由图像或性质求三角函数解析式的方法
由三角函数图像求解析式(适合讲课使用)
![由三角函数图像求解析式(适合讲课使用)](https://img.taocdn.com/s3/m/7777ec61cec789eb172ded630b1c59eef8c79a92.png)
图像的变换与对称性
01
平移变换
三角函数图像可以在x轴或y轴方向上平移,而不改变其形状和性质。
例如,正弦函数向右平移a个单位后变为$y=sin(x-a)$。
02
伸缩变换
三角函数图像可以在x轴或y轴方向上伸缩,从而改变其周期和振幅。
例如,正弦函数在x轴方向上伸缩a倍后变为$y=sin(frac{1}{a}x)$。
余弦函数
定义域
全体实数,即$R$。
值域
$[-1,1]$。
周期性
余弦函数具有周期性,最小正 周期为$2pi$。
单调性
在每个周期内,余弦函数在$[0, pi]$上单调递减,在$[pi, 2pi]$
上单调递增。
正切函数
定义域
01
不连续,无周期性。
值域
02
全体实数,即$R$。
单调性
03
正切函数在每一个开区间$(kpi-frac{pi}{2}, kpi+frac{pi}{2})$内
01
1. 绘制直角坐标系
根据解析式的定义域,绘制直角 坐标系。
02
03
2. 确定关键点
3. 绘制图像
根据解析式的值,确定直角坐标 系中的关键点。
根据关键点,绘制三角函数的图 像。
例题三:综合应用题
1. 分析题目
仔细阅读题目,理解题目的要求和条件。
2. 确定解题步骤
根据题目要求,确定解题步骤,包括已知条件的分析、未知条件的推导等。
由三角函数图像求解析式
contents
目录
• 引言 • 三角函数的基本性质 • 三角函数图像的绘制 • 由三角函数图像求解析式的方法 • 实例分析 • 总结与思考
由图像求解析式的方法
![由图像求解析式的方法](https://img.taocdn.com/s3/m/67c7d5cbdb38376baf1ffc4ffe4733687e21fcff.png)
当给出函数y=Asin(ωx+ψ)+b 的图像时,可由图像求出A、ω、b、ψ的值,进而求出函数y=Asin(ωx+ψ)+b 的解析式。
(当ψ的范围没给时,找一个适合题意的绝对值最小的;A 和ω正负没给时,一般取正。
)那么,具体如何由三角函数的图像来确定它的解析式?用什么方法达到快速解答的目的?我们用实例来作一简要说明。
一、左右平移法求ψ例1:图1-1是周期为2π的三角函数y=f(x)的图像,那么f(x)可写成():A.sin(1+x)、B.sin(-1-x)、C.sin(x-1)、D.sin(1-x).分析:y=sinx →(左移π-1个单位)y=sin(x+π-1)=sin(π+x-1)=-sin(x-1)=sin(1-x).选D.(图1-1)(图1-2)(图2)(图3)(图4)例2:图2是函数y=Asin(ωx+ψ)的图像,确定A、ω、ψ的值,确定其一个函数解析式。
分析:由A=3,T=π,点(-π6,0),可知图像是将y=3sin2x →(左移π6个单位)y=3sin2(x+π6),即y=3sin(2x+π6).二、非平衡点代入法求ψA=y m ax -y m in 2,b=y max +y min 2,ω=πT ,ψ最后求,求ψ的方法是非平衡点代入法。
例3:如图3,是函数y=Asin(ωx+ψ)+B(A>0,ω>0)的图像的一部分,求f(x)的表达式。
分析:T 2=4,T=8=2πω,ω=π4,A=y m ax -y m in 2=2.b=y m ax +y m in 2=2,∴y=2sin(+ψ)+2.当x=-2时,y m ax =4,2sin[π4×(-2)+ψ]+2=4,∴-π2+ψ=2kπ+π2(k∈Z).取k=0,ψ=π,∴y=2sin(π4+π)+2.例4:图4是函数y=Asin(ωx+ψ)+k 在一个周期内的图像,这个函数的解析式为():A.y=3sin(x 2+π6)-1、B.y=2sin(2x+π6)-1、C.y=3sin(2x+π3)-1、D.y=3sin(2x+π6)-1.分析:T=π,∴ω=2πT =2,A=y m ax -y m in 2=3.b=y m ax +y m in 2=-1,∴y=3sin(2x+ψ)-1.当x=π12时,y m ax =2,将点(π12,2)的坐标代入上式,得ψ=π3+2kπ(k∈Z),∴y=3sin(2x+π3)-1,选C.以上几例以图像的形式考查三角函数解析式的求法,是高考中的热点题型,要求学生把所学的三角函数图像与性质和函数的解析式结合起来分析思考,充分体现了“数形结合”的命题原则。
求三角函数解析式方法总结超全面
![求三角函数解析式方法总结超全面](https://img.taocdn.com/s3/m/4608e472941ea76e59fa047e.png)
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中 πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)2、已知函数)sin(ϕω+=x Ay (A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析
![高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析](https://img.taocdn.com/s3/m/5ceece98970590c69ec3d5bbfd0a79563c1ed4b9.png)
高考数学《图像变换在三角函数中的应用》基础知识与典型例题分析在高考中涉及到的三角函数图像变换主要指的是形如()sin y A x ωϕ=+的函数,通过横纵坐标的平移与放缩,得到另一个三角函数解析式的过程。
要求学生熟练掌握函数图像变换,尤其是多次变换时,图像变化与解析式变化之间的对应联系。
一、基础知识:(一)图像变换规律:设函数为()y f x =(所涉及参数均为正数) 1、函数图像的平移变换:(1)()f x a +:()f x 的图像向左平移a 个单位 (2)()f x a −:()f x 的图像向右平移a 个单位 (3)()f x b +:()f x 的图像向上平移b 个单位 (4)()f x b −:()f x 的图像向下平移b 个单位 2、函数图像的放缩变换:(1)()f kx :()f x 的图像横坐标变为原来的1k(图像表现为横向的伸缩) (2)()kf x :()f x 的图像纵坐标变为原来的k 倍(图像表现为纵向的伸缩) 3、函数图象的翻折变换: (1)()fx :()f x 在x 轴正半轴的图像不变,负半轴的图像替换为与正半轴图像关于y 轴对称的图像(2)()f x :()f x 在x 轴上方的图像不变,x 轴下方的部分沿x 轴向上翻折即可(与原x 轴下方图像关于x 轴对称)(二)图像变换中要注意的几点:1、如何判定是纵坐标变换还是横坐标变换?在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下: ① 若变换发生在“括号”内部,则属于横坐标的变换 ② 若变换发生在“括号”外部,则属于纵坐标的变换例如:()31y f x =+:可判断出属于横坐标的变换:有放缩与平移两个步骤()2y f x =−+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标的为平移变换2、解析式变化与图像变换之间存在怎样的对应?由前面总结的规律不难发现: (1)加“常数”⇔ 平移变换(2)添“系数”⇔放缩变换 (3)加“绝对值”⇔翻折变换3、多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:① 横坐标的变换与纵坐标的变换互不影响,无先后要求 ② 横坐标的多次变换中,每次变换只有x 发生相应变化 例如:()()21y f x y f x =→=+可有两种方案方案一:先平移(向左平移1个单位),此时()()1f x f x →+。
根据图像求三角函数解析
![根据图像求三角函数解析](https://img.taocdn.com/s3/m/7f5c29b616fc700aba68fc1e.png)
或y3cos(2x-5)
6
练 习 3 .函 数 yA sin ( x ),(A 0 , 0 ,|| )
的 部 分 图 像 如 图 所 示 ,求 该 函 数 的 解 析 式 。
y2sin(2x) 3
y 2
o 3
5 6
x
-2
例3: 求f(x)=Asin(ωx+φ)+B型的解析式
-2
ππ 42
3π 2
5π 2
7π 2
x
4
例2:如图为y=Asin(ωx+φ)的图象的一段,求其解析式.
练 习 1.函 数 yA sin(x),(A0,0,||)
2 的 图 像 如 图 所 示 ,求 该 函 数 的 解 析 式 。y
3
y3sin(2x) 3
2
3
o
6
x
-3
变 式 .函 数 yA cos(x),(A0,0,||)
巧记·主干知识
突破·重点要点
题型二 由图象求函数y= Asin(ωx+φ)的解析式
例 2 (1)已知函数 f(x)=2sin(ωx+
φ)(其中 ω>0,|φ|<π2)的最小正周期是
π,且 f(0)= 3,则( )
A.ω=12,φ=π6 C.ω=2,φ=π6
B.ω=12,φ=π3 D.ω=2,φ=π3
1.已知函数 f(x)=Asin(ωx+φ)+B(ω>0,
|φ|< )的图象的一部分如图所示: (1)求2f(x)的表达式;
(2)试写出f(x)的对称轴方程.
解 (1)由图象可知,函数的最大值M=3,
利用图像求三角函数解析式
![利用图像求三角函数解析式](https://img.taocdn.com/s3/m/2c6033f0fab069dc5022011d.png)
y
3
0 -3
x
y
4 1 0 -2
x
3.函数 y A sin(x (A 0, 0) y ) 的部分图像如图所示,则函数解 3 析式为__________
0 -3
4
2
x
内容: 合作探究 1. 学习中遇到的疑问; 2.导学案“质疑探究”部分的问题.
要求: (1)人人参与,热烈讨论,大声表达自己的思想。 (2)组长控制好讨论节奏,先一对一分层讨论,再小组 内集中讨论。 (3)没解决的问题组长记录好,准备质疑。
知识要点
1.用“五点法”作函数 y A sin(x ) B(A 0, 0) 一 个周期的图像时, x 取那些值? y 2.函数 y A sin(x ) B(A 0, 0),T , 。 3.函数 y A sin(x ) B(A 0, 0) ,当 y 取得最大值时, 解析式中的 x ;当 y 取得最小值时,解析 式中的 x ;当 y= B时, x 。
三角函数图像反三角函数图像三角函数的图像三角函数图像变换三角函数解析式三角函数图像与性质三角函数图像平移研究三角函数的图像三角函数图像ppt三角函数图像对称轴
利用图像求三角函数解析式
数学组
学习目标
1.掌握函数 y A sin(x ) B(A 0, 0) 中 A, B, , 与图像的关系。 2.掌握如何利用图像求三角函数的解析式。
8
)
) 4.(2009宁夏海南卷理)已知函数 y sin(x ( 0,- ) 的图像如图4所示,则
B. 11 , - 6
10
C. 2, 6
三角函数平移变换及求解析式
![三角函数平移变换及求解析式](https://img.taocdn.com/s3/m/2759650fbfd5b9f3f90f76c66137ee06eff94e03.png)
三角函数平移变换及解析式的求法类型一:平移变换1. y =2sin(2x -π6)+1的图像是由y =sin x 的图像怎样变换而来的?解 方法一 先伸缩后平移y =sin x ――――――――――――――→各点的横坐标缩小为原来的12倍纵坐标不变y =sin 2x ――――――――――――→向右平移π12个单位y =sin(2x -π6)―――――――――――――――→各点的纵坐标伸长为原来的2倍横坐标不变y =2sin(2x -π6)――――――――――――→向上平移1个单位y =2sin(2x -π6)+1.方法二 先平移后伸缩y =sin x ――――――――――→向右平移π6个单位y =sin(x -π6)――――――――――――――→各点的横坐标缩短为原来的12纵坐标不变y =sin(2x -π6)――――――――――→各点纵坐标伸长为原来的2倍横坐标不变y =2sin(2x -π6)――――――――――→向上平移1个单位y =2sin(2x -π6)+1.2.试述如何由y =13sin(2x +π3)的图像得到y =sin x 的图像.解 方法一 y =13sin(2x +π3)――――――――――――――→横坐标扩大为原来的2倍纵坐标不变y =13sin(x +π3)――――――――――――――→图像向右平移π3个单位纵坐标不变y =13sin x――――――――――――――→纵坐标扩大到原来的3倍横坐标不变y =sin x .方法二 (1)先将y =13sin(2x +π3)的图像向右平移π6个单位长度,得y =13sin 2x 的图像;(2)再将y =13sin 2x 图像上各点的横坐标扩大为原来的2倍(纵坐标不变),得y =13sin x 的图像;(3)最后将y =13sin x 的图像上各点的纵坐标扩大为原来的3倍(横坐标不变)得到y =sin x 的图像.3.将函数x y sin =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是() A .)102sin(π-=x y B .)102sin(π+=x yC .)1021sin(π-=x yD .)1021sin(π+=x y解:将函数sin y =x 的图象上所有的点向右平行移动10π个单位长度,得到函数sin()10y x π=-,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数1sin()210y x π=-的图象,故选:C . 4.把函数)42sin(π+=x y 的图象向左平移8π个单位长度,再将横坐标压缩到原来的21,所得函数的解析式为( )A. x y 4sin =B. x y 4cos =C. )84sin(π+=x yD.)324sin(π+=x y解:选B5.要得到)42cos(π-=x y 的图象,只需将x y 2sin =图象()A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位D .向右平移8π个单位解:将sin y = 2x 的图象向右平移8π个单位,可得sin(2)4y x π=-的图象, 故选:D .6.要得到函数x y cos 2=的图象,将函数)42sin(2π+=x y 的图象上所有的点的( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度 C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度解:2sin(2)cos(2)cos(2))42444y x x x x πππππ=+=--=-=- 答案为C 故选:C .7.已知函数)4sin()(πω+=x x f R x ∈(,)0>ω的最小正周期为π,为了得到函数xx g ωcos )(=的图象,只要将)(x f y =的图象()A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度解:由题知2ω=,所以()sin(2)cos[(2)]cos(2)cos2()42448f x x x x x πππππ=+=-+=-=-,故选:A .类型二:求函数y =A sin(ωx +φ)+b 的解析式1.已知函数)sin(ϕω+=x A y 0(>A ,0>ω,)0πϕ<<的一段图象如图所示,则此函数解析式为__________.(例10)解:)33sin(2π+=x y2.下图是函数)sin(ϕω+=x A y 0(>A ,0>ω,)20πϕ<<的图象的一部分,试求此函数解析式.解:)438sin(2ππ-=x y3.已知函数)sin(ϕω+=x A y ,在同一周期内,当9π=x 时函数取得最大值2,当94π=x 时取得最小值2-,则该函数的解析式为( )A .⎪⎭⎫ ⎝⎛-=63sin 2πx yB .⎪⎭⎫ ⎝⎛+=63sin 2πx yC .⎪⎭⎫ ⎝⎛+=631sin 2πx yD .⎪⎭⎫ ⎝⎛-=631sin 2πx y解:由题意可知42993T πππ=-=,223T ππω∴==,解得3ω=, 函数的最大值为2,最小值为2-,2A ∴=, 9x π=时函数取得最大值2,2sin(3)29πϕ∴⨯+=,解得6πϕ=.∴函数解析式为2sin(3)6y x π=+.故选:B .4.若函数f (x )=A sin(ωx +φ)+b (其中A >0,ω>0,|φ|<π2)的图像如图所示.(1)求函数f (x )的解析式;(2)求S =f (0)+f (1)+f (2)+f (3)+…+f (2 012)的值.解 (1)由图像知A =32-122=12,b =32+122=1,ω=2πT =2π4=π2.∴f (x )=12sin(π2x +φ)+1.又∵点(0,1)在函数图像上,∴f (0)=1即1=12sin φ+1,∴sin φ=0.又|φ|<π2,故φ=0,∴f (x )=12sin π2x +1.(2)由(1)知函数f (x )=12sin π2x +1,周期T =2ππ2=4.∴S =f (0)+f (1)+f (2)+f (3)+…+f (2 012) =f (0)+[f (1)+f (2)+f (3)+f (4)]×503.又∵f (0)=1,f (1)=32,f (2)=1,f (3)=12,f (4)=1,∴S =1+(32+1+12+1)×503=2 013.反思与感悟 要求y =A sin(ωx +φ)+b (A >0,ω>0)的解析式,其关键是求参数A 、φ、ω、b 的值.求A 、ω、b 三参数相对容易,设函数的最大值为m ,最小值为n ,则⎩⎨⎧A =m -n2,b =m +n2.已知函数周期为T ,则由T =2πω可求出参数ω的值.5.已知函数f (x )=A sin(ωx +φ)在一个周期内的图像如图所示,(1)求f (x )的解析式;(2)求f (π4)+f (2π4)+f (3π4)+…+f (2 015π4)的值.解 (1)由图像可知A =2, 周期T =2(7π12-π12)=π,所以ω=2πT =2ππ=2,则f (x )=2sin(2x +φ), 由图像过点(π12,2),得2sin(2×π12+φ)=2,即sin(π6+φ)=1,取π6+φ=π2得φ=π3, 故f (x )=2sin(2x +π3).(2)由(1)可知f (x )的周期为π,因为f (π4)+f (2π4)+f (3π4)+f (4π4)=1-3-1+3=0,所以f (π4)+f (2π4)+f (3π4)+…+f (2 015π4)=0×503+f (2 013π4)+f (2 014π4)+f (2 015π4)=f (π4)+f (2π4)+f (3π4)=1-3-1=- 3.6.将函数y =sin ωx (ω>0)的图像向左平移π6个单位,平移后的图像如图所示,则平移后的图像所对应函数的解析式是________.答案 y =sin(2x +π3)解析 函数y =sin ωx (ω>0)的图像向左平移π6个单位得到y =sin(ωx +ωπ6),则712πω+ωπ6=3π2,解得ω=2, 故平移后的图像的解析式为y =sin(2x +π3).7.已知函数)cos(ϕω+=x A y 的图象如图所示,32)2(-=πf ,则=)0(f ( )(例13)A .32-B .21-C .32 D .21 解:由题意可知,此函数的周期11722()12123T πππ=-=,故223ππω=,3ω∴=,()cos(3)f x A x ϕ=+. 32()cos()sin 223f A A ππϕϕ=+==-. 又由题图可知771()cos(3)cos()12124f A A ππϕϕπ=⨯+=-cos sin )02A A ϕϕ=+=, 2(0)cos 3f A ϕ∴==.故选:C .。
利用三角函数图像的变换求解析式及由三角函数图像求解析式
![利用三角函数图像的变换求解析式及由三角函数图像求解析式](https://img.taocdn.com/s3/m/a7b766a35901020207409cf0.png)
探究三 如何确定 的值
问题3 .如图是函数
y = 2 sin( 2 x + )(
<
p
)
2
的部分图像 , 求 的值。
y
y
2
7p
2
12
x
o
p o
6
x -2
-2
例题讲解
【例 1】 函数 y=Asin(ωx+φ)的部分图象如图①,则其一个函 数解析式为________.
