第四章 正弦交流电路

合集下载

电路分析-第4章 正弦交流电路

电路分析-第4章 正弦交流电路

I m =I m i 或

I =I i


U m U mu


U U u

一、电阻元件:u(t)=Ri(t) 电阻元件伏安特性的相量形式为:

I
u = i
相量图

U

U =R I
U RI u i
相量模型: U
+ I -

电阻元件的电压和电流同频率、同相位。
φ1 > φ2 , U1超前u2
t
i i1 i2 0
u i u i
t 2 1
0
t
2
0
t
u i
1
2
(a)
(b)
(c)
(d)
同相
先到达某一确定状态为 超前,后到达者为滞后
反相
正交
五、 正弦量的有效值
1 、定义:正弦交流电的有效值是根据它的热效应确定的。
如某一交流电流和一直流电流分别通过同一电阻R, 在一
W L (t )
i
0
p dt

t
0
1 (t ) Li di Li 2

2
在动态电路中, 电感元件和外电路进行着磁场 能与其它能相互转换,本身不消耗能量。
4.4
三种元件伏安特性的相量形式
设 u(t)=Umsin(t+ u) i (t)=Imsin(t+ i) + i(t) u(t)
1 t iL (t ) iL ( t 0 ) uL (t )dt L t0
其中, t0为任选初始时刻,则iL(t0) 称为电感电流 的初始值,它体现了t0时刻以前电压对电流的贡献 ,所以电感电流对电压有记忆作用。

电工基础 第4章正弦交流电

电工基础 第4章正弦交流电
1.瞬时值、最大值和有效值 .瞬时值、 把任意时刻正弦交流电的数值称为瞬时值,用小写字母表示,如i、u及e 表示电流、电压及电动势的瞬时值。瞬时值有正、有负,也可能为零。 最大的瞬时值称为最大值(也叫幅值、峰值)。用带下标的小写字母表 示。如Im、Um及Em分别表示电流、电压及电动势的最大值。 正弦量的有效植: Im Um Em I= U = E= 2 2 2 例4.1 已知某交流电压为V,这个交流电压的最大值和有效值分别为多少? 解:最大值 有效值
u = U m sin(ωt + u )
i = I m sin(ωt + i )
4.1.2正弦交流电的基本特征和三要素 . . 正弦交流电的基本特征和三要素
两个同频率正弦量的相位角之 差或初相位角之差,称为相位 相位 差,用 表示。 图4.3中电压u和电流i的相位差 为
= (ωt + u ) (ωt + i ) = u i
第4章 正弦交流电路 章
4.1交流电路中的基本物理量 . 交流电路中的基本物理量 4.2正弦量的相量表示 4.3电路基本定律的相量形式 4.4 电阻、电感、电容电路 4.5 谐振电路 . 4.6正弦交流电路中的功率 . 正弦交流电路中的功率
第4章 正弦交流电路 章
4.1交流电路中的基本物理量 . 交流电路中的基本物理量
U m = 220 2V = 311.1V
U= U m 220 2 = V = 220V 2 2
4.1.2正弦交流电的基本特征和三要素 . . 正弦交流电的基本特征和三要素
2.频率与周期 . 正弦量变化一次所需的时间(秒)称为周期T,如图4.2所示。每秒内变化 的次数称为频率f,它的单位是赫兹(Hz)。 频率是周期的倒数,即

《电工技术基础与技能》教学课件—第4章 单相交流电路

《电工技术基础与技能》教学课件—第4章 单相交流电路

nu
4.1单相正弦交流电的认识
2.正弦交流电的产生
交流发电机模型
oc
4.1单相正弦交流电的认识
正弦交流电的波形图
正弦交流电的波形图 正弦交流电的解析式
伽 e
=
E m
sin
+ %)
4.1单相正弦交流电的认识
3.正弦交流电的三要素 正弦交流电包含三个要素:最大值(或有效值)、周期
(或频率、角频率)和初相位。
4.3.3 RLC串联电路 1.RLC串联电路中电压间关系
X <X
C
L
2.RLC串联电路的阻抗
』 Z| = U = JRR + (XL - XQ2 = R2 + X2
3.RLC串联电路的功率
RLC串联电路 RLC串联电路功率三角形
• 4.4.1电能的测量
电能做功所消耗电能的多少可以用电功来度量。电 功的计算公式为:W = Ult = Pt
nu
4.1单相正弦交流电的认识
• 4.1.2旋转矢量表示法 1.旋转矢量表示法
旋转矢量图表示法
正弦交流电的旋转矢量表示法
♦只有同频率正弦量的矢量才能画在同一个矢量图中。 ♦旋转矢量的加、减运算可以按平行四边形法则进行。
oc
4.1单相正弦交流电的认识
2.同频率正弦交流电相加的矢量运算
同频率的正弦交流量相加,其和仍为同频率正弦交流量。 它们的运算可以按平行四边形法则进行。步骤为: •(1)作基准线x轴(基准线通常省略不画),确定比例单位; •(2)作出正弦交流电相对应的旋转矢量; •(3)根据矢量的平行四边形法则作图; •(4)根据得到的和矢量的长度及和矢量与x轴的夹角就是所 得正弦量的最大值(或有效值)和初相角D0;写出表达式。

