高一数学指数函数图像和性质
4.2.2指数函数的图像与性质2课件-高一上学期数学人教A版必修第一册
1 3
1
∴当 t= (此时 x=1)时,取到最小值 g2= ,
2
4
2
当 t=2(此时 x=-1)时,取到最大值 g(2)=3,
3
∴f(x)的最小值为 ,最大值为 3.
4
角度2 指数函数图象和性质的综合运用
2
例3
函数 f(x)=a- x .
2 +1
(1)求证:不论 a 为何实数,f(x)总为增函数;
训练1
(1)函数y=ax在[1,2]上最大值与最小值的差为2,则a=
A.-1 或 2
√
B.2
1
C.
2
y=ax在[1,2]上是单调函数,
当a>1时,a2-a=2,解得a=2(舍去-1).
当0<a<1时,a-a2=2,方程无解.
综上知a=2.
1
D.
4
(2)函数
1x
1x
f(x)=4 -2 +1
2 +1
2 +1
x
故函数 f(x)的值域为(-1,1).
例4 如图,某城市人口呈指数增长.
(1)根据图像,估计该城市人口每翻一番所需时间;
(2)该城市人口从80万开始,经过20年会增长到多少万人?
解: (1)视察图,发现20年约为10万人,经过40
年约为20万人,即由10万人口增加到20万人口
所用的时间约为20年,所以该城市人口每翻一
函数值变 x > 0时,y > 1
化情况
x < 0时,0< y <1 x < 0时,y > 1
过定点
角度1 定义域、值域、最值ห้องสมุดไป่ตู้题
高一数学指数函数ppt课件
与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。
高一数学人必修件指数函数的图象和性质
在生物学领域,指数函数用于描述生物种群的繁殖速度。某 些生物种群的增长符合指数函数的规律,如细菌繁殖、昆虫 数量增长等。
其他领域应用案例
放射性衰变
在物理学中,指数函数用于描述放射性物质的衰变过程。放射性元 素的原子数量随时间呈指数减少。
化学反应速率
化学领域中,指数函数可用于描述某些化学反应的速率。反应速率 与反应物浓度的关系可以用指数函数表示。
同底数幂相乘
幂的乘方
底数不变,指数相加。即$a^m times a^n = a^{m+n}$。
底数不变,指数相乘。即$(a^m)^n = a^{m times n}$。
同底数幂相除
底数不变,指数相减。即$a^m div a^n = a^{m-n}$。
幂的乘方法则
1 2
正整数指数幂的乘法
$(a^m)^n = a^{m times n}$,其中$m, n$为 正整数。
指数函数图像与坐标轴交点
指数函数的图像与x轴没有交点,与y轴的交点是(0,1)。
指数函数性质总结
指数函数的单调性
当a>1时,指数函数在定义域 内单调递增;当0<a<1时,指 数函数在定义域内单调递减。
指数函数的奇偶性
指数函数既不是奇函数也不是 偶函数。
指数函数的值域
指数函数的值域是(0, +∞)。
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数表达式
y=a^x,其中a是自变量,x是指 数,y是因变量。
指数函数图像特征
指数函数图像形状
指数函数的图像是一条从坐标原点出发,向右上方或右下方无限 延伸的曲线。
指数函数图像位置
当a>1时,图像位于第一象限和第二象限;当0<a<1时,图像位于 第一象限和第四象限。
指数函数的性质与图像课件高一上学期数学人教B版(完整版)
考察函数
y
的图象:
6
5
4
3
2
1
–5 –4 –3 –2 –1 O
–1
x
1 23 4 5
问题8:函数图象的升降情况如何?由此说明什么性质? 单调递增
问题9:图象在y轴左、右两侧的分布情况如何?由此说明 函数值有那些变化? x<0时,0<y<1;x=0时,y=1; x>0时,y>1.
知识探究(三):指数函数的性质
的图象有什么关系?
