如下。

沉淀池个数设置为4个。

液面上升流速s mm v /0.3=,颗粒沉降速度s mm /4.00=μ。

采用蜂窝六边形塑料斜管,管厚0.4mm ,切圆直径mm d 30=,水瓶倾斜角︒=60θ。

进水方式采用长边一侧进水,该边长度与絮凝池宽度相同。

进口配水采用穿孔墙配水系统,穿孔流速取s m /1.0;集水系统采用淹没孔集水槽,集水槽中距取1.5m 。

2)沉淀池池体设计计算 ①清水区净面积:28.240003.0489.2m nv Q A =⨯==斜管占用面积安3%计。

实际清水区面积:2'1.24803.1m A A =⨯= 斜管区采用矩形平面尺寸:m m 124.20⨯=⨯宽长 ②斜管长计算管流速 : s mm vv /46.3sin 0==θ斜管长 mm d v l 638cos sin 33.1000=-=θμθμ考虑管段紊流,积泥等因素,过渡段采用250mm 。

相关文档
最新文档