《电工学》(秦曾煌主编第六版)第四章__正弦交流电路(完整版)

《电工学》(秦曾煌主编第六版)第四章__正弦交流电路(完整版)




, 4.5.8 解 求图 4.15 所示电路的阻抗 Zab。 对图 4.15(a)所示电路
对图 4.15(b)所示电路 ,
4.5.9 解
求图 4.16 两图中的电流 。
用分流比法求解。
对图 4.16(a)所示电路
对图 3.18(b)所示电路
4.5.10 解
计算上题中理想电流源两端的电压。
对图 4.16(a)所示电路
线圈电感 43.3 H,试求线圈电流及功率因数。 解
, 4.4.5 日光灯管与镇流器串联接到交流电压上,可看作为
1=280Ω
, 串联电路。
2=20Ω
如已知某灯管的等效电阻 =1.65H,电源电压
,镇流器的电阻和电感分别为

=220V,试求电路中的电流和灯管两端与镇流器上的电压。
这两个电压加起来是否等于 220V?电源频率为 50HZ。 解 日光灯电路的等效电路见图 T4.4.5。
根据题意画出等效电路图 T4.4.2
4.4.3
一个线圈接在
=120V 的直流电源上, =20A;若接在 f=50HZ, 及电感 。
=220V 的交流电源上,则 =28.2A。试求线圈的电阻 解 线圈加直流电源,电感 看作短路,电阻
。 。
线圈加交流电源,等效阻抗 感抗 ∴
4.4.4
有一 JZ7 型中间继电器,其线圈数据为 380V 50HZ,线圈电阻 2KΩ ,
,试求电容值。同上题比较,u2
画出相量图 T4.4.9 ,由相量图知 u2 滞后 u1
, u1 滞后 i

4.4.10
图 4.07 所示的是桥式移相电路。当改变电阻
时,可改变控制电
压 ug 与电源电压 u 之间的相位差 ,但电压 ug 的有效值是不变的,试证明之。 图中的 Tr 是一变压器。 证 ,设 ,则

第4章 正弦交流电

第4章 正弦交流电

i = I m sin(ωt + ϕ i )
u、 i
0
t
3
正弦交流电路分析中仍然使用参考方向, 正弦交流电路分析中仍然使用参考方向,当实际方向 与参考方向一致时,正弦量大于零;反之小于零。 与参考方向一致时,正弦量大于零;反之小于零。
i
u
R
i
实际方向和参考方向一致
t
实际方向和参考方向相反
用小写字母表 示交流瞬时值
ωt
22
3.相量表示法 3.相量表示法
一个正弦量的瞬时值可以用一个旋转矢量 旋转矢量在纵轴上 概念 :一个正弦量的瞬时值可以用一个旋转矢量在纵轴上 的投影值来表示。 投影值来表示。 来表示
u = U m sin (ω t + ϕ )
Um
ωϕ
ϕ
矢量长度 =
ωt
Um
矢量与横轴夹角 = 初相位
在t = 0时刻,矢量以角速度ω按逆时针方向旋转
19
复数的加减可以在复平面上用平行四边形来进行。 复数的加减可以在复平面上用平行四边形来进行。前 面例题的相量图见下面左图,右图是另一种画法。 面例题的相量图见下面左图,右图是另一种画法。右图的 画法更为简捷,当有多个相量相加减时会显得很方便。 画法更为简捷,当有多个相量相加减时会显得很方便。 +j A1+ A2 A1+ A2 A2 A1 O +1 O A1 +1 A2
= r (cos ϕ + j sin ϕ )
复数的指数形式 复数的指数形式: 指数形式: 复数的极坐标形式 复数的极坐标形式: 极坐标形式:
A = re

A = r∠ϕ
实部相等、虚部大小相等而异号的两个复数叫做共轭复数。用 实部相等、虚部大小相等而异号的两个复数叫做共轭复数 共轭复数。 A*表示A的共轭复数,则有 表示A的共轭复数, A=a+jb +jb A*=a-jb

dl4三相交流电路

dl4三相交流电路
已知:
EA 220 0 EB 220 120 EC 220 240
IA
N'
IB
IC
每盏灯的额定值为: 220V、 100W
求:各相电流
用结点电压法
A
EA E
N
B
C EC B
IA
N'
IB
A
ICR
E A B IA R
N E B C IB R
N'
EC
IC R
每盏灯为220V、 100W
X
单相电动势。
定子
Z

