集合与函数知识点公式定理记忆口诀

合集下载

高中数学知识点与公式

高中数学知识点与公式

第一章 集合与函数概念 1.集合1.1高中数学知识点与公式集合的概念及其表示 ⑴.集合中元素的三个特征:①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③.无序性:即集合中的元素无顺序,可以任意排列、调换。

⑵.元素与集合的关系有且只有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).⑶.集合常用的表示方法有三种:列举法、Venn 图、描述法. (4).常见的数集及其表示符号1.2集合间的基本关系1.3集合之间的基本运算【重要提醒】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔= .3.奇数集:Z Z Z =+∈==−∈==±∈x x n n x x n nx x n n 21,21,4 1.}{}{}{. 4. 德▪摩根定律:①并集的补集等于补集的交集,即()=()()UUU A B A B ;②交集的补集等于补集的并集,即()=()()UUU A B A B .2.函数及其表示 2.1函数的相关概念注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法.解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征;图象法:注意定义域对图象的影响.2.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R .(4)y =x 0的定义域是{x |x ≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y =kx +b (k 为常数且k ≠0)的值域为R .(2)反比例函数=xy k (k 为常数且k ≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0),当a >0时,二次函数的值域为+∞−a ac b 4[,)42;当a <0时,二次函数的值域为−∞−aac b 4(,]42.求二次函数的值域时,应掌握配方法:=++=++−a ay ax bx c a x b ac b 24()4222. 2.3分段函数 分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数. 3.函数基本性质 3.1函数的单调性 单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 函数的最值注意:(1)函数的值域一定存在,而函数的最值不一定存在; (2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 函数单调性的常用结论(1)若f x g x ,)()(均为区间A 上的增(减)函数,则+f x g x )()(也是区间A 上的增(减)函数;(2)若>k 0,则kf x )(与f x )(的单调性相同;若<k 0,则kf x )(与f x )(单调性相反;(3)函数=>y f x f x 0)()()(在公共定义域内与=−y f x )(,=f x y ()1的单调性相反;(4)函数=≥y f x f x 0)()()(在公共定义域内与=y 的单调性相同; (5)一些重要函数的单调性:①=+xy x 1的单调性:在−∞−,1](和+∞1,)[上单调递增,在−1,0)(和0,1)(上单调递减;②=+xy ax b (>a 0,>b 0)的单调性:在⎝−∞⎛,和⎭⎪⎪+∞⎫上单调递增,在⎝⎭ ⎪ ⎪⎛⎫和⎝ ⎛上单调递减. 3.2 函数的奇偶性(1).函数奇偶性的定义及图象特点注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,−x 也在定义域内(即定义域关于原点对称).(2).函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)f x (),g x ()在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则=f 00)(. (4)若函数f x )(是偶函数,则−==f x f x f x )()()(.(5)定义在−∞+∞,)(上的任意函数f x )(都可以唯一表示成一个奇函数与一个偶函数之和. (6)若函数=y f x )(的定义域关于原点对称,则+−f x f x )()(为偶函数,−−f x f x )()(为奇函数,⋅−f x f x )()(为偶函数.重难点 复合函数的单调性①奇函数+奇函数=奇函数,偶函数+偶函数=偶函数;②奇函数×奇函数=偶函数,奇函数×偶函数=奇函数,偶函数×偶函数=偶函数;第二章 基本初等函数 2.1 指数与指数函数 (1)根式概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. 性质:(na )n =a (a 使na 有意义); 当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(2)分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数 指数幂没有意义.有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q.(3)指数函数及其性质概念:函数y =a x (a >0且a ≠1)叫做指数函数,x 是自变量,函数的定义域是R ,a 是底数. 指数函数的图象与性质R2.2 对数与对数函数 (1)对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作=log a x N ,其中a 叫做对数的底数,N 叫做真数.(2)对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么①=+log ()log log a a a MN M N ; ②=−log log log aa a MNM N ; ③=log log a n a M n M (n ∈R); ④=log log n a m a b mnb .(3)换底公式:=log log log a c c b ba(a ,b 均大于零且不等于1). (3)对数函数及其性质(1)概念:y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).(2)对数函数的图象与性质定义域:(02.3 幂函数(1)幂函数的定义:一般地,形如y=xα的函数称为幂函数,其中x 是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.第三章 函数的应用 1.函数零点的定义一般地,如果函数=y f x ()在实数α处的值等于零,即=αf ()0,则α叫做这个函数的零点.重点强调:零点不是点,是一个实数; 2.零点存在性定理如果函数=y f x ()在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f a f b ⋅<()()0,那么函数=y f x ()在区间(a ,b )内有零点,即存在∈c a b (,),使得f c =()0,这个c 也就是方程f x =()0的根.3.二分法二分法求零点:对于在区间[a ,b ]上连续不断,且满足f a ()·f b ()<0的函数=y f x (),通过不断地把函数f x ()的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数f x ()的零点近似值的步骤如下:(1)确定区间[a ,b ],验证f a ()·f b ()<0,给定精度ε; (2)求区间(a ,b )的中点x 1;(3)计算f x 1():①若f x 1()=0,则x 1就是函数的零点; ②若f a ()·f x 1()<0,则令b =x 1(此时零点∈x a x 01(,)); ③若f x 1()·f b ()<0,则令a =x 1(此时零点∈x x b 01(,)); (4)判断是否达到精度ε;即若a b ||−<ε,则得到零点零点值a (或b );否则重复步骤2~4. 注意:二分法的条件·表明用二分法求函数的近似零点都是指变号零点.第四章 三角函数 1. 角的概念 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类⎩⎪⎪⎨⎪⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这 个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角f a ()f b ()<0所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}.2.弧度制及应用1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.2.弧度制下的有关公式3.任意角的三角函数有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线4.同角三角函数的基本关系1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α2.同角三角函数基本关系式的应用技巧5.三角函数的诱导公式R R 错误!6.函数y =A sin(ωx +φ)的图象1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:正弦函数y =sin x ,x ∈[0,2π]的图象上,五点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象上,五点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). (2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.函数y =A sin(ωx +φ)的有关概念3.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:第五章平面向量1.向量的有关概念2.向量的线性运算三角形法则平行四边形法则三角形法则3.平面向量的坐标运算4.向量的夹角5.平面向量的数量积6.向量数量积的运算律第六章 三角恒等变换1、同角三角函数的基本关系式 :①+=θθsin cos 122,②θtan =sin cos θθ,2、正弦、余弦的诱导公式(奇变偶不变,符号看象限)3、和角与差角公式±=±αβαβαβsin()sin cos cos sin cos()cos cos sin sin αβαβαβ±=1tan tan αβ±=±αβαβtan()tan tan ±=±2(sin cos )12sin cos αααα4、二倍角公式及降幂公式=αααsin 2sin cos =−=−=−αααααcos 2cos sin 2cos 112sin 2222−=ααα1tan tan 22tan 2 ==−+αααα22sin ,cos 1cos 21cos 222第七章 解三角形【正弦定理】===A B CR a b csin sin sin 2(R 为∆ABC 外接圆的半径). 【正弦定理的变形】①===a R A b R B c R C 2sin ,2sin ,2sin②++====++A B C A B C Ra b c a b csin sin sin sin sin sin 2【三角形常用结论 】(1)>⇔>⇔>⇔<sin sin cos cos a b A B A B A B(2)在△ABC 中,有++=⇔=−+ππA B C C A B ()⇔=−+πC A B 222⇔=−+πC A B 222().(3)面积公式:①===S ah bh ch a b c222111,②===S ab C bc A ca B 222sin sin sin 111.第八章 数列 2.1等差数列(1).等差数列的定义--------(证明或判断等差数列) ①)数常为−=+a a d d n n (1或②−=−≥+−a a a a n n n n n (2)11 (2).等差数列的通项公式:=+−a a n d n (1)1或=+−a a n m dn m ()①当≠d 0时,等差数列的通项公式=+−=+−a a n d dn a d n (1)11是关于n 的一次函数,且斜率为公差d ;(3).等差数列的前n 和:=+S n a a n n 2()1,=+−S na d n n n 2(1)1①前n 和=+=+−−S na d n a n n n d dn 222()(1)112是关于n 的二次函数且常数项为0.(4)、等差中项:⑴若a A b ,,成等差数列,则A 叫做a 与b 的等差中项,且=+A a b2。