①
[思路探索] 可由最高、最低点确定 A,再由周期确定 ω,然后 由图象过三点确定 φ,或由点的坐标代入解析式求解. 解析 (1)法一 由图象知 A=2,T=78π--π8=π. ∴ω=2ππ=2. 又过点-π8,0,令-π8×2+φ=0. 得 φ=π4,∴y=2sin2x+π4.
练习 1.将函数 y=sinx+π3的图象向右平移π6个单位,再 向上平移 2 个单位所得图象对应的函数解析式是 y_=__s_in__x_+__π6__+__2___.
解析 y=sinx+π3向右平移π6个单位得: y=sinx-π6+π3=sinx+π6,再向上平移 2 个单 位得 y=sinx+π6+2.
原来的12,得到函数 y=sin10x-74π的图象.
4.将函数 y=sin x 的图象向左平移 φ(0≤φ<2π)
个单位后,得到函数 y=sinx-π6的图象,
则 φ 等于( D )
π
5π
7π
11π
A.6 B. 6 C. 6 D. 6
解 析 将函 数 y= sin x 的 图 象 向 左平 移
φ(0≤φ<2π)个单位得到函数 y=sin(x+φ),在 A、B、C、D 四项中,只有 φ=161π 时有 y =sinx+161π=sinx-6π.
三角函数的图象、性质及应用(高中数学知识点讲解)
![三角函数的图象、性质及应用(高中数学知识点讲解)](https://img.taocdn.com/s3/m/066886386137ee06eef91863.png)
(5)不能认为y=tan
x在定义域上为增函数,应在区间
kπ-
π 2
,kπ
+
π 2
(k∈Z)内
为增函数.
知能拓展
考法一 关于三角函数图象的问题
例1 (1)(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<
φ<π)的部分图象如图所示,且f(α)=1,α∈
求φ及ω,从而
得到f(x)的解析式,由f(α)=1求α,进而得cos
2α
+
5π 6
.
A = 5,
(2)①根据已知表格中的数据可得方程组
π 3
ω
+
φ
=
π 2
,
解之可得函数f(x)的
5π 6
ω
+
φ
=
3π 2
,
解析式,进而可补全表格.
②由①并结合函数图象平移可得,g(x)=5sin
2
x
+
2θ -
π 3
-2x
实质上是y=tan
x与y=
π 3
-2x的复合,应
按复合函数单调性求解.
方法总结 三角函数的单调性问题的常见类型及解题策略
1.已知三角函数解析式求单调区间
(1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合
函数单调性规律“同增异减”.
(2)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx
2π ω
=4×
7π 12
-
π 3
=π,得ω=2,故f(x)=3sin(2x+φ),将
【高中数学】三角函数中根据图象求解析式的几种方法
![【高中数学】三角函数中根据图象求解析式的几种方法](https://img.taocdn.com/s3/m/3379d9a0f90f76c661371afa.png)
φ<
)图象上的一部分如
2
图 3 所示,则必定有( )
(A) A=-2
π (B)ω=1 (C)φ= 3
(D)K=-2
解:观察图象可知 A=2,k=2. ∴y=2sin(ωx+φ)+2
下面用“解方程组法”求φ与ω的值.
∵ 图象过点(0,2+ 3 )、(- ,2) 6
∴ 2+ 3 =2sinφ+2
y
4
(A>0,ω>0,φ∈(0, )),求该函数的解析式.
2
解法一:观察图象易得 A=2,
Y
7π 3π ∴T=2×( 8 - 8 )=π,
2
2π ∴ω= π =2. ∴y=2sin(2x+φ).
2 3π
8 0π
8
下面用“关键点对等法”来求出
图2
1111ππ 1122
x
7π 8
X
3π φ的值,由 2× 8 +φ=π(用“第三点”) 得
∴ Asinφ= 2
(1)
3π Asin(2× 8 +φ)=0 (2)
3
由(2)得 φ=kπ- (k∈Z), 又φ∈(0, ),
4
2
π
∴只有 K=1,得φ= 4 , 代人(1)得 A=2.
π ∴所求函数解析式为 y=2sin(2x+ 4 ).
例 3.已知函数 y=Asin(ωx+φ) (A>0,ω>0,
【高中数学】三角函数中根据图象求解析式的几种方法
已知函数 y=Asin(ωx+φ)+k(A>0,ω>0)的部分图象,求其解析式,与
用“五点法”作函数 y=Asin(ωx+φ)+k的图象有着密切联系,最主要的是看
三角函数解析式的求法
![三角函数解析式的求法](https://img.taocdn.com/s3/m/f8c297340029bd64783e2ca2.png)
函数y =Asin (ωx +φ)的图象及三角函数模型的简单应用‖知识梳理‖ 1.y =Asin (ωx +φ)的有关概念 T =2πωωx +φ用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:3.| 微 点 提 醒 |1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k∈Z 确定其横坐标.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)把y =sin x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应的函数解析式为y =sin 12x .(×)(2)将y =sin2x 的图象向右平移π3个单位长度,得到y =sin ⎝⎛⎭⎫2x -π3的图象.(×) (3)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .(×)(4)如果y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.(√) (5)若函数y =A sin(ωx +φ)为偶函数,则φ=2k π+π2(k ∈Z ).(×)‖自主测评‖1.函数y =2sin ⎝⎛⎭⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4C .2,1π,π8D .2,12π,-π8解析:选A 由振幅、频率和初相的定义可知,函数y =2sin ⎝⎛⎭⎫2x +π4的振幅为2,频率为1π,初相为π4.2.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 当x =0时,y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D ;当x =π6时,y =0,排除C ,故选A.3.(教材改编题)为了得到函数y =3sin ⎝⎛⎭⎫x -π5的图象,只需将y =3sin ⎝⎛⎭⎫x +π5的图象上的所有点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移2π5个单位长度D .向右平移2π5个单位长度解析:选D 因为y =3sin ⎝⎛⎭⎫x -π5=3sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π5-2π5,故选D. 4.用五点法作函数y =sin ⎝⎛⎭⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、________、________、________.答案:⎝⎛⎭⎫π6,0 ⎝⎛⎭⎫2π3,1 ⎝⎛⎭⎫7π6,0 ⎝⎛⎭⎫5π3,-1 ⎝⎛⎭⎫13π6,0 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.解析:由题图可知,T 4=2π3-π3=π3,即T =4π3,所以2πω=4π3,故ω=32.答案:32………考点一 函数y =Asin (ωx +φ)的图象及变换………|重点保分型|…………|研透典例|【典例】 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值; (3)作出函数f (x )在长度为一个周期的闭区间上的图象.[解] (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.(3)由数据作出的图象如图所示:『名师点津』………………………………………………|品名师指点迷津| 1.函数y =Asin (ωx +φ)(A>0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”. 2.三角函数图象的左右平移时应注意的三点(1)弄清楚平移方向,平移哪个函数的图象,得到哪个函数的图象.(2)注意平移前后两个函数的名称一致,若不一致,应先利用诱导公式化为同名函数.(3)由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需平移的单位数应为⎪⎪⎪⎪φω而不是|φ|. [提醒]y =A sin(ωx +φ)的图象横向伸缩规律,可联系周期计算公式T =2π|ω|进行记忆;纵向伸缩规律,可联系函数的最值进行记忆.|变式训练|1.(2018届河南豫南九校联考)将函数y =sin ⎝⎛⎭⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝⎛⎭⎫x 2-5π24 B .y =sin ⎝⎛⎭⎫x 2-π3 C .y =sin ⎝⎛⎭⎫x 2-5π12D .y =sin ⎝⎛⎭⎫2x -7π12 解析:选B 函数y =sin ⎝⎛⎭⎫x -π4经伸长变换得y =sin ⎝⎛⎭⎫x 2-π4,再作平移变换得y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π6-π4=sin ⎝⎛⎭⎫x 2-π3. 2.(2019届南昌模拟)函数y =sin ⎝⎛⎭⎫2x +π6的图象可以由函数y =cos2x 的图象( ) A .向右平移π6个单位长度得到B .向右平移π3个单位长度得到C .向左平移π6个单位长度得到D .向左平移π3个单位长度得到解析:选A 将函数y =cos2x 的图象向右平移π4个单位长度,可得函数y =sin2x 的图象,再将y =sin2x 的图象向左平移π12个单位长度,可得函数y =sin ⎝⎛⎭⎫2x +π6的图象,综上可得,函数y =sin ⎝⎛⎭⎫2x +π6的图象可以由函数y =cos2x 的图象向右平移π6个单位长度得到,故选A. 3.(2019届石家庄质量检测)若ω>0,函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 的图象重合,则ω的最小值为________.解析:将函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度,得y =cos ⎝⎛⎭⎫ωx -ωπ3+π3的图象.因为所得函数图象与y =sin ωx 的图象重合,所以-ωπ3+π3=3π2+2k π(k ∈Z ),解得ω=-72-6k (k∈Z ),因为ω>0,所以当k =-1时,ω取得最小值52.答案:52………考点二 由图象确定y =Asin (ωx +φ)的解析式…………|重点保分型|………|研透典例|【典例】 (1)(2018届兰州诊断考试)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12 B.22C.32D .1(2)已知函数f (x )=A sin(ωx +φ)+B (A >0,x ∈R ,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为f (x )=________.[解析] (1)由题图知,T 2=π2,即T =π,则ω=2,所以f (x )=sin(2x +φ),因为点⎝⎛⎭⎫π3,0在函数f (x )的图象上,所以sin ⎝⎛⎭⎫2×π3+φ=0,即2π3+φ=2k π+π,k ∈Z , 所以φ=2k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫2x +π3, 因为x 1,x 2∈⎝⎛⎭⎫-π6,π3, 且f (x 1)=f (x 2), 所以x 1+x 22=π12,所以x 1+x 2=π6,所以f (x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32. (2)由题图可知,函数的最大值为A +B =3,最小值为-A +B =-1,解得A =2,B =1. 函数的最小正周期为T =2×⎣⎡⎦⎤5π12-(-π12)=π, 由2πω=π,解得ω=2. 由f ⎝⎛⎭⎫-π12=2sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π12+φ+1=-1,得sin ⎝⎛⎭⎫φ-π6=-1, 故φ-π6=2k π-π2(k ∈Z ),解得φ= 2k π-π3(k ∈Z ),又因为|φ|<π, 所以φ=-π3.所以f (x )=2sin ⎝⎛⎭⎫2x -π3+1. [答案] (1)C (2)2sin ⎝⎛⎭⎫2x -π3+1 『名师点津』………………………………………………|品名师指点迷津| 确定y =Asin (ωx +φ)+b (A>0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω:确定函数的最小正周期T ,则可得ω=2πT .(3)求φ:常用的方法有①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2+2k π,k ∈Z ;“最小值点”(即图象的“谷点”)时ωx +φ=3π2+2k π,k ∈Z .|变式训练|1.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62B .-32C .-22D .-1解析:选D 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.又f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π6+φ=-2,得φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3,f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin 5π4=-1,选项D 正确.2.已知函数f (x )=A cos(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f ⎝⎛⎭⎫-π6=( )A .-23B .-12C.23D.12解析:选A 由题图知T 2=11π12-7π12=π3,所以T =2π3,即ω=3,当x =7π12时,y =0,即3×7π12+φ=2k π-π2,k ∈Z ,所以φ=2k π-9π4,k ∈Z ,即k =1时,φ=-π4,所以f (x )=A cos ⎝⎛⎭⎫3x -π4. 即A cos ⎝⎛⎭⎫3π2-π4=-23,得A =223, 所以f (x )=223cos ⎝⎛⎭⎫3x -π4, 故f ⎝⎛⎭⎫-π6=223cos ⎝⎛⎭⎫-π2-π4=-23. …………考点三 三角函数图象与性质的应用……………|多维探究型|……………|多角探明|角度一 三角函数模型的实际应用【例1】 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温值为________ ℃. [解析] 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. [答案] 20.5角度二 与三角函数有关的零点(方程根)问题【例2】 已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________.[解析] 方程2sin 2x -3sin2x +m -1=0可转化为m =1-2sin 2x +3sin2x =cos2x +3sin2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, 所以题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. 所以y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m2的取值范围为⎝⎛⎭⎫-1,-12, 故m 的取值范围是(-2,-1).