函数 与
的图象有什么关系?
y
6
5
4
3
2
1
–5 –4 –3 –2 –1 O
–1
x
1 23 4 5
y
6
5
4
3
2
1
–5 –4 –3 –2 –1 O
–1
x
1 23 4 5
知识探究(二):指数函数的图像
y
6
5
4
3
2
1
–5 –4 –3 –2 –1 O
–1
x
1 23 4 5
知识探究(二):指数函数的图像
R
y
6
5
4
3
2
1
–5 –4 –3 –2 –1 O
–1
x
1 23 4 5
R
当
时
;当
时
;
当
时
;当
时
;
当
时
;当
时
;
过定点(0,1)
过定点(0,1)
在R上是减函数
在R上是减函数
非奇非偶
非奇非偶
应用1比较大小:
例2.比较下列各题中两个值的大小
高一数学人必修件时指数函数的图象和性质
01
性质法
利用指数函数的单调性,比较指 数的大小,从而得到不等式的解 集。
02
03
04
图像法
画出指数函数的图像,根据图像 确定不等式的解集。
06
总结回顾与拓展延伸
总结回顾本次课程重点内容
指数函数的概念
形如$y = a^x$($a > 0$,$a neq 1$)的函数称为指数函数。
指数函数的图象
通过描点法或利用函数性质绘制指数 函数的图象,理解图象的形状和变化 趋势。
呈指数衰变的情况。
半衰期公式
T₁/₂ = ln2/λ,其中T₁/₂表示半 衰期,λ表示衰变常数。该公式 用于计算放射性元素的半衰期。
放射性元素衰变链
一种放射性元素衰变后会产生另 一种放射性元素,这种衰变过程 可以形成一个衰变链。在这个链 中,每个元素的衰变都遵循指数
衰变规律。
生物学中细菌繁殖问题
细菌繁殖公式
对数函数的定义域为 正实数,即$x > 0$ 。
指数函数与对数函数值域关系
指数函数的值域为$(0, +infty)$,即其函数值始终大 于0。
对数函数的值域为全体实数, 即$y in R$。
指数函数与对数函数的值域也 不同,但二者之间可以通过取 对数或取指数进行相互转换。
指数函数与对数函数图像关系
高一数学人必修件时指数 函数的图象和性质
汇报人:XX 20XX-01-21
目录
• 指数函数基本概念与性质 • 指数函数图像变换规律 • 指数函数与对数函数关系 • 指数函数在生活中的应用举例 • 求解指数方程和不等式方法技巧 • 总结回顾与拓展延伸
01
指数函数基本概念与性质
指数函数定义及表达式
高一数学指数函数的概念、图象与性质(解析版)
专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。
人教版高一数学课件-指数函数的图象及性质
必修1 第二章 基本初等函数(I)
栏目导引
4.比较下列各组数的大小: (1)56-0.24 与(56)-14; (2)(π1)-π 与 1; (3)(0.8)-2 与(54)-12.
必修1 第二章 基本初等函数(I)
栏目导引
解析: (1)考察函数 y=56x. ∵0<56<1,∴函数 y=56x 在(-∞,+∞)上是减 函数. 又-0.24>-14,∴56-0.24<56-14.
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引
[題後感悟] 比較冪的大小的常用方法: (1)對於底數相同,指數不同的兩個冪的大小 比較,可以利用指數函數的單調性來判斷. (2)對於底數不同,指數相同的兩個冪的大小 比較,可以利用指數函數圖象的變化規律來 判斷.(3)對於底數不同,且指數也不同的冪 的大小比較,則應通過中間值來比較.
必修1 第二章 f(x)的圖象過點(2,4),求f(-3) 的值.
解析: 设指数函数 f(x)=ax(a>0 且 a≠1), 由题意得 a2=4,∴a=2, ∴f(x)=2x, ∴f(-3)=2-3=18.
必修1 第二章 基本初等函数(I)
栏目导引
指数函数的概念 函数 y=(a2-3a+3)ax 是指数函数,求 a 的值.
(2)指数函数 y=ax 与 y=1ax(a>0 且 a≠1)的图 象关于 y 轴对称.
必修1 第二章 基本初等函数(I)
栏目导引
[注意] 當指數函數底數大於1時,圖象上升, 且底數越大時圖象向上越靠近於y軸;當底數大 於0小於1時,圖象下降,底數越小,圖象向右 越靠近於x軸.