高中数学知识点归纳

高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。

1. 集合。

- 集合的定义:一些元素组成的总体。

- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。

- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。

- 真子集:A⊆ B且A≠ B,则A⊂neqq B。

- 集合相等:A = B当且仅当A⊆ B且B⊆ A。

- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B ={xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。

- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。

二、基本初等函数(Ⅰ)1. 指数函数。

- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。

- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。

数学七字顺口溜及三角函数

数学七字顺口溜及三角函数

数学七字顺口溜——巧学巧记学数学及三角函数根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。

言简意赅易上口,结合课本胜一筹。

始生之物形必丑,抛砖引得白玉出。

一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

集合函数知识点

集合函数知识点

一、集合1、 集合:某些具有共同属性的对象集在一起就形成一个集合,简称集。

元素:集合中的每个对象叫做这个集合的元素。

2、集合的表示方法⎧⎪⎪⎨⎪⎪⎩列举法描述法图示法区间法集合的分类⎪⎩⎪⎨⎧空集:无限集:有限集:3、子集:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

也说集合A 是集合B 的子集。

即:若“B x A x ∈⇒∈”则B A ⊆。

子集性质:(1)任何一个集合是本身的子集;(2)空集是任何集合的子集;(3) 若B A ⊆,C B ⊆,则A C ⊆。

4、集合相等:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,同时集合B 的任意元素都是集合A 的元素,我们就说A =B 。

即:若A ⊆B ,同时B ⊆A ,那么B A =。

5、真子集:对于两个集合A 与B ,如果A ⊆B ,并且A ≠B ,我们就说集合A 是集合B6、易混符号: ①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系 ②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合7、子集的个数:(1)空集的所有子集的个数是 1 个 (2)集合{a}的所有子集的个数是 2个 (3)集合{a,b}的所有子集的个数是4个 (4)集合{a,b,c}的所有子集的个数是8 个猜想: (1){a,b,c,d}的所有子集的个数是多少? (2){}n a a a ,,21 的所有子集的个数是多少?结论:含n 个元素的集合{}n a a a ,,21 的所有子集的个数是 2n,所有真子集的个数是2n-1,非空子集数为 2n-1 ,非空真子集数为 2n-2 。

8、交集定义:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集。

即:=B A {}x B x x A ∈∈且 。

9、并集定义:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集。

集合知识点和公式总结

集合知识点和公式总结

集合知识点和公式总结一、集合的基本概念和运算集合是由确定的、互不相同的元素所组成的整体,数学上常用大写字母A、B、C等表示集合,而集合中的元素用小写字母a、b、c等表示。

集合通常用花括号{}表示,例如集合A={1,2,3,4}。

1. 交集和并集交集:集合A与B的交集,记作A∩B,表示A和B都具有的元素的集合。

即A∩B={x|x∈A且x∈B}。

并集:集合A与B的并集,记作A∪B,表示A和B所有的元素的集合,不重复计算。

即A∪B={x|x∈A或x∈B}。

2. 补集和差集补集:集合A的补集,记作A'或A^C,表示集合U中所有不在A中的元素构成的集合。

即A'={x|x∈U且x∉A}。

差集:集合A与B的差集,记作A-B,表示属于A而不属于B的元素构成的集合。

即A-B={x|x∈A且x∉B}。

3. 子集和真子集子集:若集合A中的所有元素都属于集合B,则称A为B的子集,记作A⊆B。

真子集:若A是B的子集,但A不等于B,则称A为B的真子集,记作A⊂B。

4. 交换律、结合律和分配律交换律:集合的交集和并集满足交换律,即A∩B=B∩A,A∪B=B∪A。

结合律:集合的交集和并集满足结合律,即A∩(B∩C)=(A∩B)∩C,A∪(B∪C)=(A∪B)∪C。

分配律:集合的交集和并集满足分配律,即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。

5. 德摩根定律德摩根定律是集合运算中的重要定律,它包括两个方面的内容:(1) 互补律:(A∪B)'=A'∩B',(A∩B)'=A'∪B'。

(2) 反演律:A'=U-A,A∪B=U-(A'∩B')。

6. 其他运算除了交集、并集、补集、差集等基本运算外,集合还可以进行笛卡尔积、幂集等运算。

二、概率与统计中的集合应用在概率与统计中,集合是一个非常重要的概念,它与事件、随机变量、概率分布等有着密切的关系。

高中(必修一)数学口诀

高中(必修一)数学口诀

高中数学口诀人教A 版必修一第一章 集合篇1、集合三个特性:确定性、互异性、无序性(互异性:求出答案记得带回去检验看是否出现重复)2、常见数集表示方法:(1)、N ——自然数数集(自然的英语nature) (2)、Z ——整数集(拼音zheng )(3)、Q ——有理数集 (4)、R ——实数集3、一个集合有n 个元素,则其子集的个数为n 2,真子集个数为12-n ,非空子集个数为12-n ,非空真子集个数为22-n .4、元素与集合之间用∉∈或,集合于集合之间用⊆。

