集合复习课教学设计

合集下载

人教版数学三年级上册集合教学设计(精选3篇)

人教版数学三年级上册集合教学设计(精选3篇)

人教版数学三年级上册集合教学设计(精选3篇)〖人教版数学三年级上册集合教学设计第【1】篇〗复习集合师:集合是近期才学习的内容,大家还记得哪些与集合相关的知识呢引导学生回顾。

1思维图。

让学生说-说图形的要素、画法及各部分的作用。

2利用维思图解决问题。

师:求两个集合的交、井之后的元素个数。

就是用两个集合的元素个数的和减去它们的交集的元素的个数。

(板书〉师:在我校开展运动会时,本班有7人报名50米短跑,有5人报名跳远。

最后老师让报名参加这两项比賽的同学起立,可是数来数去却只有9人参賽。

你知道为什么吗[学情预设]因为有人同时报了两项比賽. .师:你能利用维思图帮老师找找,有几人报了两项吗学生独立完成,然后集体交流。

师:像这样,你还能举出其他的例子吗根据举出的例子,请你面一面,然后把你画的图跟大家分享一下吧!展示学生作业,集体评议。

[设计意图]集合这一部分内容是近期才学习的。

学生相对来说比较熟悉。

故以学生回顾为主。

然后举例验证并表达对维思图的理解.反馈练习1.口算练习:完成教科书F112*练习二十四”第10题。

学生口答,以接龙形式完成,检验学生分数的简单计算能力。

2综合练习:完成教科书F113~练习二十四"第13题。

(1)回顾钟面的结构。

师:我们认识了钟面,钟面.上有哪些数学知识呢[学情预设]学生会知道钟面一共有12个大格。

把钟面平均分成了12份:也可以把钟面看成平均分成了60份,每分钟表示其中的1份。

(2)让学生根据复习分数的相关知识独立解决问题。

3.分数解决间题:完成教科书F114“练习二十四"第15题。

(1)学生独立思考。

(2)指名学生板演。

.(3)根据学生所出现的问魎进行讲解。

及时发现解决问题过程中易犯的普逍性错误。

[设计意图]设计不同类型的题目。

让学生进-步巩固所学的知识。

增养学生的综合运用能力,拓展学生的思维。

五、全课小结师:这节课你学习了什么说说你的收获。

〖人教版数学三年级上册集合教学设计第【2】篇〗教学目标:1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。

集合复习教案(职中)

集合复习教案(职中)

3、集合的表示方法
(1)列举法(2)描述法(3)图示法
4、集合之间的关系

子集的个数 ,真子集的个数 ,非空真子集的个数
5、集合的运算


且 。
6.充分必要条件的判断
二.知识运用
1.选用适当的方法表示下列集合
1)绝对值等于2的实数的全体构成的集合.
2)不小于-2的实数的全体构成的集合.
3)坐标平面上第二象限所有点的全体构成的集合.
2.能够进行交、并、补的混合运算。
课外作业
复习检测
课后分析(对上述教学设计的实际操作感受和体会或改进措施)
加强学生对基本概念的理解,利用解答题培养学生分析问题的能力,慢慢培养学生的信心。
教师课时授课计划(教案)
课题
第一章单元复习
目的、要求
1.系统回顾第一章所学知识
2.进一步掌握集合与集合之间的关系,更加熟练的进行集合的交集、并集、补集运算;
3.熟练判断充分、必要条件。
教学方法
讲授法
教具、挂图

重点、难点
教学过程
一、知识归纳
1、集合中元素的特征
(1)确定性(2)互异性(3)无序性
2、集合与元素的关系
和学生一起归纳
2.已知 , ,
求 , 。
3.设 , ,
求 。
4.已知集合M满足 ,求所有满足条件的M的
集合
5、已知 , ,若 ,
求 。
6.已知集Leabharlann , ,若,试求 。7.设集合 , , ,求实数
的所有值的集合。
三.自测练习:教材17页复习题A组
数形结合
本课小结
1.在进行集合运算的时候,应多结合图形,借助数轴来进行。

人教版数学三年级上册集合教学设计推荐(3)篇

人教版数学三年级上册集合教学设计推荐(3)篇

人教版数学三年级上册集合教学设计推荐(3)篇〖人教版数学三年级上册集合教学设计第【1】篇〗数学广角集合教学目标:1、在具体情境中使学生感受集合的思想,感知集合图的产生过程。