[答案] (-2,-1)角度三 三角函数的图象与性质的综合问题【例3】 已知函数f (x )=3sin ⎝⎛⎭⎫2ωx +π3(ω>0)的图象与x 轴相邻两个交点的距离为π2. (1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. [解] (1)函数f (x )的图象与x 轴相邻两个交点的距离为π2,得函数f (x )的最小正周期为T =2×π2=2π2ω,得ω=1,故函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )= 3 s in ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象,根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0,即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 因为x ∈⎣⎡⎦⎤-π6,7π12,所以2x +2π3∈⎣⎡⎦⎤π3,11π6. 当2x +2π3∈⎣⎡⎦⎤π3,π2,即x ∈⎣⎡⎦⎤-π6,-π12时,g (x )单调递增, 当2x +2π3∈⎣⎡⎦⎤3π2,11π6,即x ∈⎣⎡⎦⎤5π12,7π12时,g (x )单调递增. 综上,g (x )在区间⎣⎡⎦⎤-π6,7π12上的单调递增区间是⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12, 7π12. 『名师点津』………………………………………………|品名师指点迷津|(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题:二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.|变式训练|1.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是________. 解析:画出函数的图象.由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, 因为f ⎝⎛⎭⎫π6=cos 5π6=-32且f ⎝⎛⎭⎫2π9=cosπ=-1,要使f (x )的值域是⎣⎡⎦⎤-1,-32,只要2π9≤m ≤5π18,即m ∈⎣⎡⎦⎤2π9,5π18. 答案:⎣⎡⎦⎤2π9,5π182.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a =4cos ωx ·⎝⎛⎭⎫32sin ωx +12cos ωx +a =23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin2ωx +cos2ωx +1+a =2sin ⎝⎛⎭⎫2ωx +π6+1+a . 当sin ⎝⎛⎭⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a ,又f (x )图象上最高点的纵坐标为2, 所以3+a =2,所以a =-1.又f (x )图象上相邻两个最高点的距离为π, 所以f (x )的最小正周期T =π,所以2ω=2πT =2,所以ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π6, 由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z . 令k =0,得π6≤x ≤2π3,所以函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤π6,2π3. 核心素养系列 数学建模——三角函数中的实际问题【典例】 已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪高数据:t (小时) 0 3 6 9 12 15 18 21 24 y (米)1.51.00.51.01.51.00.50.991.5数据,(1)求函数f (t )的解析式;(2)求一日(持续24小时)内,该海滨浴场的海浪高度超过1.25米的时间.[解] (1)由表格得⎩⎪⎨⎪⎧A +b =1.5,-A +b =0.5,解得⎩⎪⎨⎪⎧A =12,b =1,又因为T =12,所以ω=2π12=π6,故y =f (t )=12cos π6t +1.(2)由题意,令12cos π6t +1>1.25,即cos π6t >12,又因为t ∈[0,24],所以π6t ∈[0,4π],故0≤π6t <π3或5π3<π6t ≤2π,或2π<π6t <2π+π3或2π+5π3<π6t ≤2π+2π,即0≤t<2或10<t≤12或12<t<14或22<t≤24,所以在一日内该海滨浴场的海浪高度超过1.25米的时间为8小时.[点评]数学建模是通过计算得到结果来解释实际问题,并接受实际的检验,具体来讲,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段.。
如何由三角函数的图象求解析式
![如何由三角函数的图象求解析式](https://img.taocdn.com/s3/m/bc3a27b4294ac850ad02de80d4d8d15abf230043.png)
如何由三角函数的图象求解析式t1r—J『]野]rtP一目卿舶1]r"CJ]训fIiX腑C*rIlSUPxlulEIDAISIJ数学大世界—]":=兰:竺兰兰.I如何由三角函数的◎唐春健河南安阳一中如何由三角函数的图象来确定它的解析式?用什么方法能够达到快速解答的目的?我们用实例来说明.[例1]如图是某正弦函数的部分图象,则其解析式是()A.一2sin(2z+手)B..y一2sin2一手)c.一2sin2一号)D.一2sin(2z十号)2…一一手lox.方法一看图司知,与Y一2sin2x的图象对照,只须将它向右平移手单位,所以把一2sin2x中的改为z一季即可,得一2sin2(一手)一2sin(2一号),选C.方法二抓住特征点(号,2),当取一号的时候Y…一2,得2—2sin2?号+),则sin(7r+)一1,于是sin一一1,一2k丌一号,取志一0,得=--号,故选C.或取x----0时,Y一一2.方法三抓住特征点(一手,0),(0,一2),(手,o),(号,2),(等,o)中任意一个代人选择支,验证即知C正确.取特殊值是解选择题最常用的方法之一.圈此题条件完备,可直接计算求解,但有些选择题则根据图象提供的信息无法求出未知的常数,必须结合选择支方可确定其解析式.下图是函数一2sin(cu+)(I≤号)的一St图象求解析式图象,那么()A.一订10,一百/rB.∞一订10,一一詈C.一2,一詈,一2,一一詈'2l',.等-2分析图象是由一2sino~x的图象向左平移而得,则>0,于是可以否定B,D,而选择支中II一罢,那么移动量为,因此周期T一+一O(£,j∞,所以∞一2,选C.I发散类比I函数_厂()=Msin(~ox+9)(cu>0)在区间[口,6] 上是增函数,且f(a)一一M,,(6)一M,则函数g(z) =Mcos(tot+)在[口,6]上()A.是增函数B.是减函数C.可取得最大值MD.可取得最小值一M方法一(直接推算)由于,(z)在[口,6]上是增函数,于是厂(n)<厂(6),即一M<M,得M>O. 而厂(n)一一M,n+一2k~r--鲁,厂(6):M,+—2krr+鲁(是∈z).又∞>O,因此当z∈[1,6]时,z+∈E2k~r一号,2志丌+吾](是∈z),对于z∈[n,6],当∞+一2k~r(k∈z)时,函数g()=Mcos(tox+9)有最大值M,故选C.方法二画张草图(如下图),观察图象,轻松获解. Y/…,,,,,\()/:,_【",b】■强露Q瑟35/::一……..………数形结合是解选择又一常用的方法.[例2]xE(o,2丌),—Asin(z+手)与函数—sin(2+)图像有一个相同的最高点,那么A一——,一——分析显然A一1,在(O,2丌)上,y=sin(+手)的最高点为(7I",1),把这点坐标代入—sin(2+),即一O,如下图././手4三角函数的图象把它的性质清楚直观地表述出来了,因此熟悉三角函数的图象对进一步理解三角的本质具有重要的意义.[例3]如图是由一正弦函数图象变换而得,则其解析式为.\f\/号.号\/V………一一,/分析图中阴影面积如何处理?它是不规则图形,求其面积肯定要用特殊的手段.由正弦函数图象的性质我们去寻找解题的途径.由于函数Y—Asin(十)的图象是关于它与轴交点成中心对称图形,所以图中阴影部分面积可转化为求矩形F0HP的面积,而A—lFOI一2,因此IOHI一一37f,从而得丁一3丌, 则cu=6丁7r2,于是移动量为一,故一号.[例4]已知正弦曲线Y—Asin(+)fA>0,>o,iI≤号)的一个最高点是(2,√),由这个最高点到相邻的最低点的曲线与轴相交于点(6,O),求曲线的解析式.分析如何确定是本题的关键,画张草图注意到两点(2,)和(6,0),两横坐标的差为车.解A一,T一16,T一,故詈,有一sin(詈z+)因点(2,)在曲线上,从而有一sin(季+),sin(号+)一1.又I~l-<T一,季+一号,一手.因此所求解析式一sin(专+).通常我们总是先确定A,然后求求T,通过T一求∞,最后确定.但这也不是绝对的,A,,三个元素中到底先求谁,读者可以在自己认最熟悉的情况下自由选择.翮1.如图为函数Y一-厂()=Asin('+)的一个周期的图象.(1)写出Y—f()的解析式;2}:\一I:///-2(2)写出Yg(x)的解析式,便f()与g()的图象关于直线z一2对称.分析抓住移动量为1,而T一8,然后去求.解(1)A一2,T一7一(一1)一8,而T一,则一孚,C移动量为里6O—l,于是一号,故所求解析式为一2sin(+手).(2)设(.,.)是曲线—g(1z)上任一点,(z,Y)是曲线一-厂()上关于直线一2对称的点.即有0一2,0—4--X2,则)-2n[号(4z)+刳一2sin(一手)in[丌一(号一)]一2sin(-~--5r2--号).\冒警:一,√_:.一:::二:…一…一一…一,……………一……一,故=::g()一2sin(手一号).或由于-厂()与g(x)的图象关于直线一2对称,而函数3,一,(z)图象靠近直线z===2最左侧的一条对称轴为直线一1.于是直线z=3是g(z)的一条对称轴.2.如图单摆从某点开始来回摆动,离开平衡位置的距离S()和时间£(sec)的函数关系是s=Asin(cot-F~p),根据图象,求(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置是多少?(3)单摆来回摆动一次需要多少时间?解(1)由图知:手丁一一百1一3,则T=I,故∞一擎一2丌.又:时取得最大值,bm.I1I7r则27rX百+一号,O所以一詈.2()_L\/I_Lt\v/又当£一0时,S一2,因此2一Asin詈,得A一4, 因此,函数解析式为s一4sin2丌+詈).≥SHUX'UEDASHIJIE数学大世界{(2)由于A一4,则单摆摆动到最右边时,离开平i衡位置4cm.(3)因为T一1,所以单摆来回摆动一次需时间为1sec.3.如图,某地一天从6时至14时的温度变化曲线近似满足函数一4sin(oJx+~o)+b.(1)求这段时间的最大温度差;(2)写出这段曲线函数解析式.解(1)由题中图所示,这段时间的最大温度差是30—10:20(℃).(2)图中从6时到14时的图象是函数—Asin(cU+)4-b的半个周期的图象,3O/,,2O,lO/1D61014所以专,一14—6,解得一号.∞o由图示,A=l(30—10)=10,b=1(30+10)=20.这时一10sin(詈z+)+2o.将—,一10代人上式,可取一.综上,所求的解析式为.y=1osin(詈+)+数学史上的冤案在自然科学领域,有不少公式和定律都以发理者的名字而命名.而数学上的"卡尔丹诺公式"的命名则是一桩地地道道的冤案.在中世纪的意大利,盛行在街头打数学擂台.通常是摆上一张桌子.数学斗士们各向对手提交一批数量不等的难题,谁先做出正确的解答,谁就是优胜者.这种风气有效地培养出一批颇具才华的数学家.出身寒微而自学成才的尼古拉?塔尔达利亚便是其中的佼佼者.由于他才智过人,又极为勤奋好学,因而享有"不可战胜者"的盛誉.一次,他接到了平庸的大富豪费奥里的挑战书,并且得知费奥里已向一位教师要到了三次方程式的秘密解法,企图以此获胜.塔尔达利亚为赢得得这次胜利,闭门谢客,废寝忘食,苦苦琢磨了三天三夜,终于找到了三次方程式的新解法,并在随后的比赛中,又一次轻取桂冠.这时,一个名叫卡尔丹诺的科学骗子找到了塔尔达利亚,狂妄地自称他有4万项发明,只有三次方程式的解法才是他唯一的不解之谜,并为此痛不欲生.在卡尔丹诺甜言蜜语的哄骗下,诚实而善良的塔尔达利亚便毫不保留地将自己的新发现告诉了他.谁知,几天以后,卡尔丹诺意发表了一篇论文,阐述了三次方程式的新解法,并大言不惭地宣称,这是他的最新发现.待人一向诚恳的诺尔达利亚,被骗子这一欺世盗名的无耻行径激怒了,他向卡尔丹诺堂堂正正地提出挑战, 并把骗子派来的数学高手击得惨败.然而,在随即而来的一个没有星光的夜晚,塔尔达利亚竞被骗子收买的亡命之徒秘密刺杀了.从此,在罗马街头的数学擂台上,不可战胜的数学斗士塔尔达利亚的勃勃英姿永远消逝了,他对三次方程式的新解法的卓越贡献,也被一些不公正的记载一笔抹煞了, 在今天的不少数学着作中,他的发现仍被称为"卡尔丹诺公式",这使凡是熟知上述史实的人,无不痛感必须恢复真理的权威性和历史本身的尊严.。
用“五点法”确定三角函数图象的解析式
![用“五点法”确定三角函数图象的解析式](https://img.taocdn.com/s3/m/aa132bdb26fff705cc170a3e.png)
c。s(一{)=5 -.
轴上相邻两个交点之间的距离为号,可知号一 T,即
T一7【,故 ∞一 一2.下面我们用传统法和“五点法 ’’ 骤是:T一∞一 —A一,(o).由( ,0)xCFiN,  ̄,
来求 的 值 .(并 把 传 统 方法 与“五点 法 ”比较 )
弦函数图象上的点( ,o)同样可得.
R(其中A>0, >0,0< <詈)的图象与z轴的
交点中,相邻两个交点之间的距离为要,且图象上一 擎,得 一一詈.再由_,‘(号)一一号,得A一 .从
个最 低 点 为 M( ,一 2).求 -厂(z)的解 析 式 .
而得,(z)一 c。s 3x-手),因此,(0)一
解 由最 低 点 是 M( ,一 2),可 得 A 一2.由 z
· 34 ·
中学数 学月 刊
2010年第 12期
用 “五 点 法 "确 定 三 角 函数 图 象 的解 析 式
陶 冶 (江 苏 省 常 熟 中 学 215500) 陈 新 (江 苏省常 熟市 中学 215500)
在 三 角 函数 图 象 的 教 学 中 ,有 一 类 由 图象 确 定 解 析式 的问 题经 常 困扰着 学 生 .其 实 借 助 三角 函数 的 “五点 法 ”作 图 中 的五 个点 ,可 以解 决 这 类 问题 . 1 例 说 “五 点 法 ”的 妙 用
的横 ̄ A - ' /r一,这 个 最 高 点 应 该 对 应 Y— sin 32某 周
期 上 的 最 高 点 .
(A c)- 专
由“五点法”可知, 一詈对应着号+2kn,走∈
一 告 (D)专 一寺r…一 \
z,故2叫×詈+号一号+2k ,所以 一 1+6尼.由 解 由图 中 轴 上 的
由图像求函数解析式
![由图像求函数解析式](https://img.taocdn.com/s3/m/3722dbcf7f1922791688e855.png)
1.5 函数y=Asin(ωx+φ)的图象(二)
简谐运动y=Asin(ωx+φ)(A>0,ω>0)中, A 叫做振幅,周期T ω 2π = ω ,频率f= 2π ,相位是 ωx+φ ,初相是 φ .
1.5 函数y=Asin(ωx+φ)的图象(二)
5
2.函数y=Asin(ωx+φ) (A>0,ω>0)的性质如下 定义域 值域 周期性 R [-A,A]
1.5 函数y=Asin(ωx+φ)的图象(二)
[学习目标]
1.会用“五点法”画函数y=Asin(ωx+φ)的图象.
2.能根据y=Asin(ωx+φ)的部分图象,确定其解析式. 3.了解y=Asin(ωx+φ)的图象的物理意义,能指出简谐运动中 的振幅、周期、相位、初相.
预习导学
挑战自我,点点落实
1.5 函数y=Asin(ωx+φ)的图象(二)
16
规律方法 三角函数中系数的确定方法
给出y=Asin(ωx+φ)的图象的一部分,确定A,ω,φ的方法 (1) 第一零点法:如果从图象可直接确定 A 和 ω ,则选取 “ 第 一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.