5、空集是任何集合的子集,是任何非空集合的真子集。

6、口诀:看到子集,首先考虑空集,然后才是画数轴列不等式。

7、两个重要公式:∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ).(口诀:拆开变号)人教A 版必修一第一章 函数篇1、区间是一种特殊的数集表达形式,只能用于表示数集,而且不管开闭,必须左小右大。

2、形成函数的三个要求:每一性、唯一性、允许多对一不能一对多。

3、函数三要素:定义域、值域和对应关系(函数问题,不管啥题定义域优先)4、函数的表示方法:解析法、图像法、列表法5、判断两个函数是否相等只需要判断定义域和对应关系是否相等即可。

6、求定义域口诀(1)、先求定义域再化简; (2)、分式要求分母不为0.(3)、偶次根式要求被开方数≥0; (4)、0次方和负数次方要求底数不为0;(5)、指数要求底数>0且≠1; (6)、对数(log )要求真数>0,底数>0且≠1;(7)、复合函数定义域的求法:(口诀:简单算复杂“放”,复杂算简单“代”。

) 若()x f 定义域为[]b a , ,则复合函数()[]x g f 定义域由()b x g a ≤≤解出; 若()[]x g f 定义域为[]b a , ,则()x f 定义域相当于[]b a x ,∈时()x g 的值域.7、函数值域的求法(求值域也要先求定义域)(1)、图像法:能画图的坚决画图(2)、单调性法:有增减就可以代两端求最值得到值域;(3)、换元法:(口诀:次方出现两倍关系就可以使用换元法,设低次为t )操作步骤:第一步:求定义域并设t ; 第二步:马上求出t 的范围;第三步:用t 表示出x ; 第四步:求出新函数值域即为原函数的值域。

数学必修一集合与函数概念知识点梳理(供参考)

数学必修一集合与函数概念知识点梳理(供参考)

高中数学 必修1知识点 第一章 集合与函数概念〖〗集合【】集合的含义与表示(1)集合的概念集合中的元素具有肯定性、互异性和无序性. (2)常常利用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或a M ∉,二者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无穷个元素的集合叫做无穷集.③不含有任何元素的集合叫做空集(∅).【】集合间的大体关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【】集合的大体运算(8)交集、并集、补集B {xA A=∅=∅B A⊆B B⊆B {xA A=A∅=B A⊇B B⊇U A{|x x1()UA=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集0)>{|x a-<|x(2)一元二次不等式的解法0)()()()U U UA B A B=()()()U U UA B A B=〖〗函数及其表示 【】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,若是依照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一肯定的数()f x 和它对应,那么这样的对应(包括集合A ,B 和A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:概念域、值域和对应法则.③只有概念域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,知足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;知足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;知足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,别离记做[,)a b ,(,]a b ;知足,,,x a x a x b x b ≥>≤<的实数x 的集合别离记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必需a b <.(3)求函数的概念域时,一般遵循以下原则:①()f x 是整式时,概念域是全部实数.②()f x 是分式函数时,概念域是使分母不为零的一切实数.③()f x 是偶次根式时,概念域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个大体初等函数的四则运算而合成的函数时,则其概念域一般是各大体初等函数的概念域的交集.⑧对于求复合函数概念域问题,一般步骤是:若已知()f x 的概念域为[,]a b ,其复合函数[()]f g x 的概念域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其概念域,按照问题具体情况需对字母参数进行分类讨论. ⑩由实际问题肯定的函数,其概念域除使函数成心义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常常利用方式和求函数值域的方式大体上是相同的.事实上,若是在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常常利用方式: ①观察法:对于比较简单的函数,咱们可以通过观察直接取得值域或最值.②配方式:将函数解析式化成含有自变量的平方式与常数的和,然后按照变量的取值范围肯定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必需有2()4()()0b y a y c y ∆=-⋅≥,从而肯定函数的值域或最值.④不等式法:利用大体不等式肯定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的概念域与值域的互逆关系肯定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方式肯定函数的值域或最值. ⑧函数的单调性法.【】函数的表示法(5)函数的表示方式表示函数的方式,常常利用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,若是依照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 和A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.若是元素a 和元素b 对应,那么咱们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖〗函数的大体性质 【】单调性与最大(小)值(1)函数的单调性函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数....(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共概念域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 别离在(,]a -∞-、[,)a +∞上为增函数,别离在[,0)a -、(0,]a 上为减函数.(3)最大(小)值概念①一般地,设函数()y f x =的概念域为I ,若是存在实数M知足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,咱们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的概念域为I ,若是存在实数m 知足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,咱们称m 是函数()f x 的最小值,记作max ()f x m =.x 1x 2y=f(X)xy f(x )1f(x )2oy=f(X)yx ox x 2f(x )f(x )211yxo【】奇偶性(4)函数的奇偶性①概念及判定方式函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有概念,则(0)0f =.③奇函数在y 轴双侧相对称的区间增减性相同,偶函数在y 轴双侧相对称的区间增减性相反.④在公共概念域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①肯定函数的概念域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用大体函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各类大体初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下别离范围、转变趋势、对称性等方面研究函数的概念域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,取得问题结果的重要工具.要重视数形结合解题的思想方式.。

高考数学知识点公式汇总

高考数学知识点公式汇总

高考数学知识点公式汇总一. 知识点 集合1. n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.2. ①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.3. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)二.含绝对值不等式、一元二次不等式的解法 三.1.整式不等式的解法特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根a bx x 221-==无实根2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.三 简易逻辑1. 逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

高一数学集合及函数知识点

高一数学集合及函数知识点

高一数学集合及函数知识点高一数学集合及函数学问点一.学问归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素留意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件2)集合的表示〔方法〕:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}留意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,把握有关的术语和符号,特殊要留意以下的符号:(1)与、?的区分;(2)与的区分;(3)与的区分。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n1个非空子集,2n2个非空真子集。

二.例题讲解:【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满意关系A)M=NPB)MN=PC)MNPD)NPM分析一:从推断元素的共性与区分入手。