B 转子
4.1.2 三相电动势的特征
eXA Em sint
eYB Em sint 120 eZC Em sint 240
E msi nt (12 )0
大小相等,频率相同,相位互差120º
4.1.3 三相电动势的瞬时关系
eA eB eC
Em
eA+eB+eC=0
4.1.4 三相电动势的相量关系
分析:
设线电压为380V。 A相断开后,B、C 两相串连, 电压UBC (380V)加在B、C 负载上。如果两相负载对称, 则每相负载上的电压为190V。
A 一层楼
二层楼
B
结果:二、三楼电灯全部变暗, 不能正常工作。
C
...
三层楼
问题2:
若一楼断开,二、三楼接通。但两层楼灯的数量不等 (设二楼灯的数量为三层的1/4 )结果如何?
RU2 484
P
22 00 22 012022 0120
R
R
R
UN'
2 112
RRR
N
A EE BA B

第四章-正弦交流电路的相量法

第四章-正弦交流电路的相量法

.
原理:
+.
I
.
U
IC
.
.
I1
IC
R
jL
j 1 C
12
.
U
.
I
.
IC
-
a)
.
b) I 1
图4-11 功率因数的提高
根据图4-11分析如下:
a)电路图 ; b)相量图
并联电容前,总电流
I
I1
,电压超前电流的相位差为
; 1
并联电容后,总电流
I
I1
IC
,电压超前电流的相位差为 2
因 2 1 故 cos 2 cos 1 首页
U
Z1
+
Z2

U2
-
1053.13 -
图4-2 例4-1图
首页
U 2 Z2I (1 j7)1036.87V 7.07 81.87 1036.87 V 70.7 45 V
U1 Z1I (5 j15)1036.87V 15.8171.57 1036.87 V 158.1108.44 V
Y Y
对比可得
Y 1 Z


当电压、电流关联参考方向时,相量关系式U Z I
也可表示为 U I 或 I YU
Y
首页
二、用复导纳分析并联电路
图4-6所示是多支路并联电路,根据相量形式的基尔霍
夫电流定律,总电流
.
.
.
.
I I1 I2 In
.
.
.
Y1 U1 Y2 U2 Yn Un
因并联电容前后电路消耗的有功功率是相等的,故
并联电容前
P UI1 cos 1

正弦交流电路

正弦交流电路

如果两个频率相同的交流电的相位也相同, 那么它们的相位差为零,此时称这两个交流电 同相,即它们变化的进程一样,总是能够在同 一时刻达到最大值和零,并且方向相同。如果 两个频率相同的交流电的相位差为180°,则 称这两个交流电反相。它们变化的进程相反, 一个到达正的最大值时,另一个恰好到达负的 最大值。
交流电变化一周还可以利用2π弧度或360°来表征。 也就是说,交流电变化一周相当于线圈转动了2π弧度 或360°。如果利用角度来表征交流电,那么每秒内交 流电所变化的角度被称为角频率。角频率通常利用ω 来表示,单位是弧度/秒(rad/s)。 交流电的周期、频率和角速度主要是用来描述交流 电变化快慢的物理量,它们之间的关系是: T=1/f (4-3) ω=2πf=2π/T (4-4) 2.幅值 交流电在每周变化过程中出现的最大瞬时值称为 幅值,也称为最大值。交流电的幅值不随时间的变化 而变化。
三、正弦交流电的有效值、平均值和相位差 在工程中,有时人们并不关心交流电是否变化和怎样变化,而是关 心交流电所产生的效果。这种效果常利用有效值和平均来表示。 1有效值 有效值是根据电流的热效应来定义的。让交流电流和直流电流分别 通过具有相同阻值的电阻,如果在同样的时间内所产生的热量相等, 那么就把该直流电流的大小叫做交流电的有效值。理论分析表明, 交流电的有效值和幅值之间有如下关系:
第四章 正弦交流电路
知识目标 本章主要介绍正弦交流电的基本知识,包括交流电的 产生原理、交流电的表征方法;讨论纯电阻、纯电感、 纯电容等简单交流电路的特点;分析电阻、电感、电 容串联电路的特点;介绍交流电路的功率概念。 学习目标 1.了解正弦交流电的产生原理。 2.了解正弦交流电的周期、频率、角频率、幅值、 初相位、相位差等特征量,理解正弦交流电的解析式、 波形图、相量图、三要素等概念。 3.掌握正弦交流量有效值、平均值与最大值之间 的关系,以及同频率正弦量的相位差的计算。

4正弦交流电路

4正弦交流电路

−1
θ
Re 0 a
a = r cos θ b = r sin θ
r = a +b θ = arctg b a
2 2
②三角形式
A = r cos θ + jr sin θ
欧拉公式) e = cos θ + jsin θ(欧拉公式) jθ A = re = r cos θ + jr sin θ