高一数学必修教学课件第三章指数函数的图像和性质
对于形如$y = a^{bx}$的指数函数,可以通过伸缩基本指数函数的图像得到。具体地,当$b > 1$时,图像在纵 坐标方向上进行压缩,同时在横坐标方向上进行拉伸;当$0 < b < 1$时,图像在纵坐标方向上进行拉伸,同时 在横坐标方向上进行压缩。
图像特点总结与对比分析
指数函数图像特点
THANKS
感谢观看
阅读材料
推荐了一些与指数函数相 关的阅读材料,供学生课 后阅读,以拓宽视野。
下节课预习内容提示
下节课内容
简要介绍了下节课将要学 习的内容,包括指数函数 的运算性质和应用等。
预习要求
要求学生提前预习下节课 的内容,了解指数函数的 运算性质和应用场景,为 下节课的学习做好准备。
问题思考
提出了一些与下节课内容 相关的问题,引导学生进 行思考和预习。
解析
考察指数函数$y = 1.7^{x}$的单调性,由于底数大于1,函数在全体实数范围 内单调递增。因此,$1.7^{3} > 1.7^{2.5} > 1.7^{-1.5}$。
例题2
已知函数$f(x) = a^{x}(a > 0$且$a neq 1)$在区间$[-1,2]$上的最大值为4,最 小值为$m$,且函数$g(x) = (1 - 4m)sqrt{x}$在区间$[0, + infty)$上是单调函 数,求$a$和$m$的值。
明确任务要求
教师需要向学生明确任 务的要求,包括任务的 目标、完成时间、提交 方式等。
学生自主查阅资料及整理成果展示
1 2 3
学生自主查阅资料
学生可以利用图书馆、互联网等资源,自主查阅 与指数函数相关的资料,包括教材、参考书、学 术论文等。
4.2.2指数函数的图象和性质(第二课时)课件-高一上学期数学人教A版【01】
【变式训练】
1.函数 y=12x2-2x-3的值域为_(_0_,_1_6__]_.
解析:定义域为 R.因为 x2-2x-3=(x-1)2-4≥-4,
所以12x2-2x-3≤12-4=16. 又12x2-2x-3>0, 所以函数 y=12x2-2x-3的值域为(0,16].
题型二 指数函数的单调性及应用
角度 2 解指数不等式
(, 1)
例 3、(1)不等式 4x<42-3x 的解集是_______2_.
(2)若 a-5x>ax+7(a>0 且 a≠1),求 x 的取值范围.
(1)解析:因为
4x<42-3x,所以
x<2-3x,所以
1 x<2.
(2) 解:①当 a>1 时,因为 a5x ax7 ,且函数 y=ax 为增函数,所以-5x>x+7,解得 x<-76. ②当 0<a<1 时,因为 a5x ax7 ,且函数 y=ax 为减函数,所以-5x<x+7,解得 x>-76.
即
a
4
1 x
1
a
1 4x
1
恒成立,解得Fra bibliotek2a1 4x 1
1 4x 1
1,所以
a
1 2
.
题型三 指数函数性质的综合问题 例 5、已知定义在 R 上的函数 f(x)=a+4x+1 1是奇函数. (2)判断 f(x)的单调性(不需要证明); (3)若对任意的 t∈R,不等式 f(t2-2t)+f(2t2-k)<0 恒成立,求实数 k 的取值范围. (2)由(1)知 f(x)=-12+4x+1 1,故 f(x)在 R 上为减函数.
综上所述,当 a>1 时,x 的取值范围为-∞,-67;当 0<a<1 时,x 的取值范围为-76,+∞.
指数函数的图像和性质(教学课件)高一数学(人教A版2019必修第一册)
3.函数 y=121-x 的单调增区间为(
)
A.R
B.(0,+∞)
C.(1,+∞)
D.(0,1)
【答案】A [令 u(x)=1-x,则 u(x)在 R 上是减函数,又 y=12u(x)是减函数,故
y=121-x 在 R 上单调递增,故选 A.]
4.已知 a= 52-1,函数 f(x)=ax,若实数 m,n 满足 f(m)>f(n),则 m,n 的大 小关系为________.
课堂小结 1、指数函数y ax与y ( 1 )x的图象关于y轴对称
a
a>1
0<a<1
指 数
图
y
y
函
象
1
1
数
o
x
o
x
图 象 与
(1)定义域:
性 (2)值域:
R (0,+∞)
性
(3)过定点:
(0,1)
质
(4)单调性:增函数 (4)单调性: 减函数
质 (5)奇偶性: 非奇非偶 (5)奇偶性:非奇非偶
(6)当x>0时,y>1. (6)当x>o时,0<y<1,
则下列结论正确的是( )
A.a>1,b<0 C.0<a<1,b>0
B.a>1,b>0 D. 0<a<1,b<0
解析:从曲线的变化趋势,可以得到函数 f(x)为减函数,从而有 0 <a<1;从曲线位置看,是由函数 y=ax(0<a<1)的图象向左平移 |-b|个单位长度得到,所以-b>0,即 b<0.