高中数学知识点公式全部总结

高中数学知识点公式全部总结

高中数学知识点公式全部总结一、代数1. 集合与函数- 集合的表示与运算:列举法、描述法,交集、并集、补集。

- 函数的概念:定义域、值域、单调性、奇偶性。

- 函数的运算:加法、减法、乘法、除法、复合函数。

2. 代数式- 整式与分式:单项式、多项式、因式分解、分式的加减乘除。

- 二次根式:开方、根式的乘除、有理化因式。

3. 一元一次方程与不等式- 方程的解法:移项、合并同类项、系数化为1。

- 不等式的解法:移项、合并同类项、分数的交叉相乘。

4. 一元二次方程- 标准形式、配方法、公式法、因式分解法。

- 根的判别式:Δ = b² - 4ac。

5. 多项式函数- 多项式的图像:零点、极值点、对称轴。

- 多项式的因式分解:提公因式、分组分解、十字相乘。

二、几何1. 平面几何- 点、线、面的基本性质。

- 三角形:边角关系、内角和定理、海伦公式。

- 四边形:平行四边形、矩形、菱形、正方形的性质。

- 圆的性质:圆心角、弦、切线、割线、圆周角。

2. 立体几何- 空间图形的表面积与体积计算。

- 棱柱、棱锥、圆柱、圆锥、球的性质与计算。

3. 解析几何- 坐标系:直角坐标系、极坐标系。

- 直线与圆的方程:点斜式、两点式、一般式、圆的标准式。

- 圆锥曲线:椭圆、双曲线、抛物线的方程与性质。

三、概率与统计1. 概率- 随机事件的概率:古典概型、几何概型。

- 条件概率与独立事件。

- 贝叶斯定理。

2. 统计- 数据的收集与整理:频数分布、直方图。

- 统计量:平均数、中位数、众数、方差、标准差。

- 线性回归与相关系数。

四、数学归纳法- 证明方法:直接证明、间接证明。

- 数学归纳法的步骤:基础情况、归纳步骤。

五、数列1. 等差数列与等比数列- 通项公式、求和公式。

- 等差数列与等比数列的性质。

2. 级数- 等差级数与等比级数的求和。

- 无穷级数的概念:收敛与发散。

六、微积分初步1. 极限- 极限的概念:数列极限、函数极限。

最新高二数学公式知识点汇总

最新高二数学公式知识点汇总

最新高二数学公式知识点汇总高二数学公式知识点一集合1、子集的定义与重要性质:任何一个集合是它本身的一个子集,即AA。

规定空集是任何集合的子集,即A,。

如果AB,且BA,则A=B。

如果AB且B中至少有一个元素不在A中,则A叫B的真子集,记作A(B。

空集是任何非空集合的真子集。

含n个元素的集合A的子集有2个,非空子集有2-1个,非空真子集有2-2个。

2、余集(或补集)的定义与重要性质:,3、交集、并集的性质:A&cap;B=AAB,A&cup;B=A BA,4、常用数集符号:整数集Z,自然数集N,正整数集,有理数Q,实数集R。

高二数学公式知识点二基本的初等函数1、函数的定义:在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

2、常用函数的作图与单调性1)、反比例函数:,图象为双曲线,1) 当k&gt;0时,f(x)在(-&infin;,0)与(0,+&infin;)上都是减函数,2) 当k&lt;0时,f(x)在(-&infin;,0)与(0,+&infin;)上都是增函数但要注意在(-&infin;,0)&cup;(0,+&infin;)上f(x)没有单调性。

2)一次函数y=kx+b(k&ne;0) ,图象为直线,可过两点作直线,1)当k&gt;0时,f(x)在R上是增函数。

2)当k&lt;0时,f(x)在R上是减函数。

3)、二次函数y=ax+bx+c 1)当a&gt;o时,函数f(x)的图象开口向上,在(-&infin;,-),+&infin;)上是增函数,2) 当a&lt;0时,函数f(x)的图象开口向下,在(-&infin;,-),+&infin;)是减函数。

高中文科数学知识点口诀记忆

高中文科数学知识点口诀记忆

一、《集合》集合概念不定义,属性相同来相聚;内有子交并补集,运算结果是集合。

集合元素三特征,互异无序确定性;集合元素尽相同,两个集合才相等。

书写规范符号化,表示列举描述法;描述法中花括号,对象x y 须看清。

数集点集须留意,点集本是实数对;元素集合讲属于,集合之间谈包含。

0 和空集不相同,正确区分才成功;运算如果有难处,文氏数轴来相助。

二、《常用逻辑用语》真假能判是命题,条件结论很清晰;命题形式有四种,分成两双同真假。

若p则q真命题,p和q 充分条件;q 是p必要条件,原逆皆真称充要。

判断条件有三法,举出反例定义法;由小推大集合法,逆否命题等价法。

逻辑连词或且非,或命题一真即真;且命题一假即假,非命题真假相反。

且命题的否定式,否定式的或命题;或命题的否定式,否定式的且命题。

量词一般有两个,全称量词所有的;存在量词有一个,全称特称两命题。

全称命题否定式,特称命题肯定式;含有量词否定式,改写量词否结论。

三、《函数概念》函数结构三要素,值域法则定义域;函数形式有三法,列表图像解析法。

特殊函数有三种,分段组合和复合;定义域的要求多,分式分母不为0 。

偶次方根须非负,0的次方要为正;底数非1为正数,零和负数无对数。

正切函数脚不直,数列序号正整数;多个函数求交集,实际意义须满足。

函数值域的求法,配方图像定义法;部分整体观察法,换元代入单调法。

分离常数判别式,均值定理不等法;怎样去求解析式,题目常考两性式。

抽象函数解析式,代入换元配凑法,方程思想消元法;指定类型解析式,运用待定系数法。

性质奇偶用单调,观察图像最美妙;若要详细证明它,还须将那定义抓。

组合函数单调性,判断它们有法则,增加上增等于增,增减去减等于增,减加上减等于减,减减去增等于减。

复合函数单调性,同增异减巧判断。

复合函数奇偶性,偶加减偶等于偶,奇加减奇等于奇。

偶加减奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。

周期对称两种性,观察结构最可行;内同表示周期性,内反表示对称性。

高一数学必修一集合与函数知识点总结

高一数学必修一集合与函数知识点总结

必修一 集合与函数知识点第二章函数1. 函数三要素:(1)解析式 (2)定义域 (3)值域2. 函数定义域的求法:(1)分式的分母不得为零; (2) 偶次方根的被开方数不大于零;(3)对数函数的真数必须大于零; (4) 指数函数和对数函数的底数必须大于零且不等于1;(5)0)()]([0≠=x f x f y ,要求; (6)抽象函数求定义域:①f[g(x)]的定义域为[a,b],指的是x 的取值范围为[a,b],而不是g(x)的范围为[a,b],如f(3x-1)的定义域为[1,2],指的是f(3x-1)中的范围是21≤≤x .②f[g(x)]与f[h(x)]联系的纽带是g(x)与h(x)的值域相同。