解 列表:
1 π X=3x-3 x π 3 1 y=2sin3x-3
0 π 0
π 2 5π 2 3 2
π 4π 0
3π 2 11π 2 3 - 2
专题3 三角函数的图象与性质【高考文科数学】含答案
![专题3 三角函数的图象与性质【高考文科数学】含答案](https://img.taocdn.com/s3/m/23c16706f01dc281e53af075.png)
第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。
五点作图法求三角函数解析式教师版
![五点作图法求三角函数解析式教师版](https://img.taocdn.com/s3/m/f595cc5b561252d380eb6ea8.png)
五点作图法求三角函数解析式教师版例1.用“五点作图法”画函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象时,某同学列表并填入的数据如下:(1)求x1、x2的值及f(x)的表达式;(2)已知函数g(x)是将函数f(x)的图象向右平移个单位所得,若,求g(x0)的值.【分析】(1)根据五点法作图,求出A,ω和φ的值即可得到结论(2)求出g(x)解析式,结合f(x0)=1的值,求出x0=,代入求解即可【解答】解:(1)函数的周期T=﹣=π,即,得ω=2,函数的最大值为2,即A=2,则f(x)=2sin(2x+φ),由五点对应法,得2×+φ=0,得φ=﹣,则f(x)=2sin(2x﹣),2x1﹣=,得x1=,由2x2﹣=,得x2=.(2)g(x)是将函数f(x)的图象向右平移个单位所得,即g(x)=2sin[2(x﹣)﹣]=2sin(2x﹣)=﹣2cos2x,若,则2sin(2x0﹣)=1,即sin(2x0﹣)=,∵0<x0<,∴﹣<2x0﹣<,∴2x0﹣=,得x0=,即g(x0)=g()=﹣2cos(2×)=﹣2cos=0.【点评】本题主要考查三角函数的图象和性质,根据五点作图法求出函数解析式以及利用三角函数的变换关系是解决本题的关键.练习1.函数f(x)=A sin(ωx+φ)+h(A>0,ω>0,|φ|<π),在同一个周期内,当时,y有最大值4,当时,y有最小值2.(1)求f(x)解析式;(2)求f(x)的递增区间;(3)若x∈[0,],求g(x)=f(x+)﹣4λcos x的最小值.【分析】(1)由,可求A,h,利用周期公式可求ω,由(,4)为五点作图法第二点,可求φ,可求f(x)解析式.(2)由,解得单调递增间.(3)由(1)知可求g(x)的解析式,由,可得cos x∈[0,1],根据λ的范围分类讨论即可求得最小值.【解答】(本题满分为12分)解:(1)∵由,得A=1,h=3,∴=,可得T=π,ω=2,∵由(,4)为五点作图法第二点,,∴f(x)=sin(2x+)+3,………………………(3分)(2)由,得:﹣+kπ≤x≤+kπ,k∈Z,可得单调递增间为:.………………………(6分)(3)由(1)知,所以:g(x)=f(x+)﹣4λcos x=sin(2x+)+3﹣4λcos x=cos2x﹣4λcos x+3=2cos2x﹣4λcos x+2=2(cos x﹣λ)2﹣2λ2+2,∵,∴cos x∈[0,1]………………………(9分)①当λ≤0时,当且仅当cos x=0时,g(x)有最小值2.②当0<λ<1时,当且仅当cos x=λ时,g(x)有最小值﹣2λ2+2.③当λ≥1时,当且仅当cos x=1时,g(x)有最小值4﹣4λ.综上所述:.………………………(12分)【点评】本题考查的知识点是正弦函数解析式的求法,正弦函数的单调性,考查了分类讨论思想,考查了函数的性质的应用,熟练掌握正弦型函数的图象和性质是解答的关键,属于中档题.2.某同学用“五点法”画函数,在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整;函数f(x)的解析式为f(x)=3sin(2x﹣)(直接写出结果即可);(2)根据表格中的数据作出f(x)一个周期的图象;(3)求函数f(x)在区间上的最大值和最小值.【分析】(1)由题意补充完整表格,写出f(x)的解析式;(2)根据表格中的数据作出f(x)一个周期的图象即可;(3)求出函数f(x)在区间上的最大值和最小值即可.【解答】解:(1)由题意,补充完整下表是;写出函数f(x)的解析式为f(x)=3sin(2x﹣);(2)根据表格中的数据作出f(x)一个周期的图象,如图所示;(3)函数f(x)=3sin(2x﹣),x∈[﹣,0],2x﹣∈[﹣,﹣];∴x=﹣时,f(x)在区间上取得最大值为﹣,x=﹣时,f(x)取得最小值为﹣3.【点评】本题考查了三角函数的图象与性质的应用问题,是基础题.。
方法10:五点法求三角函数解析式
![方法10:五点法求三角函数解析式](https://img.taocdn.com/s3/m/99a91a3e19e8b8f67d1cb900.png)
方法10 五点法求三角函数解析式一、单选题1.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭【答案】C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【解析】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=-⎪⎝⎭. 故选:C.2.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【分析】 由16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,可得52663πππ-=是函数()f x 周期的一半,从而可求出ω的值【解析】解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B3.在一个港口,相邻两次高潮发生的时间相距12 h ,低潮时水深为9 m ,高潮时水深为15 m .每天潮涨潮落时,该港口水的深度y (m )关于时间t (h )的函数图象可以近似地看成函数y =A sin(ωt +φ)+k (A >0,ω>0)的图象,其中0≤t ≤24,且t =3时涨潮到一次高潮,则该函数的解析式可以是( )A .y =3sin6πt +12 B .y =-3sin6πt +12 C .y =3sin12πt +12 D .y =3cos6πt +12 【答案】A 【分析】由两次高潮的时间间隔12h 知12T =,且212(0)T πωω==>得6π=ω,又由最高水深和最低水深得3A =,12k =,将3t = y =15代入解析式解出φ,进而求出该函数的解析式.【解析】由相邻两次高潮的时间间隔为12 h ,知T =12,且T =12=2πω(ω>0),得ω=6π,又由高潮时水深15 m 和低潮时水深9 m ,得A =3,k =12,由题意知当t =3时,y =15.故将t =3,y =15代入解析式y =3sin 6t πϕ⎛⎫+ ⎪⎝⎭+12中,得3sin 36πϕ⎛⎫⨯+⎪⎝⎭+12=15,得6π×3+φ=2π+2kπ(k ∈Z ),解得φ=2kπ(k ∈Z ).所以该函数的解析式可以是y =3sin 26t k ππ⎛⎫+⎪⎝⎭+12=3sin 6πt +12.4.记函数()()sin f x x ωϕ=+(其中0>ω,2πϕ<)的图像为C ,已知C 的部分图像如图所示,为了得到函数()sin g x x ω=,只要把C 上所有的点( )A .向右平行移动6π个单位长度 B .向左平行移动6π个单位长度 C .向右平行移动12π个单位长度 D .向左平行移动12π个单位长度 【答案】A 【分析】根据图象可得周期,求出2ω=,根据图象上最低点求出3πϕ=,再根据平移变换可得结果.【解析】由图象可知周期74()123T πππ=-=,所以222T ππωπ===, 又图象上一个最低点为7(,1)12π-,所以7sin 2112πϕ⎛⎫⨯+=- ⎪⎝⎭, 所以7322122k ππϕπ⨯+=+,k Z ∈,即23k πϕπ=+,k Z ∈, 因为2πϕ<,所以3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭sin 26x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦, 所以为了得到函数()sin 2g x x =,只要把C 上所有的点向右平行移动6π个单位长度. 故选:A 【小结】根据图象求出ω和ϕ是解题关键.5.已知函数()cos()f x A x ωϕ=+(其中0A >,0>ω,||2ϕπ<)的部分图象如图所示,则函数的单调递减区间为( )A .32,2()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .3,()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .52,2()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .5,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】D 【分析】先根据图象求出函数()f x 的解析式,再令()22k x k k Z πωϕππ≤+≤+∈,解不等式即可求解. 【解析】由图知:2A =,884Tππ⎛⎫--= ⎪⎝⎭,所以T π=, 又因为2T ππω==,所以2ω=,所以()2cos(2)f x x ϕ=+,由()228k k Z ϕππ⨯+=∈,可得()24k k Z ϕππ=-+∈,因为||2ϕπ<,所以0k =,4πϕ=-, 所以()2cos 24f x x π⎛⎫=-⎪⎝⎭, 令()2224k x k k Z ππππ≤-≤+∈,解得:()588k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为5,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故选:D 【小结】本题解题的关键是利用五点法作图的原理求出()f x 的解析式,再利用整体代入法求单调区间.6.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图,则( )A .()2sin 26f x x π⎛⎫=-⎪⎝⎭B .12f π⎛⎫=⎪⎝⎭C .()f x 的图象的对称中心为,0()12k k Z ππ⎛⎫-∈ ⎪⎝⎭D .不等式()1f x ≥的解集为,()3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦【答案】D 【分析】根据图象求出2,6πωϕ==可得()2sin(2)6f x x π=+,可知A 不正确;计算可知B 不正确;利用正弦函数的对称中心求出()f x 的对称中心可知C 不正确;解不等式()1f x ≥可知D 正确.【解析】由图可知54126T ππ=-,所以T π=,所以222T ππωπ===, 由262ππϕ⨯+=,得6π=ϕ,所以()2sin(2)6f x x π=+,故A 不正确;()2sin(2)12126f πππ=⨯+=B 不正确;由26x k ππ+=,k Z ∈,得212k x ππ=-,k Z ∈,所以()f x 的图象的对称中心为,0()212k k Z ππ⎛⎫-∈⎪⎝⎭,故C 不正确;由不等式()1f x ≥得1sin(2)62x π+≥,得5222666k x k πππππ+≤+≤+,k Z ∈, 得3k x k πππ≤≤+,k Z ∈,所以不等式()1f x ≥的解集为,()3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,故 D 正确. 故选:D 【小结】根据图象求出函数()f x 的解析式是解题关键.7.函数()sin()(0,0)f x A x A ωϕω=+>>的图象如图所示,则(9)f =( )A .1-B .1C .D 【答案】D 【分析】先利用图象分析得到解析式,再计算(9)f 即可.【解析】由图象可知,2A =,1152233T =-=,24,2T T ππω===,53x =时,52,23x k k Z πωϕϕππ+=⨯+=+∈,解得62,x k k Z ππ=+∈,故()2sin 26f x x ππ⎛⎫=+ ⎪⎝⎭,故922sin 2sin 2sin 262)6(39f πππππ⎛⎫⎛⎫+=+==⎪ ⎪⎝⎭⎝⎭= 故选:D. 【小结】根据图象求函数()sin()(0,0)f x A x A ωϕω=+>>解析式:(1)利用最值确定A 值; (2)利用图象求周期T ,根据2Tπω=求ω; (3)利用特殊点整体代入法确定ϕ值.8.如图是函数()cos(2)f x A x =+ϕ(0,0)A ϕπ>≤≤图象的一部分,对不同的12,[,]x x a b ∈,若()()12f x f x =,有()12f x x +=,则( )A .() f x 在区间5,1212ππ⎛⎫-⎪⎝⎭上是增函数 B .() f x 在区间5,1212ππ⎛⎫-⎪⎝⎭上是减函数 C .() f x 在区间2,63ππ⎛⎫⎪⎝⎭上是增函数D .() f x 在区间2,63ππ⎛⎫⎪⎝⎭上是减函数【答案】B 【分析】(1)根据题意可得2A =,且1222x x a b ++=,从而可得a b ϕ+=-,再由()12f x x +=解得6π=ϕ,即()2cos 26f x x π⎛⎫=+⎪⎝⎭,再利用余弦函数的性质即可求解. 【解析】解析:由函数()cos(2)f x A x =+ϕ()0,0A ϕπ>≤≤图象的一部分,可得2A =,函数的图象关于直线1222x x a b x ++==对称, ∴12a b x x +=+.由五点法作图可得22a πϕ+=-,22b πϕ+=,∴a b ϕ+=-.再根据()12()2cos(2)2cos()f x x f a b ϕϕϕ+=+=-+=-=cos ϕ=, ∴6π=ϕ,()2cos 26f x x π⎛⎫=+ ⎪⎝⎭.在5,1212ππ⎛⎫-⎪⎝⎭上,2(0,)6x ππ+∈, 故()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数, 故选:B .9.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+⎪⎝⎭B .()2sin 26f x x π⎛⎫=-⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭【答案】A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【解析】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭,22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+⎪⎝⎭. 故选:A. 【小结】根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.10.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A xω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度 D .向左平移512π个单位长度 【答案】B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【解析】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【小结】本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=-⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 【答案】A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【解析】由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A12.如图,已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象与坐标轴交于点1,,(,0)2-A B C ,直线BC 交()f x 的图象于另一点D ,O 是ABD △的重心.则ACD △的外接圆的半径为( )A .2BCD .8【答案】B 【分析】首先根据三角函数图象的对称性和重心的性质求得点A 的坐标,根据周期确定ω,再根据点C 的坐标确定ϕ,确定解析式后,确定点,B D 的坐标,结合正弦定理求ACD △外接圆的半径.【解析】根据三角函数的对称性可知点C 是BD 的中点,又O 是ABD ∆的重心,1,02C ⎛⎫- ⎪⎝⎭, ∴21OA OC ==, ∴点A 的坐标为()1,0,∴函数()f x 的最小正周期为3T 232=⨯=, ∴23πω=,∴()2sin 3f x x πϕ⎛⎫=+⎪⎝⎭. 由题意得121sin sin 02323f ππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2πϕ<,∴3πϕ=,∴()2sin 33f x x ππ⎛⎫=+⎪⎝⎭,令0x =得()0sin3f π==, ∴点B的坐标为⎛ ⎝⎭,∴tan BCO ∠=3BCO π∠=,∴23ACD π∠=. 又点1,02C ⎛⎫-⎪⎝⎭是BD 的中点, ∴点D的坐标为1,2⎛⎫-- ⎪ ⎪⎝⎭,∴AD ==设ACD ∆的外接圆的半径为R,则222sin sin 3AD R ACD π∠===∴R =. 故选:B. 【小结】已知图象求()()sin 0,2f x A x πωϕωϕ⎛⎫=+><⎪⎝⎭的步骤为: 1.一般根据函数的最大值和最小值求A ; 2.ω由周期确定,根据公式2T πω=,观察给定的图象,分析出确定的T 值;3.一般求ϕ,可以将图象中的一个点代入求解,或是根据“五点法”,利用图象的最高点或最低点,以及函数的零点,再由已知条件中ϕ的具体范围确定相应的ϕ值.13.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到()5sin 6g x x πω⎛⎫=+ ⎪⎝⎭的图象,则只将()f x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位 【答案】A【分析】根据三角函数的图像求出()sin(2)3f x x π=+,再利用三角函数的平移变换即可求解.【解析】由图像观察可知,741234T πππ=-=, 所以T π=,则2ω=,所以()()sin 2f x x ϕ=+,根据图像过点7,112π⎛⎫-⎪⎝⎭,所以732122ππϕ⨯+=, 则3πϕ=,所以()sin(2)3f x x π=+,函数()5sin(2)6g x x π=+, 因此把()sin(2)3f x x π=+图像向左平移4π个单位即得到()g x 的函数图像, 故选:A.14.已知函数()()cos f x A x ωϕ=+在[]0,π上的图象如图所示,则函数()f x 的解析式是( )A .()2cos 24f x x π⎛⎫=+ ⎪⎝⎭B .()4f x x π⎛⎫=- ⎪⎝⎭C .()3)4f x x π=- D .())4f x x π=-【答案】C 【分析】由函数的图像可求得,A T ,再利用周期公式可求出ω,然后对选项的解析式逐个验证即可【解析】解:由图像可得34884T A πππ==-=, 所以T π=,所以22πωπ==,所以A ,B 不符合题意,对于C ,()30)14f π=-=, 333)884f πππ⎛⎫=⨯-= ⎪⎝⎭对于D ,33)0884f πππ⎛⎫=⨯-=⎪⎝⎭,不符合题意, 故选:C15.已知()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭,其图像相邻两条对称轴之间的距离为2π,且()f x 的图像关于点,012π⎛⎫- ⎪⎝⎭对称,则下列判断错误的是( )A .要得到函数()f x 的图像,只需要现将y x =的图像保持纵坐标不变,横坐标变为原来的一半,再向右平移6π个单位 B .函数()f x 的图像关于直线23x π=对称 C .函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为【答案】D 【分析】根据正弦型函数的性质可求得()f x 的解析式;根据三角函数平移变换原则可知A 正确;利用代入检验法可知,B C 正确;利用正弦型函数求值域的方法可确定D 错误. 【解析】()max f x =,0A >,A ∴=()f x 相邻两条对称轴之间距离为2π,()f x ∴最小正周期222T ππω==⨯,2ω∴=,0126f ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,()6k k Z πϕπ∴-+=∈,()6k k Z πϕπ∴=+∈,又2πϕ<,6πϕ∴=,()26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,y x =横坐标变为原来一半得到2y x =;再向右平移6π个单位得到23y x π⎛⎫=- ⎪⎝⎭,又cos 2sin 2sin 23236x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,可知A 正确;对于B ,当23x π=时,4326362x ππππ+=+=,32x π=是sin y x =的对称轴,23x π∴=是()f x 的对称轴,B 正确; 对于C ,当,63x ππ⎡⎤∈⎢⎥⎣⎦时,52,626x πππ⎡⎤+∈⎢⎥⎣⎦,sin y x =在5,26ππ⎡⎤⎢⎥⎣⎦上单调递减,()f x ∴在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,C 正确;对于D ,当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,2,662x πππ⎡⎤+∈-⎢⎥⎣⎦,()min 62f x π⎛⎫∴=-=- ⎪⎝⎭,D 错误. 