③指数形式
u
波形图
U
T
m
ϕ
ωt
瞬时值
u = U m sin (ω t + ϕ )
& U
相量图
ϕu
复数 符号法
& = a + jb =U e jϕ ⇒ U ∠ϕ U
提示
计算相量的相位角时, 计算相量的相位角时,要注意所在 象限。 象限。如:
& U = 3 + j4
u = 5 2 sin(ω t + 53 ⋅1 )
两种正弦信号的关系
同 相 位
i2
ψ1 =ψ 2
ψ2 ψ1
i2
i1 i1
t
t
ϕ =ψ1 −ψ2 =0
i1

相 位 领 先 相 位 落 后
ϕ =ψ1 −ψ 2 > 0
i2同相位
ψ1 ψ2
i1
ψ2
ψ1
i1 领先于 i2
ϕ =ψ1 −ψ2 < 0
i2
t
i1 落后于 i2
三相交流电路:三种电压初相位各差120 三相交流电路:三种电压初相位各差120ο。
新问题提出: 新问题提出: 提出 平行四边形法则可以用于相量运算,但不方便。 平行四边形法则可以用于相量运算,但不方便。 故引入相量的复数运算法。 故引入相量的复数运算法。 相量的复数运算法 相量 复数表示法 复数运算

正弦交流电路课件

正弦交流电路课件
总结词
电感器的感值大小与线圈的匝数、线圈的直径、 线圈的材料等因素有关。
详细描述
电感器在正弦交流电路中能够阻碍电流的变化, 使电流的变化率降低。电感器的电流和电压之间 存在相位差,相位差的大小取决于电感器的大小 。
详细描述
电感器的感值大小由亨利定律确定,即电感器的 感值与线圈中的磁场强度成正比。在正弦交流电 路中,电感器的感抗大小会随着频率的变化而变 化。
电容器
总结词
详细描述
总结词
详细描述
电容器是正弦交流电路中的另 一重要元件,用于储存电场能 量。
电容器在正弦交流电路中能够 阻碍电压的变化,使电压的变 化率降低。电容器的电流和电 压之间存在相位差,相位差的 大小取决于电容器的大小。
电容器的容值大小与电容器极 板的面积、极板之间的距离、 电介质等因素有关。
分析数据
根据实验数据,分析正弦交流 电路的基本特性和元件参数对
电路性能的影响。
仿真软件介绍与使用
软件名称
Simulink
功能特点
Simulink是MATLAB的一个附加组件,用于进行动态系统模拟和分析。它提供了丰富的库和工具,可用于构建和仿 真各种类型的电路,包括正弦交流电路。
使用方法
在Simulink中,用户可以创建电路模型,设置元件参数,选择适当的激励源和测量仪器,然后运行仿真 以观察电路的行为。分析仿真结果可以帮助用户深入理解正弦交流电路的工作原理。
谐振与频率响应
谐振
正弦交流电路中某些特定频率下的振动现象,可能导致电压或电流的异常升高 。
频率响应
表示正弦交流电路在不同频率下的性能表现,包括幅频特性和相频特性。
03
正弦交流电路的元件
电阻器

电工学第七版第4章 正弦交流电路(南昌大学期末考试必考知识点其他学校只供参考)PPT课件

电工学第七版第4章  正弦交流电路(南昌大学期末考试必考知识点其他学校只供参考)PPT课件

4.3 单一参数的交流电路
⑶波形关系
ui u
⑷相量关系
UU0 II0 O
i
ωt
U I
U I
R
欧姆定律的相量表示式: U RI
⑸相量图
I U
制作群
21
主 页 总目录 章目录 上一页 下一页 退 出
4.3 单一参数的交流电路
⒉ 功率关系 ⑴瞬时功率p
ui u
电压瞬时值u与电流
i
O
瞬时值i的乘积。
p ui UmImsi2nωt p
R
u
-
R
正半周
负半周
图中虚线箭头代表电流的实际方向;
、 代表电压的实际方向(极性)。
正弦量:正弦电压和电流等物理量统称为正弦量。
制作群
5
主 页 总目录 章目录 上一页 下一页 退 出
4.1 正弦电压与电流
正弦量的特征表现在:
变化的快慢 大小 初始值
频率 幅值
正弦量的三要素
初相位
设正弦交流电流:
i Im
第4章 正弦交流电路
4.1 正弦电压与电流 4.2 正弦量的相量表示法 4.3 单一参数的交流电路 4.4 电阻、电感与电容元件串联的交流电路 4.5 阻抗的串联与并联 *4.6 复杂正弦交流电路的分析与计算 4.7 交流电路的频率特性 4.8 功率因数的提高 4.9 非正弦周期电压和电流
制作群
1
主 页 总目录 章目录 上一页 下一页 退 出
4.2 正弦量的相量表示法
4.2.2 相量
表示正弦量的复数称相量。
相量只是表示正弦量,而不等于正弦量。
⒈ 相量式
设正弦量:uU m si(n ω tψ ) 电压幅值相量表示: U mUm ejψUm ψ 电压有效值相量表示: UUejψUψ