(7)对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

3. 函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式;集合知识网络集 合定 义 特 征 一组对象的全体形成一个集合 确定性、互异性、无序性 表示法 分 类列举法{1,2,3,…}、描述法{x|P} 有限集、无限集数 集 关 系 自然数集N 、正整数集+*N 或N 、整数集Z 、有理数集Q 、实数集R 、空集φ 元素和集合的关系是”或“∉∈如N 3M 2∉∈或 集合与集合之间的关系是",,,,, ,"A C u =⊄⊆⊂运 算性 质交集 A ∩B ={x|x ∈A 且x ∈B}; 并集 A ∪B ={x|x ∈A 或x ∈B}; 补集 A C U ={x|x ∉A 且x ∈U},U 为全集A ⊆A ; φ⊆A ; 若A ⊆B ,B ⊆C ,则A ⊆C ;A ∩A =A ∪A =A ; A ∩φ=φ;A ∪φ=A ;A ∩B =A ⇔A ∪B =B ⇔A ⊆B ; A ∩C U A =φ; A ∪C U A =I ;C U ( C U A)=A方 法韦恩示意图 数轴分析注意:① 区别∈与⊂、⊂与⊆、a 与{a}、φ与{φ}、{(1,2)}与{1,2};② A ⊆B 时,A 有两种情况:A =φ与A ≠φ4.③ 对于任意集合B A ,,则 =B C A C U U )(B A C U ;B C A C U U )(B A C U =;④ 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是12-n ,所有非空子集的个数是12-n,所有非空真子集的个数是22-n 。

数学公式(集合不等式函数)

数学公式(集合不等式函数)

数学公式(集合不等式函数)在数学中,公式是用数学符号和符号约定来表示数学关系或规律的一种方式。

数学公式是数学表达的核心,能够帮助我们解决各种数学问题和推导数学定理。

下面将介绍一些常见的数学公式,包括集合、不等式和函数。

一、集合公式:1.集合的基本运算:(1)并集的运算律:A∪(B∪C)=(A∪B)∪CA∪B=B∪A(2)交集的运算律:A∩(B∩C)=(A∩B)∩CA∩B=B∩A(3)差集的运算律:A\(B\C)=(A\B)∪(A\C)A\(B∪C)=(A\B)∩(A\C)2.集合的等价关系:(1)自反性:对于任意集合A,A≤A(2)对称性:如果A≤B,则B≤A(3)传递性:如果A≤B,B≤C,则A≤C(4)互斥性:如果A≤B且B≤A,则A=B3.集合的基数公式:(1),A∪B,=,A,+,B,-,A∩B(2),A\B,=,A,-,A∩B(3),A\B,=,A,-,A∩B(4),A,=,A∪B,+,A∩B二、不等式公式:1.不等式的基本性质:(1)加法性:如果a>b,则a+c>b+c(2) 乘法性:如果a > b,且c > 0,则ac > bc(3)除法性:如果a>b,且c>0,则a/c>b/c2.平均值不等式:(1) 算术平均不等式:对于任意非负实数x1, x2, ..., xn,有(x1 + x2 + ... + xn)/n ≥ √(x1x2...xn)(2) 几何平均不等式:对于任意正实数x1, x2, ..., xn,有(x1x2...xn)^(1/n) ≥ (x1 + x2 + ... + xn)/n(3) 加权平均不等式:设p1, p2, ..., pn为n个正实数之和,有(x1p1 + x2p2 + ... + xnpn)/(p1 + p2 + ... + pn) ≥(x1x2...xn)^(1/n)3.柯西-施瓦茨不等式:(1)对于任意实数a1,a2,b1,b2,有(a1b1+a2b2)^2≤(a1^2+a2^2)(b1^2+b2^2)(2) 对于任意实数与向量a1, a2, ..., an和b1, b2, ..., bn,有(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... + bn^2)三、函数公式:1.基本初等函数:(1)反函数公式:如果函数y=f(x)与x=g(y)是互逆函数,则有f(g(y))=y和g(f(x))=x(2)奇偶性公式:对于偶函数有f(-x)=f(x),对于奇函数有f(-x)=-f(x)2.指数和对数函数:(1) 对数换底公式:log_a(b) = log_c(b) / log_c(a)(2) 对数幂函数:a^log_a(x) = x,其中a为任意正数3.三角函数:(1)三角函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)(2)三角函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = (2tan(x))/(1 - tan^2(x))以上是一些常见的数学公式,集合公式涉及集合的基本运算和基数公式,不等式公式包括不等式的基本性质、平均值不等式和柯西-施瓦茨不等式,函数公式主要涉及基本初等函数、指数和对数函数以及三角函数。

高一数学必修一全册知识点(定义、公式、定理)

高一数学必修一全册知识点(定义、公式、定理)

精心整理高一数学必修一全册知识点(定义、公式、定理)第一章集合与函数概念一、集合有关概念1.集合的含义{述法。

合的方法。

{x R|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}?B那就说集合A B(B A)例题:取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开中的任意一个元素集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),D时,都有f(xD(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法2.6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。

集合必背知识点总结

集合必背知识点总结

集合必背知识点总结一、集合的基本概念集合是指具有某种特定性质的对象的总体,这些对象叫做集合的元素。

在数学中,我们常用大写字母表示集合,用{}表示集合,例如A={a,b,c,d,e}表示由元素a,b,c,d,e组成的集合。

集合中不同元素的个数称为该集合的基数(或基数)。

二、集合的运算1. 并集设A和B是两个集合,所有属于集合A或属于集合B的元素所组成的集合叫做集合A和B的并集,记作A∪B。

表示如下:A∪B={x|x∈A或者x∈B}并集的性质:交换律:A∪B=B∪A结合律:A∪(B∪C)=(A∪B)∪C分配律:A∪(B∩C)=(A∪B)∩(A∪C)2. 交集设A和B是两个集合,所有既属于集合A又属于集合B的元素所组成的集合叫做集合A 和B的交集,记作A∩B。