(2)因为y=0.6x是单调递减函数,且-1.2>-1.5, 所以0.6-1.2<0.6-1.5
(3)因为1.70.2>1.70=1,0.92.1<0.90=1, 所以1.70.2>0.92.1
4.2.2指数函数的图象和性质课件-高一上学期数学人教A版必修第一册
y( )
1 x
3
6
y( )
1 x
2
y2
5
x
4
3
2
1
-4
-3 -2
-1 0
x
1
2
3
4
y
y
1
y
2
x
y ax
1
y
3
y
x
y 3x
y 2x
y ax
(a 1)
(0 a 1)
1
1
1
0
x
0
1
0 x
x
一、定点问题
例1:已知 = + + ( > , ≠ )图象恒
系中的图象可能是( )
()
()
()
()
二、图象辨认
• 例4:比较, , , 的大小
=
=
=
y
=
x
O
二、图象辨认
• 例5:已知实数, 满足2020 = 2021 = ,则下
列四个关系式中可能成立的是(
. 0 < <
. < < 0
. 0 < <
. < < 0
)
二、辨认图象
• 例3:若0 < < 1, < −1,则函数()
=+的图象一定不经过第______象限.
三、图象辨认
• 例6:函数 = − 的图象如图所示,其中a,b为
常数,则下列结论正确的是( )
A. > 1, < 0
4.2.2指数函数的图象和性质
指数函数的图像及性质第一课时课件-2024-2025学年高一上学期数学人教A版必修第一册
栏目导航
[解析] 当 x − 2 = 0 时, x = 2, y = a0 + 7 = 8 , ∴ 函数 y = ax−2 + 7 的图象恒过定点 A(2,8) . 又点 A 在幂函数 f(x) = xα 的图象上, ∴ 2α = 8, 解得 α = 3, ∴ f(x) = x3, ∴ f(3) = 33 = 27 .
栏目导航
变式训练:
1. 指数函数① y = ax, ②y = bx, ③y = cx, ④y = dx 的图象如图所示,则 a , b
, c , d 与1的大小关系为( B )
A. a<b<1<c<d C. 1<a<b<c<d
B. b<a<1<d<c D. a<b<1<d<c
栏目导航
探究点二 指数函数的定义域和值域
栏目导航
变式训练:
1. 已知函数 f(x) = 4 + ax−1(a>0, 且 a ≠ 1) 的图象恒过定点 P ,则定点 P
的坐标是_(_1_,_5_)___.
[解析] 令 x = 1, y = 4 + a0 = 4 + 1 = 5 ,故函数 f(x) 的图象恒过定点 P(1,5) .即点 P 的坐标为(1,5).
2
栏目导航
[答案] 要使函数有意义,则 1 − 3x ≥ 0, 即 3x ≤ 1 = 30, 因为函数 y = 3x 在 R 上是增函数,所以 x ≤ 0 .故函数 y = 1 − 3x 的定义域为 (−∞, 0] . 因为 x ≤ 0, 所以 0<3x ≤ 1, 所以 0 ≤ 1 − 3x<1 , 即函数 y = 1 − 3x 的值域为 [0,1) .
4.2.2指数函数的图象和性质课件-高一上学期数学人教A版2【03】
题型六:实际应用
例:如图,某城市人口呈指数增长. (1)根据图象,估计该城市人口每翻一番所需的时间; (2)该城市人口从80万人开始,经过20年会增长到多少万人? (翻一番所需的时间称为倍增期)
(2)当a>1时,由f(x)<g(x)得ax<a-x ,即x<-x , 所以x<0. 当0<a<1时,由f(x)<g(x)得ax>a-x,即 x>-x , 所以x>0.
THANK YOU
THIS IS A ART TEMPLATE ,THE TEMPLATE DESIGN BY JERRY. THANK YOU WATCHING THIS ONE.
(2)解:因为倍增期为20年,所以每经过 20年, 人口将翻一番.因此,从80万人 开始,经过20年, 该城市人口大约会增 长到160万人.
题型七:单调性与奇偶性
解:(1)当a>1时,f(x)在R上单调递增,g(x)在R上单调递减. 当0<a<1时,f(x)在R上单调递减,g(x)在R上单调递增.