三相正弦交流电

三相正弦交流电

iBC
(1)负载不对称时,先算出各相电流,然后计算线电流。
(2)负载对称时(ZAB=ZBC=ZCA=Z ),各相电流有
效值相等,相位互差120 。有效值为:
I AB
I BC
I CA
IP
Ul Z
§4.5 三相电路的功率
由负载
性质决定
三相总有功功率: P PA PB PC
负载对称时: P 3 U p I p cos
IAN 、IBN、ICN
IA 、IB 、IC
IN : 中线电流
IN IAN IBN ICN
星形接法特点
iA
1)
相电流=线电流
IIICBA
IIICBANNN
A
N
iN
i ZA
AN
C B
i i C ZB
ZC iBN
iB
CN
2)每相负载承受电源的相电压
Il Ip
IA
IB
IAN
IBN
U AN ZUABN
中线的作用:使星形连接的不对称负载得到相等的
相电压。为了确保中线在运行中不断开,其上不允许 接保险丝也不允许接刀闸。
总结: Y形(星形)连接时
1、负载对称时,中线不起作用。不论有无中线
IN 0
U NN 0
2、负载不对称无中线时 U NN 0
3、负载不对称有中线时 U NN 0 IN 0
应用实例----照明电路 能否取消中线?
ZB
IC
ICN
U CN Z
二、对称负载星形接法时的情况
U AB
IA
A
U CA U BC
U AN IN UCN IC
U BN IB
Z
Z

第4章 正弦交流电路

第4章 正弦交流电路

b
同频正弦量的乘除法运算与复数运算相同,而 且在线性电路当中,运算后的频率是不会改变的。
§4.3 电阻、电感、电容元件的交流电路
一、电阻元件的交流电路
iR 2I Rsin( t i ) uR R 2I Rsin( t i )
2U Rsin( t u )
时域下的电阻模型
由于直流电在电阻上做功大小为 I2RT ,于是根据定义有:
I RT i Rdt R Im 2 sin 2 tdt
2 2 0 0
T
T
即: I 2 RT RIm 2
T
0
1 cos 2t RTIm 2 dt 2 2

Im I 0.707 Im 2
结果说明正弦电流的有效值等于最大值的0.707倍。同理, 正弦电压的有效值为:
U 1 U 1 u1 U 2 U 2 u 2
b

U b U b ub
k 1
则对应于 u1 (t ) u2 (t ) ub (t ) uk (t )

U1 U 2 U b U k
k 1
b
同理设 i1 (t ) 2 I 1 sin( t i 1 ) i 2 (t ) 2 I 2 sin( t i 2 ) i b (t ) 2 I b sin( t ib )
复数A的实部a1及虚部a2与模a及辐角θ的关系为:
a1 a cos
其中
a2 a sin
a2 arctg a1
a
2 a1

2 a2
1.复数的表示形式:
根据上式关系式及欧拉公式
+j a2 O

第四章: 正弦交流电路

第四章: 正弦交流电路

= 2U sin (t+90)
i
【小结】电感两端电压和电流关系:
O
ωt
① 两者频率相同;
90
② 电压超前电流90,即相位差为:
= u i 90
③ 大小关系:U=I·L=I· XL ; XL为感抗;
20
i(t)= 2I sin t
u(t)= 2IL sin (t+90)
2. 感抗:Ω
∵ 有效值:U =I L
u
i
o
ωt
i
i
i
i
+
--
+
u uuu
-
++-
p(t)
+ p <0 + p <0
o
p >0
p >0
∵ 储存能量和释放能量交替
进行 ∴ 电感L是储能元件。
【结论】纯电感不消耗能量, 只和电源进行能量交换(能量 的吞吐)。
ωt
储能 释能 储能 释能
24
(3)无功功率Q:
用以衡量电感电路中与电源交换能量的瞬时最大值即振幅 称作~。即:
正确写出幅、角的值。如:
+j
B 4
A
A 3 j4
第一象限
4 A 5 arctan
3
-3 0 C -4
B 3 j4
第二象限
4 B 5(180 arctan )
+1
3
3
C 3 j4
第三象限
4 C 5(arctan 180)
3
D
D 3 j4
第四象限
4 D 5( arctan )
3
式中的j 称为旋转因子,复数乘以j相当于在复平面上逆