表示如下:A∩B={x|x∈A并且x∈B}交集的性质:交换律:A∩B=B∩A结合律:A∩(B∩C)=(A∩B)∩C分配律:A∩(B∪C)=(A∩B)∪(A∩C)3. 补集设U是一个集合,A是U的一个子集,所有属于U而不属于A的元素组成的集合叫做集合A对于集合U的补集,记作A' 或者Ac4. 差集设A和B是两个集合,所有属于A而不属于B的元素所组成的集合叫做集合A和B的差集,记作A-B。

表示如下:A-B={x|x∈A并且x∉B}三、集合的表示方法1. 列举法直接将集合中的元素一一列举出来,用大括号括起来,中间用逗号隔开。

例如:A={1,2,3,4,5}2. 描述法把确定集合中元素的某种性质加以说明,用x∈U,x满足某种性质P来描述集合,大括号中的元素x都具有性质P。

例如:B={x|x是偶数,x∈Z}四、集合的基本定理1. 并集与交集之间的关系设A,B是集合,那么有如下的基本定理:A∪B = A∪(A∩B)A∩B = A∩(A∪B)2. 对于任意集合A,B和C有如下关系:交换律:A∪B = B∪A,A∩B = B∩A结合律:A∪(B∪C) = (A∪B)∪C,A∩(B∩C) = (A∩B)∩C分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)五、集合的应用集合常用于解决排列组合、概率统计等问题,在实际生活中也有广泛的应用。