2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。

3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。

教学重点:让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。

教学难点:对重叠部分的理解。

教学准备:课件教学过程:一、开门见山,引入新课1.导入:课间,同学们都喜欢什么样的运动?看,三(1)班选拔了一部分喜欢运动的同学参加学校的运动会(出示例1),那么我们能算出参加这两项比赛共有多少人吗?二、组织活动,探究新知1、同学们,你们都做了哪些运动?2、老师调查其中一个小组的体育爱好情况:第三小组喜欢踢毽子的有哪些同学?(假设7人)喜欢跳绳的有哪些同学?(假设8人)有没有两样都喜欢的?(假设3人)3、老师在讲台的两边分别画了两个圈:左边黄色的圈表示喜欢踢毽子的,右边红色的圈表示喜欢跳绳的。

4、现在请第三小组踢毽子的同学到左边黄色的圈内集合;请喜欢跳绳的同学到右边红色的圈内集合。

我们看看他们怎么站?5、问题出在哪儿呢?谁有好的建议以指导他们站到他们该站的位置?6、接下来请大家拿出纸和笔,想一想,画一画,写一写,怎样能使别人一看就知道喜欢踢毽子的有哪些同学,喜欢跳绳的有哪些同学,两样都喜欢的有哪些同学?同时还方便我们数人数?7、谁愿意展示一下你的想法?(适时肯定学生合理的想法。