《第4章正弦交流电路资料》

《第4章正弦交流电路资料》

第四章正弦交流电路一、填空题:1. 已知两个正弦电流i1和i2,它们的相量为lI1=10N60°A, ll2 =10Y—60°A,则i =i1 _i2 = 3 =314rad/s)。

2. 已知复阻抗Z =(5-j5 g,则该元件呈容性,阻抗角~45003. 将正弦交流电压u =200sin(100t+30')V加在电感L=50mT勺线圈两端(线圈电阻忽略不计),在电压、电流的参考方向为关联参考方向下,流经电感的电流瞬时表达式为4°河10妇1200治。

4. 有一正弦交流电压,已知其周期为10澎S,若该电压的有效值相量为u' = (80+j60)V,则该电压的瞬时表达式为100/2河628。

+370治。

5. 将正弦交流电压u =200sin(100t+30”)V加在电容C=500uF的电容器两端(电容器视为理想),在电压、电流的参考方向为一致时,流经电容的电流瞬时表达式为10sin(100t-600)V 。

6. 已知i =10cos(100t -30)A , u =5sin(100t —60°)V,则i、u 的相位差为300且i 超前u。

(填超前或滞后)7. 电流的瞬时表达式为i =10&sin(100t-260「)A,则其频率f = 5°Hz ,有效值I = 10 A,初丰目位4 — I00o_1_8. RLC申联电路的谐振条件是X L=X c ,其谐振频率f°为2兀MC ,申联谐振时电流达到最大(最大,最小)。

若L=10mH C=1uF则电路的谐振频率为1592 Hz 。

9. 某正弦交流电的角频率为628弧度/秒,有效值为220伏,则电压最大值为220龙伏,如果初相位为兀/3,则电压的瞬时表达式为 _10 写出U=(40-j30)V , f =50Hz的正弦量表达式u= 50而$讷(3忡-37 )V .220T2sin(628t+60普V。

第04章-正弦交流电路(1-2-3-4节)

第04章-正弦交流电路(1-2-3-4节)

则 i u 2Usint 2Isint
RR
u 2Usint
i u 2Usint 2Isint
RR
UIR ui 0
2).相量关系
U U0
则 I U 0 R
I U
即 U IR
2.功率关系
1).瞬时功率 p
i
+
u
R
-
i 2 I sin ( t) u 2U sin ( t)
说明: 给出了观察正弦波的起点,常用于描述 多个正弦波相互间的关系。起点不同, 亦不同.
4.1.3 相位差 :
两同频率的正弦量之间的初相位之差。
如:uU m siω nt (ψ 1)
iIm siω nt (ψ 2)
(t 1) (t 2)
ψ1 ψ2
ui u i
复数的模 复数的辐角
(2) 三角式
a
A r cψ o jr sψ i r n (c ψ o jsψ is )n
由欧拉公式:
ej ψ ej ψ
cosψ
,
2
ej ψ ej ψ s inψ
2j
可得: ejψcoψsjs iψ n (3) 指数式 A r ejψ
(4) 极坐标式 Ar ψ

6
u 311 .1sin 314 t V

3
求:
i 、u 的相量
I14 .4 1 30 10 30 0 8.6 6 j50A 2
U 3.1 16 02 2 6 0 01 1j1 0.9 5V 0 2
I14 .4 13010 3 008.6j50A 2
最大值
电量名称必须大
写,下标加 m。 如:Um、Im

电工技术第四章 正弦交流电路习题解答

电工技术第四章 正弦交流电路习题解答

tωi /A222032πtωi /A 2032π6πA102i 1i 第四章 正弦交流电路[练习与思考]4-1-1 在某电路中,()A t i 60 314sin 2220-=⑴指出它的幅值、有效值、周期、频率、角频率及初相位,并画出波形图。

⑵如果i 的参考方向选的相反,写出它的三角函数式,画出波形图,并问⑴中各项有无改变? 解:⑴ 幅值 A I m 2220有效值 A I 220= 频率 3145022f Hz ωππ===周期 10.02T s f== 角频率 314/rad s ω=题解图4.01 初相位 s rad /3πψ-=波形图如题解图4.01所示(2) 如果i 的参考方向选的相反, 则A t i ⎪⎭⎫ ⎝⎛+=32 314sin 2220π,初相位改变了,s r a d /32πψ=其他项不变。

波形图如题解图4.02所示。

题解图4.024-1-2 已知A )120314sin(101 -=t i ,A )30314sin(202 +=t i ⑴它们的相位差等于多少?⑵画出1i 和2i 的波形。