广东近年高职数学高考知识点

广东近年高职数学高考知识点

广东近年高职数学高考知识点一、考试重点五大重点内容:函数,直线与圆锥曲线,三角函数,不等式,数列 二、知识点、公式备忘录 (一)集合与逻辑用语1.子集:A A ⊆,A ∅⊆;若A B ⊇,B C ⊇,则A C ⊇; 若A B ⊆且B A ⊆,则A2.真子集:R Q Z N ⊂⊂⊂.3.交集与并集:AA A =,AA A =;∅,A A ∅=;若A B ⊆,则A B A =,A B B =,反之亦然. 4.补集:U A C A U =,U A C A =∅ 5.充分条件与必要条件:()A B BA ⇒⇒但 充分(不必要)条件 ()B A A B ⇒⇒但 必要(不充分)条件()A B A B ⇒⇒⇔且B A 即 充分必要条件(充要条件)A B ⇒⇒且B A 既不充分也不必要条件 6.命题连结词:表1 p q ∧的真值表 表2 p q ∨的真值表 表3 p ⌝的真值表(二)不等式1.不等式的主要性质AB(1)实数性质:000a b a b a b a b >⇔>⎧⎪-=⇔=⎨⎪<⇔<⎩(2)a b b a >⇔< (3),a b b c a c >>⇒>(4),a b c R a c b c >∈⇒+>+ (5),0,0a b c ac bca b c ac bc>>⇒>><⇒<(6),a b c d a c b d >>⇒+>+ (7)0,0a b c d ac bd >>>>⇒> (8)11,0a b ab a b>>⇒<(9)0,,n n a b n Z a b +>>∈⇒>>2.常用基本不等式(1)220,()0(a a b a b ≥-≥=时取等号)(2)平均不等式:()()a b a b a b c a b c ⎧+≥=⎪⎨++≥==⎪⎩时取等号可用来求最小值)时取等号 变形式:23()()2(()()3a b ab a b a b c abc a b c +⎧≤=⎪⎪⎨++⎪≤==⎪⎩时取等号可用来求最大值)时取等号 3.一元二次不等式的解法2122120()0()ax bx c x x x x ax bx c x x x ++>⇒<>++<⇒<<或大于取两边小于取中间(a >0)4.绝对值不等式的解法:⑴(0)(0)a a a a a ≥⎧=⎨-<⎩ ⑵ x a x a x a x a a x a >⇔<-><⇔-<<或5.指数不等式和对数不等式的解法(1)同底法:()()()()(01)()()(1)f x g x f x g x a a a f x g x a <<<⎧>⇒⎨>>⎩()0()0log ()log ()()()(01)(()()(1))a a f x g x f x g x f x g x a f x g x a >⎧⎪>⎪>⇒⎨<<<⎪⎪>>⎩或(2)换元法:22log 2200log log 00xa a yx x x y aa a pa q y py q x p x q y py q ==++>−−−→++>++>−−−−→++>6.根式不等式的解法:()0(()0)()()g x f x f x g x ≥⎧⎪>≥⎨⎪>⎩(三)函数1.一元二次方程:20(0)ax bx c a ++=≠20400b ac >⎧⎪∆=-=⇔⎨⎪<⎩有两个不相等的实数根有两个相等的实数根没有实数根1,22b x a-±=,1212,b c x x x x a a +=-=. 2.函数的性质(1)单调性:若是增函数,则)()()(,2121x f x f x f x x <<;若是减函数,则)()()(,2121x f x f x f x x ><.(2)奇偶性:若f(-x)=-f(x),则f(x)是奇函数(图象关于原点对称);若f(-x)=f(x),则f(x)是偶函数(图象关于y 轴对称).(3)对称问题:),(),(y x P y x P x -'−−−−→−轴对称关于),(),(y x P y x P y -'−−−−→−轴对称关于),(),(y x P y x P --'−−−−→−关于原点对称),(),(x y P y x P x y '−−−−−→−=对称关于直线3.二次函数(1)二次函数的解析式:一般式:y=ax 2+bx+c(a ≠0) 顶点式:2()((,))y a x m n m n =-+为顶点 两根式:y=a(x-x 1)(x-x 2)(x 1,x 2为两根) (2)二次函数的图象和性质:y=ax 2+bx+c (a ≠0)1.指数及其性质:1nnaa-=,1na=mna=恒等式:01(0)a a=≠,n a=()a n=为奇数(0)(0)a aaa a≥⎧==⎨-<⎩(n为偶数),x y x ya a a+•=,()x y xya a=,()x x xab a b=2.对数定义、恒等式:logbaa N N b=⇔=,log10a=,log1aa=,log a Na N=运算性质:log()log loga a aMN M N=+,log log loga a aMM NN=-log logna aM n M=,1log loga aMn=,log loga apMq=换底公式及性质:log log log a b a N N b =,log log log a b a b N N •=,1log log a b b a=(1)由()y f x =求得1()x f y -= (2)x ,y 互换 (3)写出反函数的定义域 反函数的主要性质:(1)定义域和值域互换 (2)图象关于直线y=x 对称 5.指数方程和对数方程的常用解法 (1)同底法:()()()()f xg x a a f x g x =⇒=()0log ()log ()(()0)()()a a f x f x g x g x f x g x >⎧⎪=⇒>⎨⎪=⎩(2)换元法:22log 2200log log 00x a a yxxx yaa apa q y py q x p x q y py q ==++=−−−→++=++=−−−−→++=(五)三角函数1.终边相同的角:360k βα=•+或2()k k Z βπα=+∈终边在x 轴上的角:()k k Z απ=∈ 终边在y 轴上的角:()2k k Z παπ=+∈象限角:第一象限 0~ 90 第二象限 90~ 180第三象限 180~ 270 第四象限 270~ 360(以上均加k ·360°) 2.特殊角的三角函数值:sin α:一二正三四负 cos α:一四正二三负 tan α:一三正二四负 角度与弧度:10.017453180π=≈(弧度) 1(弧度)180()5718π'=≈3.同角三角函数的基本关系式倒数关系:sin csc 1αα•=,cos c 1se αα•=,tan cot 1αα•=商数关系:sin tan cos ααα=,cos cot sin ααα= 平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+= 1的替换:2222221tan45sin cos sec tan csc cot αααααα==+=-=- 4.同名诱导公式:“函数同名称,符号看象限”正余互化诱导公式:“函数正余变,符号看象限”sin()cos 2παα-=cos()sin 2παα-=tan()cot 2παα-=,cot()tan 2παα-=5.两角和与两角差的三角函数公式:sin()sin cos cos sin αβαβαβ±=±cos()cos cos sin sin αβαβαβ±=,tan tan tan()1tan tan αβαβαβ±±=二倍角公式:sin22sin cos ααα=,2222cos 2cos sin 2cos 112sin ααααα=-=-=-,22tan tan 21tan ααα=-降幂公式:21cos 2sin 2αα-=,21cos 2cos 2αα+=,21cos 2tan 1cos 2ααα-=+7.正弦定理:2sin sin sin a b cR A B C===(R 为外接圆半径) 余弦定理:2222cos a b c bc A =+-,222cos 2b c a A bc+-=常用公式:111sin sin sin 222ABC S ab C ac B bc C ∆===sin()sin ,cos()cos ,tan()tan A B C A B C A B C +=+=-+=-(六) 数列1.通项与前n 项和的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩1.向量的概念:BA AB -=,0AB BA +=2.向量的加法运算:AB BC AC +=(三角形法则)AB AD AC +=(平行四边形法则)向量的减法运算:BA OA OB =-(终点位置向量-起点位置向量)3.向量的内积(数量积):cos ,a b a b a b •=<>4.向量的直角坐标运算:设a =),(21a a ,b =),(21b b ,则21a a a a =⋅=+(向量的长度) 向量平行的条件:a ∥b 1212a a ab b b λ⇒=⇒=,零向量与任何一个向量平行. 向量垂直的条件:a ⊥b ⇔112200a b a b a b ⋅=⇔+= 夹角公式:21cos ,a b a b a ba ⋅<>==5.平移公式(图形平移变换):12x x a y y a '=+⎧⎨'=+⎩(新坐标=原坐标+平移向量坐标)(八)平面解析几何1.直线(1)中点坐标公式:1212,22x x y y x x ++== (2)直线方程的几种常用形式 点向式:0012x x y y v v --= 点法式:00()()0A x x B y y -+-= 一般式:Ax+By+C=0(A 、B 不同时为0) 直线的斜率:2121tan y y k x x α-==- 点斜式:11()y y k x x -=-斜截式:y kx b =+(b 为y 轴上的截距) 截距式:1x ya b+=(a 为x 轴上的截距) (3)两条直线的位置关系 平行:1212,k k b b =≠111222A B C A B C =≠ 垂直:k 1·k 2=-1 A 1A 2+B 1B 2=0待定系数法求平行线、垂线方程:与直线Ax+By+C=0平行的直线可设为Ax+By+D=0,而垂直的直线则可设为Bx-Ay+D=0(D 待定).两条直线的夹角公式:1212tan 1k k k k θ-=+(4)点到直线的距离公式:d =2.(1)圆的定义:CM r =(2)圆的标准方程:222()()x a y b r -+-=圆的一般方程:22220(40)x y Dx Ey F D E F ++++=+->(3)点和圆的位置关系:圆外—d >r ,圆上—d=r ,圆内—d <r[d=︱MC ︱] (4)直线和圆的位置关系:相离—d >r ,相切—d=r , 相交(相割)—d <r (d=0时过圆心)(d 为圆心到直线的距离)(5)两圆的位置关系:相离—d >r 1+r 2,外切—d=r 1+r 2,相交—r 1-r 2<d <r 1+r 2, 内切—d=r 1-r 2,内含—0<d <r 1-r 2,同心—d=0(d 为两圆的圆心距). 3.椭圆4.双曲线1.已知A=}01{>-xx x,B=}11{<-x x ,则A ∩B=. 2.设全集I=R ,P={x ︱x ≥1},Q={x ︱0≤x<5},则C R P ∪C R Q=,C R (P ∪Q)=.3.已知A={1,2,3,4,5},B={2,4,6},C={4,5,6},则(A ∩B )∪C=.4.已知M={-2,0,2},N={0},则N 是M 的.5.集合A={1,2,3,4}的子集个数为,真子集个数为.6.“sinx=1”是“x=2π”的条件; “A=B ”是“sinA=sinB ”的条件.7.“sin α>0且cos α<0”是“α为第二象限角”的条件. 8.解下列不等式:(1)x 2-5x+6<0 (2)x 2+1>2x(3)︱3x-5︱>8 (4)︱3-2x ︱-7≤0(5)1211>--x x (6)111≤-+xx9.计算:0221)1(sin )613sin(256log )254(--++-π10.判断下列函数的奇偶性:(1)f(x)=x ︱x ︱ (2)y=1-2sin 2x(3)x xx f +-=11lg )( (4)1313)(+-=x x x f(5)2655)(xx f x x +-=-11.一次函数)2()1(2-++-=m m x m y 为奇函数,则m=.12.二次函数y=x 2-6x+5的对称轴方程为,最小值为,减区间为. 13.已知函数32)1(2++-=mx x m y 是偶函数,则在]0,(-∞是函数. 14.函数)2(log 22x x y -=的增函数区间为. 15.求下列函数的定义域:(1)232x x y +-= (2))56(log 22x x y --= (3))34(log 31-=x y16.已知函数412+-=mx x y 的定义域为实数集R ,则m 的取值范围是.17.函数)1(log )(2-=x x f (x>1)的反函数是.18.已知点(2,1)在函数f(x)的图象上,且f(x) 的图象与g(x)的图象关于直线y=x 对称,)1(log )(2+=mx x g ,则m=.19.求下列函数的最大(小)值:(1)y=x 2+4x+1 (2)y=-x 2+4x-6(3)14++=x x y (x>-1) (4))11)(4(xx y --=(x>0)20.cos150°=,sin(-570°)=,tan(-315°)=.21.已知sin α<0且cos α>0,则α是第象限角. 22.求下列函数的最小正周期:(1))431tan(π+=x y (2)x x y 3sin 33cos -=(3)x y 2sin 21=23.求下列函数的最值:(1)x x y cos sin 3+= (2)x x y cos 8sin 6-= (3)x x y 2cos cos 2-=24.计算:cos 2398°+cos 2232°=.25.已知tan α=2,且sin α<0,则cos α=.26.若53cos sin =+αα,则sin2α=.27.已知54sin =α,且α是钝角,则1)28(cos 22--απ=. 28.已知παπ<<2,20πβ<<,且54sin =α,135cos =β,则)sin(βα+=.29.在△ABC 中,AB=3,BC=4,CA=4,则cosA=.30.在等差数列{a n }中,a 1=1,d=3,n a =298,则n=.31.在等差数列{a n }中,5a =8,5S =10,则10S =. 32.在等差数列{a n }中,21S =42,则11a =. 33.负数a 为27与3的等比中项,则a=.34.在等比数列{a n }中,2531=+-a a a ,且5753=+-a a a ,则=+-975a a a .35.在等比数列{a n }中,4S =4,8S =16,则12S =.36.已知向量a =(1,2),b =(2,1),则a ·b =,cos<a ,b >=.37.过点(2,1)且平行于向量a =(-1,2)的直线方程为;过点(2,1)且垂直于向量a =(-1,2)的直线方程为. 38.已知A (-2,1),B (4,7),则线段AB 的垂直平分线方程为.39.已知直线023=+-y x ,则其倾斜角α=.40.过点P (4,-3)且倾斜角为135°的直线方程为.41.过点(-3,1)与3x-y-3=0垂直的直线方程为. 42.直线3x+4y-12=0与6x+8y+6=0的距离为. 43.过圆x 2+y 2=25上点P (3,4)的切线方程为.44.离心率为21,一个焦点为F (-1,0)的椭圆方程为.45.已知椭圆192522=+y x 上一点P 到左准线的距离为215,则P 到右准线的距离为.46.双曲线15422=-y x 上一点P 到左焦点的距离为2,则P 到左准线的距离为. 47.已知抛物线x y 42=上点M 到焦点的距离为6,则点M 的横坐标为.2013年广东省高等职业院校招收中等职业学校毕业生考试数学试题本试卷共24小题,满分150分。