故选:D. 【小结】根据三角函数性质求解()sin y A ωx φ=+的方法:(1)max min 2y y A -=;(2)2Tπω=;(3)代入图象上的点,利用整体对应法,结合正弦函数图象构造方程求得ϕ.16.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图象如图所示,若函数()()1h x f x =+的两个不同零点分别为1x ,2x ,则12x x -的最小值为( )A .23πB .2π C .43π D .π【答案】A 【分析】首先根据图象求得函数的解析式,再求函数的零点,比较相邻零点中12x x -的最小值. 【解析】由图象可知函数的最大值为2,所以2A =,24362T πππ=-=,所以221ππωω=⇒=,当6x π=时,2,6k k Z πϕπ+=∈, 2πϕ<,6πϕ∴=-()2cos 6f x x π⎛⎫∴=- ⎪⎝⎭,即()2cos 16h x x π⎛⎫=-+ ⎪⎝⎭,当()0h x =时,1cos 62x π⎛⎫-=- ⎪⎝⎭, 得22,63x k k Z πππ-=+∈或42,63x k k Z πππ-=+∈, 解得:52,6ππ=+∈x k k Z ,或32,2x k k Z ππ=+∈, 相邻的零点12,x x 中,12x x -的最小值是352263πππ-=. 故选:A 【小结】本题考查根据三角函数的图象求三角函数的解析式,三角函数的零点,属于中档题型.求()sin y A x b ωϕ=++()0,0A ω>>的解析式的求法:在一个周期内,若最大值为M ,最小值为m ,则A b M A b m +=⎧⎨-+=⎩,ω由周期确定,由2T πω=求出,通过观察图象,分析确定T 的值,将图象的一个最高点或最低点,也可以利用零点,再由已知条件中ϕ的具体范围确定相应ϕ值.17.函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图像如图所示,则下列结论正确的是( )A .3x π=-是()f x 图像的一条对称轴B .()f x 图像的对称中心为22,0,3k k Z ππ⎛⎫+∈⎪⎝⎭ C .()1f x ≥的解集为44,4,3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦D .()f x 的单调递减区间为282,2,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】C 【分析】结合五点作图法和函数图像可求得函数解析式,采用代入检验法可依次判断各个选项得到结果. 【解析】()10sin 2f ϕ==且2πϕ<,6πϕ∴=, 又882sin 233f ππωϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,由五点作图法可得:83362πππω+=,解得:12ω=, ()12sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,当3x π=-时,1026x π+=,,03π⎛⎫∴- ⎪⎝⎭是()f x 的对称中心,A 错误;对于B ,当223x k ππ=+时,1262x k πππ+=+,223x k ππ∴=+是()f x 的对称轴,B 错误; 对于C ,由()1f x ≥得:1in 2612s x π⎛⎫⎪⎭≥+⎝,15226266k x k πππππ∴+≤+≤+, 解得:4344k x k πππ≤+≤,C 正确; 对于D ,当282,233x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,13,2622x k k πππππ⎡⎤+∈++⎢⎥⎣⎦, 当1k =时,135,2622x πππ⎡⎤+∈⎢⎥⎣⎦,不是()f x 的单调递减区间,D 错误. 故选:C. 【小结】本题考查正弦型函数()sin y A ωx φ=+的性质的判断,解决此类问题常用的方法有:(1)代入检验法:将所给单调区间、对称轴或对称中心代入x ωϕ+,确定x ωϕ+的值或范围,根据x ωϕ+是否为正弦函数对应的单调区间、对称轴或对称中心来确定正误;(2)整体对应法:根据五点作图法基本原理,将x ωϕ+整体对应正弦函数的单调区间、对称轴或对称中心,从而求得()sin y A ωx φ=+的单调区间、对称轴或对称中心.18.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,记关于x 的方程()f x =()21t t -<<-在区间5π0,6⎡⎤⎢⎥⎣⎦上所有解的和为θ,则tan θ=( )A .BC .D .tan 2t【答案】B 【分析】由函数图象得函数()π2sin 23f x x ⎛⎫=+⎪⎝⎭,再根据函数的性质得方程()()()2,1f x t t =∈--在区间5π0,6⎡⎤⎢⎥⎣⎦上所有的解共有2个且这2个解的和等于7π7π2126⨯=,进而得答案. 【解析】解:由图可知,2A =,再把点(代入可得2sin ϕ=所以sin ϕ=π2ϕ<,所以π3ϕ=,由五点作图法原理可得πππ33ω⋅+=,所以2=ω, 故函数()π2sin 23f x x ⎛⎫=+⎪⎝⎭,当5π0,6x ⎡⎤∈⎢⎥⎣⎦时,ππ2,2π33x ⎡⎤+∈⎢⎥⎣⎦, 令π2π233x +=,得7π12x =,由图像可知方程()()()2,1f x t t =∈--在区间5π0,6⎡⎤⎢⎥⎣⎦上所有的解共有2个,且这2个解的和等于7π7π2126⨯=,即7π6θ=,所以7πtan tan6θ==故选:B . 【小结】本题考查利用三角函数图象求解析式,函数的对称性,考查运算能力,是中档题.19.设函数()πsin 4f x x ω⎛⎫=+⎪⎝⎭在[]0,2π上的图像大致如图,则()f x 的最小正周期为( )A .5π6B .6π5C .5π4D .3π2【答案】C 【分析】由图象观察可得最小正周期小于43ππ32T <<,排除A ,D ;再由5π132f ⎛⎫= ⎪⎝⎭,求得ω,即可得到结论.【解析】由图像可得()f x 的最小正周期T 满足:π,3π5π,232T T >⎧⎪⎨<-⎪⎩解得43ππ32T <<, 故排除A ,D ;又由5π5ππsin 132324f ω⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,可得()5πππ2π3242k k ω+=+∈Z ,解得()86455k k ω=+∈Z . 因为π2πT <<,即2ππ2πω<<,所以12ω<<.所以当0k =时,85ω=, 所以2π5π845T ==. 故选:C.二、多选题20.如图是函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象,下列选项正确的是( )A .()sin 23f x x π⎛⎫=-⎪⎝⎭B .()sin 43f x x π⎛⎫=-⎪⎝⎭C .06f π⎛⎫=⎪⎝⎭D .213f π⎛⎫-= ⎪⎝⎭【答案】AC 【分析】先由()0f =可求得3πϕ=-,再sin 0333f πππω⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,可得()233k k Z ππωππ--=+∈,解得()46k k Z ω=--∈,再利用23T ππω=>,可得03ω<<,所以2ω=,()sin 23f x x π⎛⎫=- ⎪⎝⎭,即可知A 正确,B 不正确,计算即可判断C 、D ,进而可得正确答案. 【解析】由图知()0sin 2f ϕ==-,因为||2ϕπ<,所以3πϕ=-,所以()sin 3f x x πω⎛⎫=-⎪⎝⎭, 因为sin 0333f πππω⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,所以()233k k Z ππωππ--=+∈,解得:()46k k Z ω=--∈,因为23T ππω=>,所以03ω<<, 所以1k =-时2ω=,可得()sin 23f x x π⎛⎫=- ⎪⎝⎭,故选项A 正确,选项B 不正确,sin 2sin 00663f πππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,故选项C 正确;24sin sin 33332f ππππ⎛⎫⎛⎫-=--== ⎪ ⎪⎝⎭⎝⎭D 不正确, 故选:AC 【小结】本题的关键点是求ω的值,先利用sin 0333f πππω⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,而且3π-是下降零点可得()233k k Z ππωππ--=+∈,解得()46k k Z ω=--∈,再结合图象可知23T ππω=>得03ω<<,求得2ω=,()sin 23f x x π⎛⎫=-⎪⎝⎭问题即可迎刃而解,属于常考题型. 21.已知函数()()sin f x A x ωϕ=+,()0,0,0A ωϕπ>><<的部分图象如图所示,其中图象最高点和最低点的横坐标分别为12π和712π,图象在y ,给出下列四个结论,其中正确的结论是( )A .()f x 的最小正周期为πB .()f x 的最大值为2C .14f π⎛⎫=⎪⎝⎭D .3f x π⎛⎫+⎪⎝⎭为偶函数 【答案】ABC 【分析】由周期求出ω,由五点法作图求ϕ,根据特殊点的坐标求出A ,可得函数的解析式()2sin(2)3f x x π=+.通过分析得到ABC 正确,()2sin 23f x x π+=-为奇函数,所以D 错误.【解析】根据函数()sin()(0f x A x A ωϕ=+>,0>ω,0)ϕπ<<的部分图象,得12721212πππω=-, 2ω∴=.再根据五点法作图可得2122ππϕ⨯+=,3πϕ∴=.根据函数的图象经过,可得sin sin3A A πϕ=2A =,()2sin(2)3f x x π∴=+.故,A ()f x 的最小正周期为π,所以A 正确;,B ()f x 的最大值为2,所以B 正确;,C 由题得()2sin()1423f πππ=+=,所以C 正确;,D ()2sin 23f x x π+=-为奇函数,所以D 错误.故选:ABC 【小结】求三角函数的解析式一般有三种:(1)待定系数法:一般先设出三角函数的解析式sin()yA wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.(2)图像变换法:一般利用函数图像变换的知识,一步一步地变换得到新的函数的解析式.(3)代入法:一般先在所求的函数的图像上任意取一点(,)P x y ,再求出点P 的对称点((,),(,))P f x y g x y ,再把点((,),(,))P f x y g x y 的坐标代入已知的函数的解析式化简即得所求函数的解析式.本题选择的是待定系数法.要根据已知灵活选择.22.若函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像,如图所示,则下列说法正确的是( )A .6π=ϕ B .函数()f x 的图像关于6x π=对称C .函数()f x 的图像关于点5,06π⎛⎫-⎪⎝⎭对称 D .,02x ⎡⎤∈-⎢⎥⎣⎦π时,()f x 的值域为[]2,1- 【答案】ABD 【分析】根据三角函数的图像求出函数的解析式,再由三角函数的性质即可得出选项. 【解析】由图像可知2A =,(0)2sin 1f ϕ==,即1sin 2ϕ=, 因为||2ϕπ<,所以6π=ϕ, 332sin 446f πππω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()352,463k k Z πππωπ∴+=+∈, ()82,3k k Z ω∴=+∈,周期234T ππω=>,803ω∴<<,即2ω=, ()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,对于A ,6π=ϕ,正确; 对于B ,2sin 262f ππ⎛⎫==⎪⎝⎭,故图像关于6x π=对称,正确; 对于C ,532sin 262f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,错误; 对于D ,,02x ⎡⎤∈-⎢⎥⎣⎦π时,52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,所以()[]2,1f x ∈-,正确; 故选:ABD.23.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .最小正周期为2πB .()f x 在区间5ππ,1212⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的图象关于点5π,06⎛⎫⎪⎝⎭对称 D .()f x 的图象可由π2sin 26y x ⎛⎫=+⎪⎝⎭的图象向在平移π6个单位长度得到 【答案】BC 【分析】根据图象确定周期可判断A ,由周期求出ω,利用特殊值求出ϕ得出函数,根据正弦函数的单调性判断B ;根据正弦型函数的对称中心判断C ;由三角函数的图象平移可判断D. 【解析】由图象可知,2A =,ππ2π36T ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,故()f x 的最小正周期为π,故A错误;所以2π2Tω==,得()()2sin 2f x x ϕ=+.又因为当πππ36212x ⎛⎫+- ⎪⎝⎭==时,()2f x =,即ππ2sin 221212f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭, 即πsin 16ϕ⎛⎫+=⎪⎝⎭.又因为π2ϕ<,可得ππ62ϕ+=,解得π3ϕ=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭.由()πππ2π22π232k x k k -+≤+≤+∈Z , 可得()5ππππ1212k x k k -+≤≤+∈Z ,令0k =,可得()f x 在区间5ππ,1212⎡⎤-⎢⎥⎣⎦上单调递增,故B 正确; 又5π5ππ2sin 0633f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于点5π,06⎛⎫ ⎪⎝⎭对称,故C 正确; π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到πππ2sin 22sin 22cos2662y x x x ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 错误.故选:BC 【小结】根据三角函数图象求出函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的解析式,根据正弦型函数的图象与性质即可求出函数的单调区间,对称中心,周期,平移等问题,属于中档题.24.函数()()sin f x A x =+ωϕ,(,,A ωϕ是常数,0A >)的部分图象如图所示,则( )A .()26f x x π⎛⎫=- ⎪⎝⎭B .()23f x x π⎛⎫=+ ⎪⎝⎭C .()f x 的对称轴为,12x k k Z ππ=+∈D .()f x 的递减区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】AB 【分析】由最低点确定A =由周期的四分之一71234πππ-=确定ω,把最低点7,12π⎛⎝代入解析式确定ϕ,再根据正弦函数的对称轴、递减区间求该函数的对称轴和递减区间即可. 【解析】解:显然A =T ,则74123T ππ=-,所以T π=,又2,2ππωω==;所以()()()sin 2f x A x x ωϕϕ=+=+过点7,12π⎛⎝,所以7212πϕ⎛⎫=⋅+ ⎪⎝⎭,()23k k Z πϕπ=+∈,所以()23f x x π⎛⎫=+ ⎪⎝⎭,根据sin cos 2x x π⎛⎫=- ⎪⎝⎭,()2cos 223236f x x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故AB 正确;正弦函数的对称轴为()2x k k Z ππ=+∈,令()()2,32212k x k k Z x k Z πππππ+=+∈=+∈,所以()23f x x π⎛⎫=+ ⎪⎝⎭的对称轴为()212k x k Z ππ=+∈,故C 错误; 正弦函数的递减区间为()2,222k k k π3π⎡⎤π+π+∈⎢⎥⎣⎦Z ,令()37222,2321212k x k k x k k Z πππππππππ+≤+≤++<<+∈,()23f x x π⎛⎫=+ ⎪⎝⎭的递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故D 错误. 故选:AB 【小结】已知三角函数的图像确定解析式,一般根据最高点或最低点确定振幅A ,根据周期确定角速度ω,根据函数图像经过的点确定初相ϕ,再根据正弦函数的性质用换元法确定待求函数的性质即可.25.函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()f x =( )A.1cos223xππ⎛⎫+⎪⎝⎭B.1cos226xππ⎛⎫+⎪⎝⎭C.1sin223xππ⎛⎫-+⎪⎝⎭D.1sin223xππ⎛⎫--⎪⎝⎭【答案】BD 【分析】根据最小值求得A,根据周期求得ω,根据点111,122⎛⎫⎪⎝⎭求得ϕ,由此求得()f x的解析式,结合诱导公式确定正确选项.【解析】由图象可得12A=,3111341264T=-=,解得1T=,所以2ωπ=,所以1()cos(2)2f x xπϕ=+,又()f x的图象过点111,122⎛⎫⎪⎝⎭,则()112212k k Zπϕπ⨯+=∈,解得()1126k k Zπϕπ=-∈,又2πϕ<,所以6π=ϕ,即11()cos2sin226226 f x x xπππππ⎡⎤⎛⎫⎛⎫=+=-+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1sin223xππ⎛⎫=-+⎪⎝⎭1sin223xππ⎛--=⎫⎪⎝⎭.故选BD【小结】本小题主要考查根据三角函数图象求三角函数解析式,考查诱导公式,属于中档题.三、填空题26.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭在一个周期内的图象如图所示,则此函数的解析式()f x =______.【答案】π24y x ⎛⎫=- ⎪⎝⎭【分析】由五点法求得周期,由振幅可求A ,再由最低点可求得φ. 【解析】由振幅得:A =由图象可得:75488T πππ⎛⎫=-=⎪⎝⎭, ∴2Tπω==2,∴y (2x +φ),当78x π=时,y =, ∴73282πϕπ⨯+=,π4ϕ∴=-∴解析式为:π24y x ⎛⎫=- ⎪⎝⎭【小结】本题关键点是利用五点法确定周期与φ.27.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()f x =______.【答案】sin 23x π⎛⎫+⎪⎝⎭【分析】由图可得A ,利用周期求出ω,又函数过点7,112π⎛⎫-⎪⎝⎭,解得3πϕ=,进而得出函数的解析式.【解析】由图可得:1A =,37341264T πππ⎛⎫=--= ⎪⎝⎭,解得,2T πω==,()()sin 2f x x ϕ=+ 又函数过点7,112π⎛⎫-⎪⎝⎭,则732122ππϕ⨯+=,解得3πϕ=,()sin 23f x x π⎛⎫=+ ⎪⎝⎭故答案为:sin 23x π⎛⎫+⎪⎝⎭四、解答题28.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数()f x 的最小正周期T 及ω、ϕ的值;(2)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间. 【答案】(1)T π=,2ω=,3πϕ=;(2),412ππ⎛⎫-⎪⎝⎭ 【分析】(1)由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)由以上可得,()sin(2)3f x x π=+,再利用正弦函数的性质,求出函数在区间上的单调性.【解析】解:(1)根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象,可得32134123πππω=-,解得2ω=,∴最小正周期22T ππ==.所以()sin(2)f x x ϕ=+因为函数过13,112π⎛⎫⎪⎝⎭,所以13sin 2112πϕ⎛⎫⋅+= ⎪⎝⎭,所以()13262k k Z ππϕπ+=+∈,解得()523k k Z πϕπ=-+∈ 因为2πϕ<,所以3πϕ=.所以()sin(2)3f x x π=+(2)由以上可得,()sin(2)3f x x π=+,在区间,44ππ⎡⎤-⎢⎥⎣⎦上,所以2[36x ππ+∈-,5]6π,令2632x πππ-≤+≤,解得412x ππ-≤≤ 即函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,412ππ⎡⎤-⎢⎥⎣⎦【小结】求三角函数的解析式时,由2Tπω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.29.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像与直线2y =两相邻交点之间的距离为π,且图像关于12x π=对称.(1)求()y f x =的解析式;(2)令函数g()()1x f x =+,且g()y x =在[0,]a 上恰有10个零点,求a 的取值范围.