练习:比较下列各题中两个值的大小 ①0 a 1时, y ax是R上的减函数,2 3,a2 a3. ②a 1时, y ax是R上的增函数,2 3,a2 a3.
0.40.3 0.40 1,且30.4 30 1,
0.40.3 1 30.4. 即0.40.3 30.4.
题型三:解不等式 方法:化同底+单调性
非奇非偶函数
当x<0时,y>1 当x>0时,0<y<1
当x<0时,0<y<1 当x>0时,y>1
4.2.2指数函数的图像和性质教学说课课件高一上学期数学人教A版
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身,所以 我进行了以下学法指导: (1)类比学习法: 与幂函数类比学习指数函数的图象和性质. (2)探究定向性学习法: 学生在教师建立的情境下,通过思考、分析、操作、探索,归 纳出指数函数的图象和性质. (3)主动合作式学习法: 学生在归纳得出指数函数的图象和性质时,通过小组讨论,使 问题得以圆满解决.
类比幂函数的研究方法和过程研究指数函数: 背景→定义→图象→性质→应用
问题1、你准备归纳指数函数的哪些性质?如何归纳其性质?
设计意图:让学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图象, 目的是使学生更加信服,从而加深学生对图象的印象,从而为以后画图解题,采用数形结合 的思想方法打下基础.小组合作的方式共同探究性质,自己归纳并设计表格展示性质,整个 过程体现了“从具体到抽象,从特殊到一般”的思维方式,使学生的思维得到升华.培养学 生的抽象概括、归纳能力、语言表达能力以及主动性.
必做题:教科书135页习题1-3,140页到141页习题4.4第2、4题 选做题:习题4.4 的12、13题
设计意图:检验学生指数函数的图象和性质的掌握,以及指数函数的图象和性质的应用. 在选做题部分是对指数函数的图象和性质的拓展与延伸,目的是提高学生运用所学知识 解决问题的能力.
设计意图:这样的板书简明清楚,重点突出,加深学生对图象和性质的理解,便于记忆,有利于 提高教学效果.
4.2.2 指数函数的图象和性质
课堂教学
一、情景引入
问题1、这两个是什么函数?
二、探索新知
类比幂函数的研究方法和过程研究指数函数: 背景→定义→图象→性质→应用
问题1、你准备归纳指数函数的哪些性质?如何归纳其性质?
2024版高一数学指数函数及其性质PPT课件图文
学习方法建议
深入理解指数函数的概念
掌握指数函数的定义、图像和性质, 理解底数、指数和幂的含义。
多做练习题
通过大量的练习题,加深对指数函数 的理解和掌握,提高解题能力。
系统学习指数函数的运算
学习指数函数的四则运算,掌握运算 规则和技巧。
解题技巧分享
换元法
通过将指数函数中的变量 进行换元,简化问题,使 问题更容易解决。
指数函数在数学模 型中的应用举例
在经济学中,指数函数被用来描 述复利、折旧等问题;在物理学 中,指数函数被用来描述放射性 元素的衰变等问题;在工程学中, 指数函数被用来描述材料的疲劳 寿命等问题。
数学模型在解决实际问题中的价值
提高解决问题的效率
揭示问题的本质和规律
通过建立数学模型,可以将实际问题转化为 数学问题,利用数学方法和技术进行求解, 从而提高解决问题的效率。
05
指数函数与数学模型
数学模型简介
01
数学模型的定义
数学模型是描述客观事物或它的本质和本质的一系列数学形 式。它或能利用现有的数学形式如数学公式、数学方程、数 学图形等加以表述,或能抽象出数学的基本概念和基本结构。
02
数学模型的分类
根据研究目的,可以将数学模型分为描述性模型和预测性模 型。
03
数学模型的作用
指数方程求解
通过对方程两边取相同的底数的对数或者 利用换元法等方法求解指数方程。
指数函数性质应用
利用指数函数的单调性、奇偶性、周期性 等性质解决相关问题。
03
指数函数性质探究
单调性
01
指数函数的单调性取决于底数a的 大小
02
当a>1时,指数函数在整个定义 域上是增函数;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
2
值域是
.
4.函数y ax3 3恒过定点
.
小结
y=ax的图像和性质
a>1
0< a < 1
(1)定义域:R
性 (2)值域:( 0 ,+∞ )
(3)过点(0,1),即x=0时,
质 y(4=)当1 x>0时,y>1;x<0时0<y<1 (4)当x>0时,0<y<1;x<0时y>1
(5)在R上是增函数
5 0 a 1.