并在相位上比较1i 和2i 谁超前,谁滞后。

解:⑴ 二者频率相同,它们的相位差︒-=︒-︒-=-=1503012021i i ψψϕ (2)在相位上2i 超前,1i 滞后。

波形图如题解图4.03所示。

题解图4.03+1+j1m I ∙2m I ∙mI ∙︒60︒30︒1.234-2-1 写出下列正弦电压的相量V )45(sin 2201 -=t u ω,)V 45314(sin 1002 +=t u解:V U ︒-∠=∙4521101 V U︒∠=∙4525024-2-2已知正弦电流)A 60(sin 81 +=t i ω和)A 30(sin 62 -=t i ω,试用复数计算电流21i i i +=,并画出相量图。

解:由题目得到Aj j j j I I I m m m ︒∠=+=-++=︒-︒+︒+︒=︒-∠+︒∠=+=∙∙∙1.231093.32.9)32.5()93.64()30sin 630cos 6()60sin 860cos 8(30660821所以正弦电流为)A 1.23(sin 101 +=t i ω题解图4.04 相量图如题解图4.04所示。

第四章 正弦交流电

第四章  正弦交流电

第四章正弦交流电
参考教法
四、应用举例:
[1]已知u = 311sin(314t- 30︒) V,I = 5sin(314t+ 60
的相位差为:ϕui = (-30︒) - (+ 60︒) = - 90︒
即u比i滞后90︒,或i比u超前90︒。

正弦交流电流i = 2sin(100πt- 30︒) A,如果交流电流
的电阻时,电流的最大值、有效值、角频率、频率、周期及初相并求电功率
j2 = -1,j3 = - j
比较电容、电感相位关系及相量图形式区别 强调电容电压滞后电流:理解电容电压与充电关系 电感电压超前电流:理解电感阻碍电流的变化
已知一电容C = 127 μF ,外加于电容两端的正弦交流电压表达V )20314sin( +t ,试求:(1) 容抗X ;(2) 电流大小
串联电路。

又可简化计算。

电流有效值相量:

四.提高功率因数的方法
提高感性负载功率因数的最简便的方法,是用适当容量的电容器与感性负载并联,这样就可以使电感中的磁场能量与电容器的电场能量进的电场能量进行交换,从而减少电源与负载间能量的互换。

在感性负载两端并联一个适当的电容后,对提高电路的功率因数十分有效。

借助相量图分析方法容易证明:对于额定电压为U、额定功率为
f的感性负载R-L来说,将功率因数从λ= cos。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 正弦交流电路
1、 图3.01所示的是时间t=0时电压和电流的相量图,并已知U=220V ,I 1=10A,,
I 2=52 A ,试分别用三角函数式及复数式表示各正弦量。

解:三角函数式:tV u ωsin 2220=
A t i )90sin(2101 +=ω
A t i )45sin(102 -=ω
相量式 /220=U
0°V 10101
==A j I /90°A /252
=I -45°A A j 55-= 2、 已知通过线圈的电流tA i 314
sin 210=,线圈的电感mH L 70=(电阻忽略不计),设电源电压u 、电流i 及感应电动势e L 的参考方向如图3.02所示,试分别计算在4,6T t T t ==和2
T t =瞬间的电流、电压及电动势的大小,并在电路图上标出它们在该瞬间的实际方向,同时用正弦波形表示出三者之间的关系。

解: 根据tA i 314
sin 210=可求电压
V
t t t LI dt
di L
u m )90314sin(2220)90314sin(2101070314)90314sin(3 +=+⨯⨯⨯=+==-ω 电动势 V t u e L )90314sin(2220 -=-=
当6
T t =时,V e V V u A A i L 156,1562110,2.1265-=≈=≈=,实际方向标明在图解(a )上。

当4
T t =时,0,0,1.14210==≈=L e u A A i ,实际方向标明在图解(b )上。

当2T t =时,V e V V u i L 311,3112220,0=-≈-==,实际方向标明在图(c )上。

波形图如图所示。

3、 在图所示的各电路图中,除A 0和V 0外,其余电流表和电压表的读数在图上都已标出(都是正弦量的有效值),试求电流表A 0或电压表V 0的读数。

解 对图(a )所示电路有
A A A A A 1.1421010102222210≈=+=+=
对图3.03(b )所示电路有
V V V V 80601002221220=-=-=
对图(c )所示电路有
A A A A 235210=-=-=
对图(d )所示电路有
V V V V 1.1421010102222210≈=+=+= 对图(e )所示电路有
设V V
0/1001=∙ A j j j j j j V jA A 1010101045/210105
50/1001055110=-+=-+=++=++=∙

即 A A 100=
V j V A j V 45/21000/100101010100-=+⨯-=+-=∙∙∙
即 V V 14121000≈=
3、 图中,,101A I =,2102A I =,220V U =,5Ω=R ,2L X R =试求
,I ,C X L X 2R 及。