集合记忆口诀

集合记忆口诀

集合记忆口诀集合记忆口诀是一种通过将相关信息或知识点组织成集合的方式来帮助人们记忆的方法。

通过将不同的元素归类并串联起来,可以提高记忆效果。

下面将介绍一些常见的集合记忆口诀,希望对大家的学习和记忆有所帮助。

一、数学相关1. 代数运算口诀加减乘除,先乘后除,加减随意,按顺运算。

2. 几何定理口诀勾股定理:直角三角形斜边的平方等于两直角边的平方和。

角平分定理:两条平分线相交于角的内部,且互相垂直。

3. 圆周率口诀圆周率记三点一四,无限小数无穷多。

二、英语相关1. 时态变化口诀一般现在时:主语+动词原形;一般过去时:主语+动词过去式;一般将来时:主语+will+动词原形;现在进行时:主语+be动词+动词ing。

2. 单词拼写口诀I before E except after C,或when sounding like "A" as in "neighbor" and "weigh"。

三、历史相关1. 朝代记忆口诀夏商周秦,汉晋南北,隋唐五代,宋元明清。

2. 世界五大洲口诀亚欧非美澳,世界五大洲。

四、科学相关1. 元素周期表口诀H He(氢氦), Li Be(锂铍), B C N O F Ne(硼碳氮氧氟氖);Na Mg(钠镁), Al Si P S Cl Ar(铝硅磷硫氯氩);K Ca(钾钙), Sc Ti V Cr Mn Fe Ni(钪钛钒铬锰铁镍);Cu Zn Ga Ge As Se Br Kr(铜锌镓锗砷硒溴氪);Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe(铷锶镱锆铌钼锝钌铑钯银镉铟锡锑碲碘氙);Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu(铯钡镧铈镨钕钷钐铕钆铽镝钬铒铥镱镥);Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn(铪钽钨铼锇铱铂金汞铊铅铋钋砹氡);Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr(钫镭锕钍镤铀镎钚镅锔锫锎锿腚镧)。

集合与函数知识点公式定理记忆口诀

集合与函数知识点公式定理记忆口诀

集合与函数知识点公式定理记忆口诀内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求,分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y =X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

§1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域,与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)3312x y x -=--.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞ .(2)由330120x x -≥⎧⎪⎨--≠⎪⎩,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞ .【例2】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x-=+,解得13x =-,所以1(2)3f =-.(2)设11x t x-=+,解得11t x t-=+,所以1()1t f t t-=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例3】已知函数22(),1x f x x Rx =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x++=+=+==+++++. (2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32. 又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|yx x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右: 点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----.由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例3】已知31()2x f x x +=+,指出()f x 的单调区间.解:∵ 3(2)55()322x f x x x +--==+++,∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y a xb xc a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x=++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数知识点公式定理记忆口诀内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求,分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

§1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域,与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)3312x y x -=--.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2)由330120x x -≥⎧⎪⎨--≠⎪⎩,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x-=+,解得13x =-,所以1(2)3f =-.(2)设11x t x-=+,解得11t x t-=+,所以1()1t f t t-=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例3】已知函数22(),1x f x x Rx =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++. 解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞, ∴ f (0)=32. 又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右: 点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----.由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.【例3】已知31()2x f x x +=+,指出()f x 的单调区间.解:∵ 3(2)55()322x f x x x +--==+++,∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移知识,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y a xb xc a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2bx a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.。

相关文档
最新文档