)在100多年前,英国有一位名叫韦恩的逻辑学家,用一个图很方便地解决了我们今天遇到的这个问题。

让老师来展示给大家看。

8、这种图是韦恩最早发明的,所以就以他的名字命名,叫韦恩图。

利用韦恩图,既能表示重复的部分,又能方便统计总数。

接下来,如果要用算式表示喜欢踢毽子和跳绳的一共有多少人,又该是怎样的呢?9、刚才同学们交流了很多算法,你觉得哪种比较容易理解。

集合的概念、关系及运算习题课示范教学方案

集合的概念、关系及运算习题课示范教学方案

《集合习题课》教学设计PPT.一、复习导入请同学们梳理第1.1到1.3节的内容,回答以下几个问题:问题1:怎么理解集合的含义?元素与集合的关系是什么?集合的表示方法有哪些?师生活动:学生默写,之后互相核对,教师予以指正.预设的答案:集合的特性:①确定性:给定一个集合,它的元素必须是确定的.②互异性:一个给定集合中的元素是互不相同的,并集、交集中相同元素只出现一次.③无序性:一个给定集合中的元素前后位置可以交换.元素与集合的关系如下表:集合的表示方法:自然语言表示法、字母表示法、列举法、描述法、Venn图图示法.设计意图:通过复习帮助学生梳理集合的概念,集合的表示方法等知识.问题2:集合之间的关系又哪些?回顾子集、真子集、集合相等的相关概念,它们间的关系是什么?师生活动:学生先独立复习,教师根据学生的回答补充. 预设的答案:集合之间的关系“子集”“真子集”“相等”.其关系如图1所示.如果集合A 是集合B 的子集,则集合A 是集合B 的真子集或两个集合相等.设计意图:复习回顾集合间的关系.问题3:集合有哪些运算?请你用Venn 图表示.有了运算律使运算更加简洁,那么集合的运算有哪些性质和运算律?师生活动:学生先复习,然后交流讨论,教师根据学生的回答补充. 预设的答案:集合的运算有并集、交集、补集.定义略.V enn 图表示如下: 并集:交集:补集:并集、交集和补集的性质、运算律及常用结论如下表:并集交集 补集性质A ∪A =__A __;A ∩A =__A __;A ∪(∁U A )=U ,子集真子集相等 图1设计意图:复习回顾集合运算的相关知识. 二、巩固应用问题4:你能利用习题1.2第5题(1)的方法求解以下题目吗? 例1 已知a ∈R ,b ∈R ,若{a ,ab,1}={a 2,a +b ,0},则a 2 020+b 2 020=________.师生活动:学生独立思考,完成之后讨论交流,教师根据情况进行讲解. 预设的答案:解:由已知得a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 020+b 2 020=1.追问1:怎么知道a ≠0,做这种题时哪儿是突破口?(观察集合中元素的特点,如本题中有分式,分母不为零.再将一个集合中已知的元素与另一个集合中未知的元素联系,看是否相等,如果与该元素不等,再看与另一个元素是否相等,依此试验排除.)追问2:集合元素的三个特征中,哪一个在求解本题时起了主要作用?求解此类题目有什么经验?(集合中元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.)设计意图:通过两个集合相等即元素相同,深化了对集合元素互异性的理解. 问题5:你能利用习题1.2第5题(2)的方法求解以下题目吗?例2 已知集合A ={x |x <-1,或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.师生活动:学生先总结习题的做法,再独立完成例2,教师根据学生的情况有针对地指导,突出点拨分类讨论及数形结合思想方法的应用.预设的答案:解:当B =∅时,只需2a >a +3,即a >3;当B ≠∅时,根据题意作出下图:可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或 ⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3. 综上可得,实数a 的取值范围是{a |a <-4或a >2}. 追问1:完成下面的题目. 已知A ={x |x <3},B ={x |x <a }.(1)若B ⊆A ,则a 的取值范围是________;(a ≤3) (2)若A ⊆B ,则a 的取值范围是________;(a ≥3) (3)若A ⫋B ,则a 的取值范围是________;(a >3) (4)若A =B ,则a 的值是________.(a=3) 联系例2概括,这类题目的特点及步骤是怎样的?预设的答案:上述题目的特点是:已知两个集合的关系,其中一个集合中含有参数.求解步骤是:①确定两个集合之间的关系;②考虑集合为空集的情形是否满足题意;③将集合间的包含关系转化为方程(组)或不等式(组),求出相关参数的值或取值范围.追问2:这类题的易错点是什么?怎么才能避免这样的错误?预设的答案:易错点是:两个集合的端点是否相等.一般利用数轴画图,数形结合观察端点是否能重合.设计意图:通过求解含有参数的集合问题,进一步理解集合的关系,掌握分类讨论思想的思想方法,积累解题的经验.问题6:你是怎样思考求解习题1.3第6题的?这种题型的特点是什么?根据这样的思路思考下面的例3题.例3 设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.师生活动:学生先独立思考,总结方法:已知两个集合间的运算,再根据运算结果得出集合间的关系.然后分享交流,教师适时引导.预设的答案:解:∵A ={x }x 2+8x =0}={0,-8},A ∩B =B , ∴B ⊆A .当B =∅时,方程x 2+2(a +2)x +a 2-4=0无解, 即Δ=4(a +2)2-4(a 2-4)<0,得a <-2. 当B ={0}或{-8}时,这时方程的判别式 Δ=4(a +2)2-4(a 2-4)=0,得a =-2. 将a =-2代入方程, 解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧Δ>0,-2(a +2)=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2.设计意图:通过A ,B 运算的结果等价转化为A ,B 之间的关系,列出关于m 的不等式组,解不等式组得到m 的取值范围,从而熟练巩固集合间的关系和集合的运算.追问:例3求解运用了分类讨论的思想.求解集合问题时常见的分类讨论的标准源于哪些知识?师生活动:学生回顾思考、然后讨论交流、教师适时点拨.预设的答案:一般考查集合中元素的互异性、空集是任何非空集合的子集、集合的运算或集合间的关系中都会涉及到对参数的讨论.设计意图:结合例题梳理方法. 三、归纳总结问题7:本节课你有哪些收获?复习了哪些知识,巩固了哪些方法? 师生活动:学生独立思考,之后交流完善. 答案略.设计意图:梳理总结,深化理解,形成做题规则. 四、目标检测设计1.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz 的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M2.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠∅且B ⊆A ,求实数a 、b 的值.3.已知集合A={x|0≤x≤4},集合B={x|m+1≤x≤1-m},且A∪B=A,求实数m的取值范围.答案:1.D.2.当B={-1}时,a=-1,b=1;当B={1}时,a=b=1;当B={-1,1}时,a=0,b=-1.3.m≥-1.设计意图:1题考查元素与集合的关系,2题考查集合与集合的关系,3题考查集合的运算.。