解 以2∙U 为参考相量,其中2∙
U 为电容器两端电压,画出该电路的相量图如图所示。

V U U 0/22=∙。

因为L X R =2,所以2∙I 滞后于 452∙U 。

1∙I 超前于 902∙
U 。

根据已知值,可得
A I A j I I I 10,0/1045/2101021==-+=+=∙
∙∙
0/)50(0/0/510222U U U R I U +=+⨯=+=∙
∙∙ V
IR U U 150502002=-=-=
Ω===151015012I U X C
21015022222222===+=+I U R X R jX R L L
Ω==5.722R X
5、在图中,i u V U A I I 与,100,1021===同相,试求L C X X R I 及,,。

解:以2∙I 为参考相量,画出电路的相量图如图所示。

∙∙=R I U R 2,与2∙I 同相位。

C R jX U I -=∙∙
1,超前于R U ∙(或2∙I ) 90。

两者相加,得 A j I I I 45/210101021=+=+=∙
∙∙ A I 1.14210≈=
∙∙=I jX U L L ,超前于 90∙I ,而∙U 与∙I 同相位,且R L U U U ∙∙∙+=,根据作图可得
V U U R 21002==
V U U L 100==
所以 Ω≈===1.1421010
21002I U R R Ω≈==1.1410
21001I U X R C Ω≈==
07.71.14100I U X L L 6、 日光灯管与镇流器串联接到交流电压上,可看作RL 串联电路。

如已知某灯管的等效电阻R 1=280Ω,镇流器的电阻和电感分别为R 2=20Ω,L=1.65H ,电源电压U=220V ,试求电路中的电流和灯管两端与镇流器上的电压。

这两个电压加起来是否等于220V ?电源频率为50Hz 。

解 电路总阻抗为
Ω
≈+≈
⨯⨯++=++= 9.59/59951830065.1502)20280()(21j j L j R R Z πω 电流 A Z U I 367.0599220≈==
灯管电压 V IR U R 103280367.01≈⨯==
镇流器的阻抗 Ω≈+=+= 8.87/5185182022j L j R Z ω
镇流器的电压 V Z I U rL 190518367.02≈⨯==
U V U U rL R =>=+=+220293190103
注意:∙∙∙+=rL R U U U 。

不能用有效值相加!
7、 在图中,已知,314sin 2220tV u =A t i )45314sin(221 -=,A t i )90314sin(2112 +=,试求各仪表读数及电路参数C L R 和,。

解 V 的读数为U=220V ,A 1的读数为A 211,A 2的读数为11A 。

A I I I 0/1190/1145/21121=+-=+=∙∙∙
故A 的读数为11A 。

Ω+=Ω=-==+=∙∙101045/21045/2110/22011j I U
I j R Z ω
所以 Ω=10R , mH H H L 8.314.31131410≈==
Ω===2011
2202I U X C F X C C μω15920
31411≈⨯== 8、 在图3.07中,已知,6,8,4,32211Ω=Ω=Ω=Ω=X R X R ,314sin 2220tV u =试求
i i i 和21,。

解 用相量表示
V U
0/220=∙
Ω=+=+= 1.53/543111j jX R Z
Ω=+=+= 9.36/1068222j jX R Z 于是 A j Z U I 2.354.261.53/441.53/50/22011-=-===∙

A j Z U I 2.136.179.36/229.36/100/22022-=-===∙

A j j j I I I 7.47/4.654.48442.136.172.354.2621-=-=-+-=+=∙∙∙

A t i )1.53314sin(2441 -=
A t i )9.36314sin(2222 -=
A t i )7.47314sin(24.65 -=
9、 在图 3.08中,已知,11,22,22,220Ω=Ω=Ω==C L X X R V U 试求电流I I I I C L R 及,,。

解 令V U U
0/=∙ A R U I R
0/10220/220===∙

A j j jX U I L L 10220/220-===∙
∙ A j j jX U I C C 20110/220=-=-=∙
∙ A j j I I I I C L R 45/210201010=+-=++=∙∙∙∙
结果: A I A I A I A I C L R 210,20,10,10====
10、 今有40W 的日光灯一个,使用时灯管与镇流器(可近似地把镇流器看作纯电感)串联后接在电压为220V ,频率为50Hz 的电源上。

已知灯管工作时属于纯电阻负载,灯管两端的电压等于110V ,试求镇流器的感抗与电感。

这时电路的功率因数等于多少?若将功率因数提高到0.8,问应并联多大电容?
解 P=U R I ,即有功功率消耗在灯管上,故A U P I R 36.0110
40≈== 电感上电压 V U U U R L 1901102202222≈-=-=
感抗 Ω≈==52436
.0190I U X L L 电感 H f X L L 67.150
25242≈⨯==ππ 电路功率因数 5.036.022040cos ≈⨯==
UI P ϕ 并联电容:
[]F fU P C μπϕϕπ58.2)8.0tan(arccos )5.0tan(arccos 22050240)tan (tan 2212
≈-⨯⨯=-=。

相关文档
最新文档