【答案】(1)2n 2)3(si f x x π⎛⎫=+⎪⎝⎭;(2)1965,412ππ⎡⎫⎪⎢⎣⎭. 【分析】(1)根据题意可得周期T π=,可得2ω=,根据对称轴可得3πϕ=,则可得()y f x =的解析式;(2)依题意由52252636a ππππππ⨯-≤+<⨯++解得结果即可得解.【解析】(1)由已知可得T π=,2ππω=,∴2ω=,又()f x 的图象关于12x x π=对称,所以2122k ππϕπ⨯+=+,k Z ∈∵22ππϕ-<<,∴3πϕ=.所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.(2)令()0g x =,得1sin 232x π⎛⎫+=- ⎪⎝⎭, 要使()y g x =在[0,]a 上恰有10个零点,只需52252636a ππππππ⨯-≤+<⨯++,解得1965412a ππ≤<. 所以a 的取值范围是1965,412ππ⎡⎫⎪⎢⎣⎭. 【小结】利用周期求出ω,利用对称轴求出ϕ是解题关键.30.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示.(1)求()f x 的解析式(2)设()()216g x f x x π⎛⎫=+-+ ⎪⎝⎭若关于x 的不等式2()(32)()230g x m g x m -+--≤恒成立,求m 的取值范围.【答案】(1)()2cos(2)3f x x π=+;(2)[11]2-,. 【分析】(1)由图求出A 、T 、ω和ϕ的值,即可写出()f x 的解析式;(2)由(1)可得()g x 的解析式,设()t g x =,问题等价于()0h t 在[3-,5]上恒成立,列出不等式组求出m 的取值范围. 【解析】解:(1)由图可知2A =,35346124T πππ=-=, 解得T π=,所以22Tπω==,所以()2cos(2)f x x ϕ=+; 因为()f x 的图象过点5(6π,2),所以52cos(2)26πϕ⨯+=,解得523k πϕπ=-,k Z ∈;因为0ϕπ<<,所以3πϕ=,所以()2cos(2)3f x x π=+;(2)由(1)可得()2cos(2)3cos(2)136g x x x ππ=++-+2cos(2))133x x ππ=++++4sin(2)136x ππ=+++ 4cos21x =+;设()t g x =,因为1cos21x -,所以3()5g x -;又因为不等式2()(32)()230g x m g x m -+--恒成立,即2()(32)230h t t m t m =-+--在[3-,5]上恒成立,则(3)0(5)0h h -⎧⎨⎩,即93(32)230255(32)230m m m m ++--⎧⎨-+--⎩,解得112m -, 所以m 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【小结】本题考查了三角函数的图象与性质的应用问题,也考查了不等式恒成立问题,已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 31.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式;(2)若[]0,x π∈且()f x ≥x 的取值范围.【答案】(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =,724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解. 【解析】(1)由题意知:A =,741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦【小结】利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得 ()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 32.某同学用“五点法”画函数()()sin (00)2f x A x k A πωφωφ=++>><,,在一个周期内的图象,列表并填入数据得到下表:(1)求函数()f x 的解析式;(2)三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()2f B =,4b =,22cos cos 622C Aa c +=,求三角形ABC 的面积.【答案】(1)()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(2) 【分析】(1)由三角函数的图象与性质逐步计算出A 、k 、ω、φ,即可得解;(2)先计算出3B π=,利用降幂公式结合余弦定理可转化条件得12a b c ++=,再由余弦定理可得16ac =,结合三角形面积公式即可得解. 【解析】(1)由题意可得31A k A k +=⎧⎨-+=-⎩,解得21A k =⎧⎨=⎩,函数()f x 的最小正周期T 满足22362T πππ=-=,所以22T πω==,又2sin 1363f ππφ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,所以sin 13πφ⎛⎫+= ⎪⎝⎭, 所以2,32k k Z ππφπ+=+∈,即2,6k k Z πφπ=+∈,由2πφ<可得6πφ=,所以()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; (2)由题意,()2sin 2126f B B π⎛⎫=++= ⎪⎝⎭,所以1sin 262B π⎛⎫+= ⎪⎝⎭, 由()0,B π∈可得132,666B πππ⎛⎫+∈ ⎪⎝⎭,所以5266B ππ+=,即3B π=, 又221cos 1cos coscos 62222C A C A a c a c +++=⋅+⋅=, 所以cos cos 12a c a C c A +++=,即2222221222a b c b c a a c a c ab bc+-+-++⋅+⋅=,化简得12a b c ++=, 又4b =,所以8a c +=,由余弦定理得()22222cos 3b a c ac B a c ac =+-=+-,即22483ac =-,所以16ac =,所以11sin 16222ABC S ac B ==⨯⨯=△ 【小结】解决本题的关键是熟练掌握三角函数的图象与性质及三角恒等变换、余弦定理的应用,细心运算即可得解. 33.已知函数π()sin()(0,0,)2f x A x B A ωϕωϕ=++>><的部分图象如图所示:(1)求()f x 的解析式及对称中心坐标; (2)将()f x 的图象向右平移3π个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数()g x 的图象,求函数()y g x =在7π0,6x ⎡⎤∈⎢⎥⎣⎦上的单调区间. 【答案】(1)()2sin 213f x x π⎛⎫=+- ⎪⎝⎭;对称中心的坐标为(),126k k ⎛⎫∈ ⎪⎝⎭--ππZ ;(2)单调增区间为50,6π⎡⎤⎢⎥⎣⎦,单调减区间57,66ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)先根据图象得到函数的最大值和最小值,由此列方程组求得,A B 的值,根据周期求得ω的值,根据图象上()112f π=求得ϕ的值,由此求得()f x 的解析式,进而求得()f x 的对称中心;(2)求得图象变换之后的解析式()2sin 3g x x π⎛⎫=-⎪⎝⎭,再整体替换求出()g x 的单调区间. 【解析】(1)由图象可知:13A B A B +=⎧⎨-+=-⎩,可得:2A =,1B =-.又由于7212122T πππ=-=,。
三角函数的图象与性质6大题型
![三角函数的图象与性质6大题型](https://img.taocdn.com/s3/m/9cf7386c326c1eb91a37f111f18583d049640fe2.png)
三角函数的图象与性质6大题型三角函数的图象与性质是高考的热点,函数sin()y A x ωϕ=+的图象变换以及三角函数的周期性、对称性、单调性之间逻辑关系则是重心。
随着新高考改革的推进,更加注重对以周期性为核心的三大性质之间的逻辑关系的考查,要求考生能用几何直观和代数运算来研究三角函数。
高考中的相关试题多以选择题、填空题的形式考查,难度中等或偏下。
一、三角函数性质问题相关方法1、周期的计算公式:函数)0()cos(),sin(>+=+=ωϕωϕωx A y x A y 的周期为ωπ2=T ,函数)0()tan(>+=ωϕωx A y 的周期为ωπ=T 求解.2、奇偶性的判断方法:三角函数中奇函数一般可化为x A y ωsin =或x A y ωtan =的形式,而偶函数一般可化为b x A y +=ωcos 的形式.3、解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.方法:整体处理法、代入验证法对于函数)0()cos(),sin(>+=+=ωϕωϕωx A y x A y ,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线0x x =或点)0,(0x 是否是函数的对称轴或对称中心时,可通过检验)(0x f 的值进行判断.4、确定函数)0,0()sin(>>+=ωϕωA x A y 单调区间的方法采用“换元”法整体代换,将‘ϕω+x ’看作一个整体,可令“ϕω+=x z ”,即通过求z A y sin =的单调区间而求出函数的单调区间.若0<ω,则可利用诱导公式先将x 的系数转变为正数,再求单调区间.二、三角函数图形变换问题解决三角函数图像变换问题的两种方法分别为先平移后伸缩和先伸缩后平移.破解此类题的关键如下:1、定函数:一定要看准是将哪个函数的图像变换得到另一个函数的图像.2、变同名:函数的名称要一样.3、选方法:即选择变换方法.要注意:对于函数)0(sin >=ωωx y 的图像,向左平移ϕ个单位长度得到的是函数)(sin ϕω+=x y 的图象,而不是函数)sin(ϕω+=x y 的图像.【题型1【例1】(2023·湖南湘潭·统考二模)函数2cos2()sin xf x x+=的部分图象大致为()A .B .C .D .【变式1-1】(2023秋·云南·高三云南师大附中校考阶段练习)函数()21sin 2f x x x x =-的图象大致为()A .B .C .D .【变式1-2】(2022秋·河南·高三校联考阶段练习)函数()cos e =xf x 的部分图象大致为()A .B .C .D .【变式1-3】(2022秋·云南·高三校联考阶段练习)函数()cos ln xf x x xππ+=⋅-在(),ππ-上的图象大致为()A .B .C .D .【变式1-4】(2022秋·四川遂宁·高三遂宁中学校考阶段练习)函数()(tan sin 2)22x x y x x -=--的部分图象大致为()A .B .C .D .【题型2根据图象求三角函数解析式】【例2】(2023秋·湖南怀化·高三统考期末)已知函数()2cos()(0)f x x ωϕω=+>的部分图象如图所示,则()0f =()A .1B .1-CD .【变式2-1】(2022秋·贵州铜仁·高三校考阶段练习)已知A ,B ,C ,D ,E 是函数sin()y x ωϕ=+0,02πωϕ⎛⎫><< ⎪⎝⎭一个周期内的图像上的五个点,如图,A ,06π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为12π,则ωφ,的值为()A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ=D .12ω=,6πϕ=【变式2-2】(2023秋·山西太原·高三山西大附中校考阶段练习)函数()sin()(0,0)f x x ωϕωϕπ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,若不等式()sin 2f x m x ≥-恒成立,则m 的取值范围是()A.⎛-∞ ⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(-∞D .(],1-∞【变式2-3】(2023秋·北京朝阳·高三统考期末)已知函数π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于()A .π3-B .π6-C .π6D .π3【变式2-4】(2023·全国·模拟预测)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A .π4B .π3C .4π3D .9π4【题型3三角函数图象变换问题】【例3】(2023秋·江西赣州·高三统考期末)函数()()sin f x x ωϕ=+(其中0ω>,π2ϕ<)的图象如图所示,为了得到cos y x ω=的图象,只需把()y f x =的图象上所有点()A .向左平移π6个单位长度B .向右平移π12个单位长度C .向左平移π12个单位长度D .向右平移π6个单位长度【变式3-1】(2022·四川·高三统考对口高考)为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象上所有的点()A .向左平移4π个单位B .向右平移4π个单位C .向左平移2π个单位D .向右平移2π个单位【变式3-2】(2022·陕西汉中·统考一模)为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin2y x =的图象()A .向左平移512π个单位长度B .向右平移512π个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度【变式3-3】(2023秋·江苏南通·高三统考期末)已知函数π()3sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度后与其导函数()y f x '=的图象重合,则()f ϕ的值为()A .0B .32C .62D .32【变式3-4】(2022·全国·模拟预测)已知函数()3sin cos f x x x =-的图象向左平移ϕ(0ϕ>)个单位长度后得到()f x 的导函数()f x '的图象,则()f ϕ=()A .3-B .3C .1D .1-【变式3-5】(2023·河南信阳·河南省信阳市第二高级中学校联考一模)将函数()sin 2c 2πos π63f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭图象上的所有点的横坐标缩短为原来的12(纵坐标不变),然后再将其图象向左平移()0θθ>单位得到图象()g x ,若函数()g x 图象关于y 轴对称,则θ的最小值为()A .π3B .π6C .π12D .π24【题型4三角函数的四种性质】【例4】(2023秋·河南南阳·高三统考期末)已知函数()()()sin cos f x x x ϕϕ=+++是偶函数,则3sin 2cos 2sin 3cos ϕϕϕϕ-=+______.【变式4-1】(2023秋·河北邢台·高三邢台市第二中学校考期末)函数9cos 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为______.【变式4-2】(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)已知函数()tan tan f x x x =+,则下列结论中正确的是()A .()f x 的最小正周期为π2B .点π,02⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心C .()f x 的值域为[)0,∞+D .不等式()2f x >的解集为()ππ2,2πZ 42k k k π⎛⎫++∈ ⎪⎝⎭【变式4-3】(2023·四川内江·统考一模)已知函数()()1sin cos sin (0)2f x x x x ωωωω=-+>,若函数()f x 在π,π2⎛⎫⎪⎝⎭上单调递减,则ω不能取()A .23B .13C .58D .14【变式4-4】(2023秋·江苏南通·高三统考期末)(多选)设函数()()sin f x x ωϕ=+,x ∈R ,其中0ω>,3πϕ<.若1409f π⎛⎫-= ⎪⎝⎭,419f π⎛⎫=⎪⎝⎭,且()f x 的最小正周期大于52π,则()A .14ω=B .6πϕ=C .()f x 在()2,3ππ上单调递增D .()f x 在()0,3π上存在唯一的极值点【变式4-5】(2023·安徽淮南·统考一模)(多选)已知函数()()πsin ,12,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭图像过点10,2⎛⎫- ⎪⎝⎭,且存在12,x x ,当122πx x -=时,()()120f x f x ==,则()A .()f x 的周期为4π3B .()f x 图像的一条对称轴方程为5π9x =-C .()f x 在区间4π10π,99⎡⎤⎢⎣⎦上单调递减D .()f x 在区间()0,5π上有且仅有4个极大值点【变式4-6】(2023秋·湖北·高三统考期末)(多选)已知函数()2sin sin 2f x x x =,则下列说法正确的是()A .π是()f x 的一个周期B .()f x 的图象关于点π,02⎛⎫⎪⎝⎭中心对称C .()f x 在区间[]0,2π上的零点个数为4D .()f x 的最大值为8【变式4-7】(2023春·浙江·高三校联考开学考试)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则()A .()0f =B .()f x 的最小正周期为π2C .()f x 在π0,6⎛⎫⎪⎝⎭上单调递减D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增【题型5三角函数的最值问题】【例5】(2022秋·北京·高三北京市八一中学校考阶段练习)定义运算,,,.a a b a b b a b ≤⎧=⎨>⎩※例如,121=※,则函数()sin cos f x x x =※的值域为()A .1,2⎡⎤-⎢⎥⎣⎦B .22⎡⎤⎢⎥⎣⎦C .2,12⎡⎤⎢⎥⎣⎦D .22⎡-⎢⎣⎦【变式5-1】(2023秋·湖南株洲·已知定义域为R 的函数(),()f x g x 满足()()πf x f x +=-,且()()cos π,g x x f x =++()()sin πf x x g x =-+,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()()y f x g x =的最小值为()A .0B .2CD .38【变式5-2】(2022秋·安徽·高三石室中学校联考阶段练习)如图是函数()cos()(0)f x x ωϕω=+>的部分图象,则()f x 在,9045⎡⎤-⎢⎥⎣⎦π22π上的值域为()A .[]1,1-B .1322⎡⎢⎣⎦C .11,2⎡⎤-⎢⎥⎣⎦D .32⎡-⎢⎣⎦【变式5-3】(2023·河北衡水·河北衡水中学校考模拟预测)函数()25cos 4sin 53cos f x x x x -+的最大值为().A .22B .23C .5D .3【变式5-4】(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+>⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫⎪⎝⎭上有最小值无最大值,则ω=___________.【变式5-4】(2020秋·吉林白城·高三校考阶段练习)已知向量1(cos ,)2a x = ,(3,cos 2),Rb x x x =∈,设函数()f x a b =⋅ .(1)求()f x 的最小正周期;(2)求()f x 在π[0,]2上的最大值和最小值.【题型6三角函数的零点问题】【例6】(2022·四川宜宾·统考模拟预测)若函数()π2sin 213f x x ⎛⎫=+- ⎪⎝⎭,则()f x 在区间[]0,2π上零点的个数是_______.【变式6-1】(2023·全国·高三对口高考)已知0ω>,函数()πsin 16f x x ω⎛⎫=+- ⎪⎝⎭在区间[]0,π上有且仅有两个零点,则ω的取值范围是________.【变式6-2】(2022秋·河南濮阳·高三统考阶段练习)已知函数5π()cos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在π0,4⎛⎫⎪⎝⎭上有且仅有1个零点,则实数ω的取值范围为______.【变式6-3】(2023秋·福建宁德·高三校考阶段练习)若函数()1cos42f x x x m =-+-在π04⎡⎤⎢⎥⎣⎦,上存在两个零点,则实数m 的取值范围为()A .3522⎛⎤ ⎥⎝⎦,B .3522⎡⎫⎪⎢⎣⎭,C.1522⎛⎤+ ⎥⎝⎦,D.1522⎡⎫+⎪⎢⎪⎣⎭,【变式6-4】(2023秋·山西·高三校联考阶段练习)已知函数()()221sin 2π,,3213,,x a x a f x x a x a x a ⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩.若()f x 在()0,∞+上恰好有5个零点,则a 的取值范围是()A .411,36⎡⎫⎪⎢⎣⎭B .411717,,3636⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦C .1167,3⎡⎫⎪⎢⎣⎭D .43117,,3263⎛⎤⎛⎤⋃ ⎝⎦⎝⎦【变式6-5】(2022秋·广西桂林·高三校考阶段练习)已知定义在R 上的函数()y f x =是偶函数,当0x ≥时,()2sin ,01213,122x x x f x x π⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()()20,R f x af x b a b ++=∈⎡⎤⎣⎦,有且仅有6个不同实数根,则实数a 的取值范围是()A .34,2⎛⎫-- ⎪⎝⎭B .74,2⎛⎫-- ⎪⎝⎭C .7734,222⎛⎫⎛⎫--⋃-- ⎪⎝⎭⎝⎭D .324,1,27⎛⎫⎛⎫--⋃-- ⎪ ⎪⎝⎭⎝⎭【变式6-6】(2023秋·山东烟台·高三统考期末)已知定义在R 上的函数()f x 满足:2f x π⎛⎫- ⎪⎝⎭为偶函数,且()()8sin ,021,02x x f x f x x ππ⎧--≤≤⎪⎪=⎨⎪->⎪⎩;函数()lg 2g x x π=+,则当[]4,3x ππ∈-时,函数()()y f x g x =-的所有零点之和为()A .7π-B .6π-C .72π-D .3π-(建议用时:60分钟)1.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)将函数()π3cos (0)6f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π6ω个单位长度,得到函数()g x 的图象,若函数()y g x =在π3π,24⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为()A .2B .83C .103D .42.(2022秋·广西钦州·高三校考阶段练习)已知函数()()sin f x x ϕ=-且2cos πcos 3ϕϕ⎛⎫-= ⎪⎝⎭,则函数()f x 的图象的一条对称轴是()A .5π6x =B .7π12x =C .π3x =D .π6x =3.(2023·四川绵阳·统考模拟预测)函数()πcos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示,且()302f =.则下列选项正确的是()A .π3ϕ=-B .π122f ⎛⎫=-⎪⎝⎭C .()f x 在区间2π,π3⎡⎤⎢⎥⎣⎦上为减函数D .()102f f ⎛⎫> ⎪⎝⎭4.(2023·全国·高三专题练习)已知函数π()2sin (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在[]0,π上单调递增,且2π()3f x f ⎛⎫≥-⎪⎝⎭恒成立,则ω的值为()A .2B .32C .1D .125.(2022·四川成都·成都市第二十中学校校考一模)已知函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论不正确的是()A .π为函数()f x 的一个周期B .2π,03⎛⎫⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间[],a a -上单调递增,则实数a 的最大值为5π12D .将函数()f x 的图象向右平移π12个单位长度后,得到一个偶函数的图象6.(2022·河北衡水·衡水市第二中学校考一模)已知()()()π2tan 0,,02f x x f ωϕωϕ⎛⎫=+><= ⎪⎝,周期π3ππ,,446T ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭是()f x 的对称中心,则π3f ⎛⎫⎪⎝⎭的值为()A .BC D .3-7.(2023秋·山东东营·高三东营市第一中学校考期末)(多选)关于函数2()cos 4cos 1f x x x =++,下列说法正确的是()A .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上的最大值为6B .函数()f x 在π3π,42⎡⎤⎢⎥⎣⎦上的最小值为-2C .函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递增D .函数()f x 在π0,2⎛⎫⎪⎝⎭上单调递减8.(2022秋·河北唐山·高三开滦第二中学校考阶段练习)(多选)设()sin 22cos f x x x =+,x ∈R ,则().A .()f x 在区间[]0,2π上有2个零点B .()f x 的单调递增区间为π7ππ,π26k k ⎛⎫++⎪⎝⎭,k ∈Z C .()f x 的图象关于直线ππ3x k =+对称D .()f x 的值域为0,2⎡⎢⎣⎦9.(2023·湖南长沙·统考一模)已知函数()()()2sin 0f x x ωϕω=+>,若函数()f x 的图象关于点π,06⎛⎫⎪⎝⎭中心对称,且关于直线π3x =轴对称,则ω的最小值为______.10.(2022秋·四川遂宁·高三校考阶段练习)已知函数()()7ππsin 12f x x x ⎛⎫=---+ ⎪⎝⎭则函数()f x 的对称中心_________11.(2021·上海浦东新·华师大二附中校考模拟预测)已知函数23()sin sin cos (,,0)2f x a x x x a b a b a =-+<,(1)若当π0,2x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域为[]5,1-,求实数,a b 的值;(2)在(1)条件下,求函数()f x 图像的对称中心和单调区间.12.(2023秋·江苏扬州·高三校联考期末)已知函数()()(0,0f x x ωϕωϕ=+><<sin π的最小正周期为π,且直线π2x =-是其图像的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图像向右平移π4个单位,再将所得的图像上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图像对应的函数记作()y g x =,已知常数R λ∈,*n ∈N ,且函数()()212sin F x x g x λ=-+在()0,πn 内恰有2021个零点,求常数λ与n 的值.参考答案【题型1三角函数的图象辨析】【例1】(2023·湖南湘潭·统考二模)函数2cos2()sin xf x x+=的部分图象大致为()A .B .C .D .【答案】A【解析】()f x 的定义域为{}π,Z x x k k ≠∈,关于原点对称,因为2cos(2)2cos2()()sin()sin x xf x f x x x+-+-==---,所以()f x 为奇函数,故排除C,D ,又π102f ⎛⎫=> ⎪⎝⎭,所以排除B,故选:A【变式1-1】(2023秋·云南·高三云南师大附中校考阶段练习)函数()21sin 2f x x x x =-的图象大致为()A .B .C .D .【答案】A【解析】()f x 的定义域为R ,2211()()()sin()sin ()22f x x x x x x x f x -=----=-=,所以()f x 为偶函数,图象关于y 轴对称,排除C ,D 选项;()21ππ02f =>,排除B 选项.所以A 选项正确.故选:A【变式1-2】(2022秋·河南·高三校联考阶段练习)函数()cos e =xf x 的部分图象大致为()A .B .C .D .【答案】C【解析】由题意得函数定义域为R ,且()()()cos cos ee --===x xf x f x ,∴()f x 为偶函数,故排除选项B ,∵()()cos e2πe xf x f k =≤=,Z k ∈,()0e f =为最大值,∴排除选项D ,∵()()()cos 2πcos 2πee x xf x f x ++===,∴()f x 是2π为周期的周期函数,∴排除选项A.故选:C【变式1-3】(2022秋·云南·高三校联考阶段练习)函数()cos ln xf x x xππ+=⋅-在(),ππ-上的图象大致为()A .B .C .D .【答案】B【解析】因为()()cos lnxf x x f x xππ--=⋅=-+,所以f (x )是奇函数,排除A ,D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos 0x >,ln0xxπ+>π-,所以()0f x >,排除C ,故选:B .【变式1-4】(2022秋·四川遂宁·高三遂宁中学校考阶段练习)函数()(tan sin 2)22x x y x x -=--的部分图象大致为()A .B .C .D .【答案】A【解析】由题得函数的定义域为π{|π,}2x x k k Z ≠+∈,定义域关于原点对称.设()()(tan sin 2)22x xf x x x -=--,所以()()(tan sin 2)22x x f x x x --=-+-()(tan sin 2)22()x xx x f x -=--=,所以函数()f x 是偶函数,其图象关于y 轴对称,排除选项D.又(π)=0f ,所以排除选项B.当π2x →时,tan ,sin 20,x x →+∞→()220x x-->,所以此时()0f x >.故选:A【题型2根据图象求三角函数解析式】【例2】(2023秋·湖南怀化·高三统考期末)已知函数()2cos()(0)f x x ωϕω=+>的部分图象如图所示,则()0f =()A .1B .1-CD .【答案】C【解析】观察函数图象得,函数()f x 的周期413()3123T πππ=-=,则22Tπω==,而13212f π⎛⎫= ⎪⎝⎭,即13cos 16πϕ⎛⎫+= ⎪⎝⎭,则有132,Z 6k k πϕπ+=∈,因此132Z 6k k πϕπ=-∈,即有13()2cos(22)2cos(2)66f x x k x πππ=+-=-,所以()02cos()6f π=-故选:C【变式2-1】(2022秋·贵州铜仁高三校考阶段练习)已知A ,B ,C ,D ,E 是函数sin()y x ωϕ=+0,02πωϕ⎛⎫><< ⎪⎝⎭一个周期内的图像上的五个点,如图,A ,06π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图像上的最低点,E 为该函数图像的一个对称中心,B 与D 关于点E 对称,CD在x 轴上的投影为12π,则ωφ,的值为()A .2ω=,3πϕ=B .2ω=,6πϕ=C .12ω=,3πϕ=D .12ω=,6πϕ=【答案】A【解析】因B 与D 关于点E 对称,CD 在x 轴上的投影为12π,则B 与图像最高点(最靠近B 点)连线所对应向量在x 轴上的投影为12π,又A ,06π⎛⎫- ⎪⎝⎭,则A 与图像最高点(最靠近B 点)连线对应向量在x 轴上的投影为πππ6124+=,故函数最小正周期为24πππ=4ω⨯=,又0ω>,则2ω=.又因函数图像过点,06π⎛⎫- ⎪⎝⎭,则2ππ,Z 3φk k -+=∈,得2ππ,Z 3φk k =+∈,又02πϕ<<,则0k =,得π3ϕ=.综上,有2ω=,π3ϕ=.故选:A【变式2-2】(2023秋·山西太原·高三山西大附中校考阶段练习)函数()sin()(0,0)f x x ωϕωϕπ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,若不等式()sin 2f x m x ≥-恒成立,则的取值范围是()A .⎛-∞ ⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .(-∞D .(],1-∞【答案】A【解析】因为//BC x 轴,所以()f x 图象的一条对称轴方程为1π2π7π()22312x =+=,所以7πππ41234T =-=,则πT =,所以2π2T ω==,又π2π2π3k ϕ⨯+=+,Z k ∈,且0πϕ<<,所以π3ϕ=,故π()sin(23f x x =+,因为当π[0,]4x ∈时,不等式()sin 2f x m x ≥-恒成立,所以π3π()sin 2sin(2)sin 2sin 2cos 2sin(2)3226m f x x x x x x x ≤+=++=++,令()π26g x x ⎛⎫=+ ⎪⎝⎭,因为π0,4x ⎡⎤∈⎢⎥⎣⎦,则ππ2π2,663x ⎡⎤+∈⎢⎥⎣⎦,所以π1sin 2,162x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以π())6g x x +的最小值为2,所以2m ≤,即m ⎛∈-∞ ⎝⎦.故选:A .【变式2-3】(2023秋·北京朝阳·高三统考期末)已知函数π()sin()0,||2ωϕωϕ⎛⎫=+>< ⎪⎝⎭f x x ,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于()A .π3-B .π6-C .π6D .π3【答案】B【解析】由图可知,函数()g x 过点π,13⎛⎫⎪⎝⎭和点5π,16⎛⎫- ⎪⎝⎭,即π135π16g g⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,又因为()()1g x f x ⋅=,所以π135π16f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩,结合正弦型函数的性质可知,5ππ263T =-,解得πT =,所以2ππω=,解得2ω=±,因为0ω>,所以2ω=所以()sin(2)f x x ϕ=+,所以πsin(2)13ϕ⨯+=,即2ππ2π32k ϕ+=+,Z k ∈解得π2π6k ϕ=-+,Zk ∈因为π||2ϕ<,所以π6ϕ=-,故选:B.【变式2-4】(2023·全国·模拟预测)(多选)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A .π4B .π3C .4π3D .9π4【答案】AD【解析】由图象可知:2A =,最小正周期5ππ4π126T ⎛⎫=⨯-=⎪⎝⎭,2π2T ω∴==,ππ2sin 263f ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,()ππ2π32k k ϕ∴+=+∈Z ,解得:()π2π6k k ϕ=+∈Z ,又π2ϕ<,π6ϕ∴=,()π2sin 26f x x ⎛⎫∴=+ ⎪⎝⎭,()π2sin 23g x x ⎛⎫=- ⎪⎝⎭,()()π2sin 226f x m x m g x ⎛⎫-=-+= ⎪⎝⎭ ,()ππ22π63m k k ∴-+=-+∈Z ,解得:()ππ4m k k =-∈Z ,当0k =时,π4m =;当2k =-时,9π4m =.故选:AD.【题型3三角函数图象变换问题】【例3】(2023秋·江西赣州·高三统考期末)函数()()sin f x x ωϕ=+(其中0ω>,π2ϕ<)的图象如图所示,为了得到cos y x ω=的图象,只需把()y f x =的图象上所有点()A .向左平移π6个单位长度B .向右平移π12个单位长度C .向左平移π12个单位长度D .向右平移π6个单位长度【答案】C【解析】由图象可知,712344Tπππ-==,所以T π=,又因为2T πω=,所以2ω=,所以()()sin 2f x x ϕ=+,又因为771,sin 211212f ππϕ⎛⎫⎛⎫=-∴⨯+=-⎪ ⎪⎝⎭⎝⎭,又||2ϕπ<,所以,3πϕ=所以()sin 2cos 2cos 2cos 2332612f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭又因为()cos 2g x x =,所以只需把()y f x =的图象上所有点向左平移π12个单位长度可得()cos 2g x x=的图象.故选:C.【变式3-1】(2022·四川·高三统考对口高考)为了得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数sin 24y x π⎛⎫=- ⎪⎝⎭的图象上所有的点()A .向左平移4π个单位B .向右平移4π个单位C .向左平移2π个单位D .向右平移2π个单位【答案】A【解析】依题意,sin(2)sin(2)sin[2()]42444y x x x πππππ=+=+-=+-,所以把函数sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有的点向左平移4π个单位可以得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,A 正确.故选:A 【变式3-2】(2022·陕西汉中·统考一模)为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将sin2y x =的图象()A .向左平移512π个单位长度B .向右平移512π个单位长度C .向左平移23π个单位长度D .向右平移23π个单位长度【答案】A【解析】555cos 2cos 2sin 2sin 2362612y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故可由sin2y x =的图象向左平移512π个单位长度得到.故选:A.【变式3-3】(2023秋·江苏南通·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度后与其导函数()y f x '=的图象重合,则()f ϕ的值为()A .0B .2C .2D .32【答案】D【解析】因为π()sin (0)6f x x ωω⎛⎫-> ⎪⎝⎭,所以()ππcos sin (0)63f x x x ωωω⎛⎫⎛⎫=-=+> ⎪ ⎪⎝⎭⎝⎭',而函数()f x 的图象向左平移()0ϕϕ>个单位长度后得到()()ππsin (0)66f x x x ϕωϕωωϕω⎡⎤⎛⎫++-+-> ⎪⎢⎥⎣⎦⎝⎭,由题意得()()f x f x ϕ+=',所以ππ2π,Z 63k k ωϕ=⎨-=+∈⎪⎩,解得1π2π,Z 2k k ωϕ=⎧⎪⎨=+∈⎪⎩且0ϕ>,所以πππ3()2π2632f k ϕ⎛⎫=+-= ⎪⎝⎭,故选:D 【变式3-4】(2022·全国·模拟预测)已知函数()3sin cos f x x x =-的图象向左平移ϕ(0ϕ>)个单位长度后得到()f x 的导函数()f x '的图象,则()f ϕ=()A .3-B .3C .1D .1-【答案】B【解析】因为()3sin cos f x x x =-,所以()3cos sin f x x x =+',而()()()3sin cos 3sin cos 3cos sin cos cos sin sin f x x x x x x x ϕϕϕϕϕϕϕ+=+-+=+-+()()3cos sin sin 3sin cos cos x x ϕϕϕϕ=++-⋅,由题意得()()f x f x ϕ+=',所以3cos sin 13sin cos 3ϕϕϕϕ+=⎧⎨-=⎩,解得sin 1cos 0ϕϕ=⎧⎨=⎩,所以()3sin cos 3f ϕϕ=-=,故选:B.另解:因为()3sin cos f x x x =-,所以()3cos sin f x x x =+',由题意知()()f x f x ϕ+='对一切实数x 恒成立,所以令0x =,得()()03cos 0sin 03f f ϕ'==+=,故选:B.【变式3-5】(2023·河南信阳·河南省信阳市第二高级中学校联考一模)将函数()sin 2c 2πos π63f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭图象上的所有点的横坐标缩短为原来的12(纵坐标不变),然后再将其图象向左平移()0θθ>单位得到图象()g x ,若函数()g x 图象关于y 轴对称,则θ的最小值为()A .π3B .π6C .π12D .π24【答案】C 【解析】()πsin 2cos 2sin 2co i ππs 22s n26366πππ62f x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++-=+++-=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,由()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,横坐标缩短为原来的12(纵坐标不变)得到π2sin 46⎛⎫=+ ⎪⎝⎭y x ,将其图象向左平移()0θθ>单位得到图象()46π2sin 4g x x θ⎛⎫=++ ⎪⎝⎭,而()g x 图象关于y 轴对称,∴4π,Z 6π2πk k θ+=+∈,∵0θ>,∴当0k =时,θ取最小值π12.故选:C.【题型4三角函数的四种性质】【例4】(2023秋·河南南阳·高三统考期末)已知函数()()()sin cos f x x x ϕϕ=+++是偶函数,则3sin 2cos 2sin 3cos ϕϕϕϕ-=+______.【答案】15【解析】由题知数()()()sin cos f x x x ϕ=+++是R 上偶函数,所以()()ππ22f f =-,即()()()()ππππsin cos sin cos 2222ϕϕϕϕ+++=-++-+,即cos sin cos sin ϕϕϕϕ-=-+,即cos sin ϕϕ=,tan 1ϕ=,所以3sin 23sin 2cos 321cos 2sin 2sin 3cos 2353cos ϕϕϕϕϕϕϕϕ---===+++.故答案为:15【变式4-1】(2023秋·河北邢台·高三邢台市第二中学校考期末)函数9cos 24y x π⎛⎫=- ⎪⎝⎭的单调递减区间为______.【答案】()π5ππ,πZ 88k k k ⎡⎤++∈⎢⎥⎣⎦【解析】由9πcos 24y x ⎛⎫=-⎪⎝⎭=cos π24x ⎛⎫- ⎪⎝⎭=cos π24x ⎛⎫- ⎪⎝⎭,得2kπ≤2x -4π≤2k π+π(k ∈Z ),解得kπ+π8≤x ≤kπ+58π(k ∈Z ),所以函数的单调递减区间为π5ππ,π88k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ).故答案为:()π5ππ,πZ 88k k k ⎡⎤++∈⎢⎥⎣⎦.【变式4-2】(2022秋·辽宁沈阳·高三沈阳市第一二〇中学校考期中)已知函数()tan tan f x x x =+,则下列结论中正确的是()A .