例2.求下列函数的定义域、值域:
1
(1) y 3x ; (2) y (0.25) ; 2x1
1
(3) y 0.4 x1 ; (4) y 2x 1;
(5) y
1
x2
2x
2
(0
y
2)
例3.函数f(x)的定义域是(0,1), 求f(2-x)的定义域.
(5)在R上是减函数
a的值与y=ax的图像关系
当a>1时,a的值越大,图像越靠近y轴,递增速度越快. 当0<a<1时,a的值越大,图像越靠近x轴,递减的速度越快.
作业
课本第93页练习B/3 习题3- 1 A组2 习题3- 1 B组1
解 14x 32,即22x 25
因为y 2x 是R上的增函数,所以2x 5,即
x 5. 2
满足4x 32的x的集合是 5 ,; 2
例题讲解 例1 (1)求使不等式4x>32成立的x的集合;
4
2已知a 5 a 2 ,求数a的取值范围.
2由于 4 2,则y ax是减函数,所以
做一做
在同一坐标系中画出函数y=2x与y=3x的图像,比较两个 函数增长的快慢.
列表
x ... -2 -1 0 1 2 3 ... 10 ... y=2x ... 0.25 0.5 1 2 4 8 ... 1 024 ... y=3x ... 0.11 0.33 1 3 9 27 ... 59 049 ...
补充练习
1.下图是①y=ax②y=bx③y=cx④y=dx的图像,则
a,b,c,d与1的大小关系是
(B)
A.a<b<1<c<d
B.b<a<1<d<c
C.1<a<b<c<d
D.a<b<1<d<c
① ② y③
④
1
O
1
x
2.若函数f (x) (2a 1)x是减函数,
则a的取值范围是
.
3.函数y (1) x1的定义域是
(5)在R上是增函数
(5)在R上是减函数
图象特征
函数性质
(1)图象都位于x轴上方
(1)x取任何实数都有ax>0
(2)图象都过(0,1 )点
(2)a为任何正数,总有a0 =1
(3)y=ax(a>1)的图像在第一 象限内的纵坐标都大于1,在第 二象限的纵坐标都小于1;
3当a
1时,
x x
做一做
描点画出图像
y 3x
y 2x
(1)当x<0时,总有2x > 3x;
(2)当x>0时,总有2x < 3x;
(3)当x>0时,y=3x比y=2x的函
数值增长得快.
a>b>1时,
(1)当x<0时,总有0<ax<bx<1;
(2)当x=0时,总有ax=bx=1;
(3)当x>0时,总有ax>bx>1;
0, 则a x 0,则0
1 ax
1
y=ax(0<a<1)的图像正好相反
当0
a
1时,
x x
0, 0,
则0 则a
ax x 1
1
(4)自左向右看,y=ax(a>1)的图 像逐渐上升;y=ax(0<a<1)的图 像逐渐下降
(4) a>1,y=ax是增函数 当0<a<1,y=ax是减函数
指数函数y=ax(a>0,a≠1)中,底数a对函数图像有 什么影响?
当a>1时,a的值越大,图像越靠 近y轴,递增速度越快. 当0<a<1时,a的值越大,图像越 靠近x轴,递减的速度越快.
y 3x
y 2x
例题讲解 例1 (1)求使不等式4x>32成立的x的集合;
4
2已知a 5 a 2 ,求数a的取值范围.
指数函数 的图象和性质
复习
指数函数在底数a>1及0<a<1,两种情况的图象和性质如下:
a>1
0< a < 1
图 象
(1)定义域:R
性 (2)值域:( 0 ,+∞ )
(3)过点(0,1),即x=0时,
质 y(4=)当1 x>0时,y>1;x<0时0<y<1(4)当x>0时,0<y<1;x<0时y>1
(4)指数函数的底数越大,当x>0时,其函数值增
长得就越快.
分别画出底数为0.2,0.3,0.5的指数函数图象
y=0.2x
y=0.3x
y
y=0.5x
y=1
1
O
1
x
0<a<b<1时, (1)当x<0时,总有ax>bx>1; (2)当x=0时,总有ax=bx=1; (3)当x>0时,总有0<ax<bx<1; (4)指数函数的底数越大,当x>0时,其函数值减 少得就越快.