()f x 的最小正周期为π2B .点π,02⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心C .()f x 的值域为[)0,∞+D .不等式()2f x >的解集为()ππ2,2πZ 42k k k π⎛⎫++∈ ⎪⎝⎭【答案】C【解析】()π2tan ,[π,π),Z 2tan tan π0,(π,π),Z 2x x k k k f x x x x k k k ⎧∈+∈⎪⎪=+=⎨⎪∈-+∈⎪⎩,作出()f x的图象,如图,观察图象,()f x 的最小正周期为π,A 错误;()f x 的图象没有对称中心,B 错误;()f x 的值域为[)0,∞+,C 正确;不等式()2f x >,即π[π,π)(Z)2x k k k ∈+∈时,2tan 2x >,得tan 1x >,解得ππππ,Z 42k x k k +<<+∈,所以()2f x >的解集为ππ(π,π)()42Z k k k +∈+,故D 错误.故选:C【变式4-3】(2023·四川内江·统考一模)已知函数()()1sin cos sin (0)2f x x x x ωωωω=-+>,若函数()f x 在π,π2⎛⎫⎪⎝⎭上单调递减,则ω不能取()A .23B .13C .58D .14【答案】A【解析】因为()()1sin cos sin 2f x x x x ωωω=-+21sin cos sin 2x x x ωωω=⋅-+11cos 21sin 2222x x ωω-=-+1(sin 2cos 2)2x x ωω=+(sin 2cos 2)222x x ωω=⋅⋅π)4x ω=+由ππ3π2π22π242k x k ω+≤+≤+,Z k ∈,得ππ5ππ88k k x ωωωω+≤≤+,Z k ∈,所以函数()f x 的单调递减区间为ππ5ππ,88k k ωωωω⎡⎤++⎢⎥⎣⎦()k ∈Z .又函数()f x 在π,π2⎛⎫ ⎪⎝⎭上单调递减,所以π,π2⎛⎫ ⎪⎝⎭⊆ππ5ππ,88k k ωωωω⎡⎤++⎢⎥⎣⎦()k ∈Z ,所以πππ825πππ8k k ωωωω⎧+≤⎪⎪⎨⎪+≥⎪⎩,Z k ∈,因为0ω>,所以15248k k ω+≤≤+,Z k ∈,当23ω=时,得1252438k k +≤≤+,得152424k ≤≤,不成立;所以23ω=不可取;当13ω=时,得1152438k k +≤≤+,得712412k -≤≤,因为Z k ∈,所以0k =时,13ω=可取到;当58ω=时,得1552488k k +≤≤+,得3016k ≤≤,因为Z k ∈,所以0k =时,58ω=可取到;当14ω=时,得1152448k k +≤≤+,得308k -≤≤,因为Z k ∈,所以0k =时,14ω=可取到.综上所述:ω不能取23.故选:A【变式4-4】(2023秋·江苏南通·高三统考期末)(多选)设函数()()sin f x x ωϕ=+,x ∈R ,其中0ω>,3πϕ<.若1409f π⎛⎫-= ⎪⎝⎭,419f π⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于52π,则()A .14ω=B .6πϕ=C .()f x 在()2,3ππ上单调递增D .()f x 在()0,3π上存在唯一的极值点【答案】BC【解析】函数()()sin f x x ωϕ=+的最小正周期为T ,由1409f π⎛⎫-= ⎪⎝⎭及419f π⎛⎫= ⎪⎝⎭得:414(21)()2,N 499T k k πππ*⋅-=--=∈,则8,N 21T k k π*=∈-,而52T π>,即有5822,N 1k k ππ*>∈-,解得21,N 10k k *<∈,即1k =或2k =,当1k =时,18,4T πω==,由419f π⎛⎫= ⎪⎝⎭得1114,Z 492k k ππϕπ⨯+=+∈,有117,Z 18k k πϕπ=+∈,而3πϕ<,显然不存在整数1k ,使得3πϕ<,当2k =时,83,34T πω==,由419f π⎛⎫= ⎪⎝⎭得2234,Z 492k k ππϕπ⨯+=+∈,有22,Z 6k k πϕπ=+∈,而3πϕ<,于是得20,6k πϕ==,符合题意,所以83,,346T ππωϕ===,A 不正确,B 正确;3()sin()46f x x π=+,当23x ππ<<时,532934612x πππ<+<,而函数sin y x =在529(,)312ππ上单调递增,所以函数()f x 在()2,3ππ上单调递增,C 正确;当03x π<<时,32964612x πππ<+<,而函数sin y x =在29(,)612ππ上两个极值点,一个极大值点,一个极小值点,所以函数()f x 在()0,3π上有两个极值点,一个极大值点,一个极小值点,D 不正确.故选:BC【变式4-5】(2023·安徽淮南·统考一模)(多选)已知函数()()πsin ,12,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭图像过点10,2⎛⎫- ⎪⎝⎭,且存在12,x x ,当122πx x -=时,()()120f x f x ==,则()A .()f x 的周期为4π3B .()f x 图像的一条对称轴方程为5π9x =-C .()f x 在区间4π10π,99⎡⎤⎢⎣⎦上单调递减D .()f x 在区间()0,5π上有且仅有4个极大值点【答案】ACD【解析】因为()f x 图像过点10,2⎛⎫- ⎪⎝⎭且π2ϕ<,所以1sin 2ϕ=-,解得π6ϕ=-,因为存在12,x x ,当122πx x -=时,()()120f x f x ==,所以π2π2T k k ω⋅==,即2k ω=,*N k ∈,又因为12ω<<,所以32ω=,所以()3πsin 26f x x ⎛⎫=-⎪⎝⎭,选项A :()f x 的周期2π4π332T ==,正确;选项B :()f x 图像的对称轴为3πππ262x k -=+,解得4π2π93kx =+,Z k ∈,令5π4π2π993k-=+,k 无整数解,B 错误;选项C :当4π10π,99x ⎡⎤∈⎢⎥⎣⎦时,3ππ3π,2622x ⎡⎤-∈⎢⎣⎦,所以由正弦函数的图像和性质可得()f x 在区间4π10π,99⎡⎤⎢⎥⎣⎦上单调递减,C正确;选项D :当()0,5πx ∈时,3ππ22π,2663x ⎛⎫-∈- ⎪⎝⎭,所以由正弦函数的图像和性质可得()f x 在区间()0,5π有4个极大值点,3个极小值点,D 正确;故选:ACD【变式4-6】(2023秋·湖北·高三统考期末)(多选)已知函数()2sin sin 2f x x x =,则下列说法正确的是()A .π是()f x 的一个周期B .()f x 的图象关于点π,02⎛⎫ ⎪⎝⎭中心对称C .()f x 在区间[]0,2π上的零点个数为4D .()f x 的最大值为8【答案】ABD 【解析】对于A ,因为()2(π)sin (π)sin 2(π)f x x x +=++()22sin sin 2sin sin 2()x x x x f x =-==,所以π是()f x 的一个周期,故A 正确;对于B ,()2π(2)(π)sin (π)sin 2(π)2f x f x x x ⨯-=-=--22sin sin(2)sin sin 2()x x x x f x =-=-=-,所以()f x 的图象关于点π,02⎛⎫⎪⎝⎭中心对称,故B 正确;对于C ,由()2sinsin 2f x x x =0=,得πx k =或2πx k =,Z k ∈,得πx k =或π2k x =,Z k ∈,由0π2πk ≤≤及Z k ∈得0k =或1k =或2k =,所以0x =或2πx =或πx =,由π02π2k ≤≤及Z k ∈得0k =或1k =或2k =或3k =或4k =,所以0x =或π2x =或πx =或3π2x =或2πx =,所以()f x 在区间[]0,2π的零点为0x =,π2x =,πx =,3π2x =,2πx =,共5个,故C 错误;对于D ,()2sinsin 2f x x x =2sin 2sin cos x x x =⋅32sin cos x x =,所以()262()4sin cos f x x x =624sin (1sin )x x =-,设2sin [0,1]t x =∈,34(1)y t t =-3444(01)t t t =-≤≤,则23212164(34)y t t t t '=-=-,令0'>y ,得304t <<,令0'<y ,得314t <≤,所以3444(01)y t t t =-≤≤在3[0,)4上为增函数,在3(,1]4上为减函数,所以当3t 4=时,y 取得最大值为333274(1)4464⎛⎫⨯-= ⎪⎝⎭,0=t 或1t =时,y 取得最小值为0,所以()2()f x y =27[0,64∈,所以()[f x ∈,所以()f x D 正确;故选:ABD 【变式4-7】(2023春·浙江·高三校联考开学考试)(多选)已知函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭,则()A .()0f =B .()f x 的最小正周期为π2C .()f x 在π0,6⎛⎫ ⎪⎝⎭上单调递减D .()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增【答案】BD【解析】()ππ0tan tan 66f ⎛⎫=-=-= ⎪⎝⎭A 错误;函数()πtan 26f x x ⎛⎫=- ⎪⎝⎭的最小正周期为π2T =,故B 正确;π0,6x ⎛⎫∈ ⎪⎝⎭时,2,πππ666x ⎛⎫-∈- ⎪⎝⎭,故()f x 在π0,6⎛⎫⎪⎝⎭上单调递增,故C 错误;π,06x ⎛⎫∈- ⎪⎝⎭时,2,π626ππx ⎛⎫-∈-- ⎪⎝⎭,故()f x 在π,06⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:BD .【题型5三角函数的最值问题】【例5】(2022秋·北京·高三北京市八一中学校考阶段练习)定义运算,,,.a a b a b b a b ≤⎧=⎨>⎩※例如,121=※,则函数()sin cos f x x x =※的值域为()A.1,2⎡⎤-⎢⎥⎣⎦B.22⎡⎤⎢⎥⎣⎦C.,12⎡⎤⎢⎥⎣⎦D.2⎡-⎢⎣⎦【答案】D【解析】根据题设中的新定义,得()sin ,sin cos cos ,sin cos x x x f x x x x≤⎧=⎨>⎩,由sin cos x x ≤可得sin cos 0x x -≤π04x ⎛⎫-≤ ⎪⎝⎭,所以π2ππ2π4k x k -≤-≤,Z k ∈,即3ππ2π2π+44k x k -≤≤,Z k ∈,由sin cos x x >可得sin cos 0x x ->π04x ⎛⎫-> ⎪⎝⎭,所以π2π2π+π4k x k <-<,Z k ∈,即π5π2π+2π+44k x k <<,Z k ∈,所以()3ππsin ,2π2π,Z 44π5πcos ,2π2π,Z44x k x k k f x x k x k k ⎧-≤≤+∈⎪⎪=⎨⎪+<<+∈⎪⎩,当3ππ2π2π+44x k x k ∈-≤≤,Z k ∈,()()()2πsin 2πsin f x x x f x +=+==,当π5π2π+2π+44x k x k ∈<<,Z k ∈时,()()()2πcos 2πcos f x x x f x +=+==,所以函数()f x 为周期函数,周期为2π,作出函数()f x 在一个周期内的图象(实线部分),观察图象,可知函数()f x 的值域为22⎡-⎢⎣⎦,故选:D.【变式5-1】(2023秋·湖南株洲·高三校联考期末)已知定义域为R 的函数(),()f xg x满足()()πf x f x +=-,且()()cos π,g x x f x =++()()sin πf x x g x =-+,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,函数()()y f x g x =的最小值为()A .0B .2CD 【答案】A【解析】()cos ()=-g x x f x ,()()()()πcos ππcos +=+-+=-+g x x f x x f x ,所以()sin cos ()f x x x f x =+-,得sin cos ()2x x f x +=,cos sin ()2x xg x -=,所以22cos sin 1()()cos 244x x y f x g x x -===,π0,4x ⎡⎤∈⎢⎥⎣⎦,所以0cos 21x ≤≤,10()()4≤≤f x g x ,得()()y f x g x =的最小值为0.故选:A.【变式5-2】(2022秋·安徽·高三石室中学校联考阶段练习)如图是函数()cos()(0)f x x ωϕω=+>的部分图象,则()f x 在,9045⎡⎤-⎢⎥⎣⎦π22π上的值域为()A .[]1,1-B .122⎡⎢⎣⎦C .11,2⎡⎤-⎢⎥⎣⎦D .⎡-⎢⎣⎦【答案】D【解析】由图象知函数的周期13ππ2π230103T ⎛⎫=⨯-=⎪⎝⎭,即2π2π=3ω,即3ω=,由五点对应法得ππ32π+()102k k ϕ⨯+=∈Z ,得π2π+5k ϕ=,则π()cos 35f x x ⎛⎫=+ ⎪⎝⎭,因为π22π,9045x ⎡⎤∈-⎢⎥⎣⎦,所以ππ5π3,563x ⎡⎤+∈⎢⎣⎦,所以πcos 31,52x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦.故选:D【变式5-3】(2023·河北衡水·河北衡水中学校考模拟预测)函数()3cos f x x 的最大值为().A .B .C .D .3【答案】D 【解析】2225cos 4sin 59cos 4cos 4sin 5x x x x x -+=--+()()22229cos 4sin 4sin 13cos 2sin 1x x x x x =+-+=+-,所以()3cos f x x ==故()f x 的最大值转化为点()3cos ,2sin P x x 到()0,1A 与()0,2sin B x 的距离之差的最大值,因为1sin 1x -≤≤,22sin 2x -≤-≤,112sin 3x -≤-≤,所以12sin 3PA PB AB x -≤=-≤,当且仅当sin 1x =-时,等号成立,则3PA PB -≤,经检验,此时cos 0x =,()303f x =⨯=,所以()3f x ≤,即()f x 的最大值为3.故选:D.【变式5-4】(2023秋·北京丰台·高三统考期末)已知函数π()sin (0)6f x x ωω⎛⎫=+>⎪⎝⎭,若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫ ⎪⎝⎭上有最小值无最大值,则ω=___________.【答案】4【解析】由于若ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间ππ,62⎛⎫ ⎪⎝⎭上有最小值无最大值,πππ6223+=,则πππsin 1336f ω⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,所以πππ2π,62,Z 362k k k ωω+=-=-∈,又ππππ,62366T ωω=≥-=≤,由于0ω>,所以ω的值为4.故答案为:4。
三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法
![三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法](https://img.taocdn.com/s3/m/b024373e376baf1ffc4fadea.png)
1、(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=2、(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 3、(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数4、(湖南卷理6)函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1C. 325、(天津卷文6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R ,B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,6、(全国Ⅰ卷文9)为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7、(全国Ⅰ卷理8)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位1.(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴方程为232x k πππ+=+,即212k x ππ=+,0,12k x π==2.(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.9.(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三角函数的化简,主要应用了与的关系,同时还考查了二倍角公式和函数的奇偶性和利用公式法求周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求三角函数解析式常用的方法
三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
现就几道例题谈谈常用的求解方法。
1 利用五点法,逆求函数解析式
例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2
已知第二个点(,2)12π和第五个点5(,0)6
π 353
46124
T πππ=-= T π∴= 2ω=
把(,2)12π代入,2
122
ππφ⨯+=得3πϕ=
所以y=)3
2sin(2π
+x
点评:由图像确定解析式,观察图像的
特征,形助数寻找“五点法”中的整体点,从而确定初相ϕ。
2 利用图像平移,选准变换过程切入求解
例2下列函数中,图象的一部分如右图所示的是( )
A .sin 6y x π⎛⎫=+ ⎪⎝⎭ B.sin 26y x π⎛
⎫=- ⎪⎝⎭
C.cos 43y x π⎛⎫=- ⎪⎝⎭
D.cos 26y x π⎛
⎫=- ⎪⎝⎭
解:从图象看出,
41T =1264
πππ
+=,所以函数的最小正周期为π,函数应为
y=sin 2x 向左平移了
6π个单位,即
sin 2()6y x π=+=sin(2)cos(2)cos(2)3236
x x x πππ
π
+=-++=-,故选择答案D 。
点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入,
如本题y=sin 2x 向左平移了6π
个单位进行验证化简是求解的关键。
对于利用图象
的变换来求解函数的解析式,一定要清楚每一种变换对,,A ωϕ的影响,注重整体变量观念的应用。
3 特殊化赋值法求解
例3设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8
π
=
x 。
求()y f x =的解析式。
解:对称性特殊赋值切入,8
x π
=
是函数()y f x =的图像的对称轴,
()()88
f x f x ππ
∴+=-
令8x π
=
,则()(0)4f f π=,即sin() =sin cos 2
π
ϕϕϕ+=,tan 1ϕ∴=。
0πϕ-<< , 34πϕ∴=- 故3()sin(2)4
y f x x π
===-
点评:特殊赋值这是演绎推理的具体表现,特别是利用对称性待定系数时, 更显示出它的价值
4 利用方程组求解 例4:已知函数()cos()(0,0)f x x ωϕωϕπ=+>≤≤是R 上的奇函数,其图象关于点)0,4
3(
πM 对称,且在区间]3,0[π
上是单调函数。
求函数()y f x =的解析式。
解:由图像过原点和其对称性构建方程组切入,由函数()f x 是R 上的奇函数得(0)cos 0(1)f ϕ== ; 由函数()f x 图象关于点)0,43(
πM 对称得:33()cos()0(2)44
f ππωϕ=+= ; 在()f x 区间[0,]3
π
上是单调函数得:(3)342||T ππω≤=
;
联立(1)(2)(3)组成的方程组结合0,0ωϕπ>≤≤,可解得:2
43πϕω⎧=⎪⎪⎨⎪=⎪⎩
,
所以4()sin()32
f x x π
=+。
点评:待定系数法确定周期和初相位,要依据三角函数的解析式的特点,挖掘题设条件,利用对称性和单调性构建方程组,注意方程的个数要等于未知元素的个数,同时不能忽视所给元素范围对结果的影响。
5 利用最值点满足的条件进行求解
例5设函数f (x )=3 2cos x ω+sin ωxcos ωx+a (其中ω>0,a ∈R ),且f (x )
的图象在y 轴右侧的第一个最高点的横坐标为6
π
.
(Ⅰ)求ω的值;
(Ⅱ)如果f (x )在区间⎥⎦
⎤
⎢⎣⎡-65,3ππ上的最小值为3,求a 的值.
解:利用三角变换,降次辅助角化为一个角的三角函数
1()2sin 2sin 2231
2,.
6322
f x x x a x a πωωωπππωω⎛⎫=
+=+++ ⎪⎝⎭⋅+==(I )依题意得解之得
)571 ,0, ,sin()1,36362351 (),3621 2a
x x x f x ππππππππα
αα⎡⎤
⎡⎤∈-+∈-≤+≤⎢⎥⎢⎥⎣⎦
⎣⎦⎡⎤
--⎢⎥⎣⎦-=
(II)由(I )知,f(x)=sin(x+3又当时,故从而在上取得最小值因此,由题设知
点评:关于正弦和余弦的二次齐次式的问题,首先应考虑通过三角恒等变形
将函数化为一个角一种函数形式,利用取最值的条件确定表达式,这个过程中蕴含了划归思想。