集合复习课教学设计

集合复习课教学设计
(二) 能力目标
目标
通过集合的复习,熟练掌握好数形结合、等价转化和分类讨论等数学
思想在解题中的应用。
(三)情感目标
树立学生整体与局部的观点,提咼集体主义荣誉感。
在探究活动中,培养学生独立的分析和探索精神。
教学
方法
合作讨论
教学
手段
多媒体教学
教学过程设计
教学
步骤
教师活动
学生活动
设计
意图
了解集合的起源历史,激发学生学习兴趣。
教学 课题
高二一轮复习-----集合的概念与运算
课程 类型
复习Biblioteka 课时一课时教材分析
本章内容是必修一第一章,是高三一轮复习的第一部分, 充分说明了集合的基
础作用。集合是数学中的最基本概念,集合语言是现代数学的基本语言,集合也是 冋考的必考内容, 般冋考主要考查集合的概念与集合的关系以及运算等,还有就 是考查学生对集合语言、集合思想的理解与应用,往往与其他的知识点融为一体。 其中集合元素的特征与描述法表示集合时考查的重点内容。
然后通过讲解例二,让学生基本掌握此种题型的基本解题方法。要抓 住问题的本质。
岡0对于非空集合M,P,把所有属J
于M而不属于P的元素组成的集合称
集合概念与运算 教学内容分析
集合是一重要的知识点,而且是函数学习的基础,还涉及到不等式运算,是高考的必考 内容。集合语言是非常重要的一种数学语言,所以要求学生必须熟练掌握。尤其集合关系与
集合运算时集合这部分内容的核心,因此要学好集合在搞清楚集合概念的基础上还要熟练掌
握集合关系与运算。
高中数学教学设计滦平职教中心叶金财
例一:多媒体展示有学生回答
.
“Rje"侧集合McN中元素的个数()

高中数学《第一章集合与常用逻辑用语复习课》教学设计

高中数学《第一章集合与常用逻辑用语复习课》教学设计

《第一章集合与常用逻辑用语复习课》教学设计一、内容和内容解析1.内容2.内容解析本章学习内容包括集合的有关概念,关系和运算,还有充分条件、必要条件、充要条件、全称量词、存在量词、全称量词命题与存在量词命题及其否定。

这些知识在后续学习中会得到大量应用,是进一步学习的重要基础。

复习本章所学知识,在知识的复习和再现的基础上,用联系的观点和递进的方式可以加深对本章内容的理解。

复习本章知识能有效总结和提升学习内涵,整理学习方法提高学习效率,对于全章知识的联系和整合也能有更好的效果。

在本章内容的复习中,首先应掌握集合语言的表述方式,学习了集合的含义,明确了集合中元素的确定性、无序性、互异性等特征;再学习了列举法、描述法等集合的表示法,其中描述法利用了研究对象的某种特征,需要先理解研究对象的性质;类比数与数的关系,我们研究了集合之间的包含关系与相等关系,这些关系是由元素与集合的关系决定的,其中集合的相等关系很重要;类比数的运算,我们学习了集合的交、并、补运算,通过这些运算可以得到与原有集合紧密关联的集合,由此可以表示研究对象的某些关系。

常用逻辑用语是数学语言的重要组成部分,是逻辑思维的基本语言,也是数学表达和交流的工具。

充分条件、必要条件和充要条件,全称量词命题,存在量词命题及它们的否定都能与许多已学过的内容进行融合,如初中学习过的数学定义、定理、命题及许多代数结论等都可以用常用逻辑用语表示。

利用常用逻辑用语表述数学内容,进行推理论证,可以大大提升表述的逻辑性和准确性,提升逻辑推理素养。

结合以上分析,确定本节课的教学重点是:引领复习全章重点内容。

二、目标和目标解析1.目标(1)理解集合的含义,表示法,明确元素与集合,集合与集合的关系;(2)理解并掌握集合的运算法,能解决集合的交、并、补运算问题;(3)能通过“若p,则q”形式命题的真假性,判断充分条件、必要条件、充要条件;(4)能辨别全称量词命题和存在量词命题的真假,并能写出否定形式。

高中数学关于集合教案

高中数学关于集合教案

高中数学关于集合教案
一、教学目标:
1. 熟练掌握集合的概念及相关符号表示。

2. 能够进行集合之间的运算和操作。

3. 能够解决实际问题中的集合应用题目。

二、教学重点:
1. 集合的基本概念和性质。

2. 集合的运算及集合运算规律。

3. 集合应用题目的解决方法。

三、教学内容:
1. 集合的定义和常用符号表示。

2. 集合的基本运算:并集、交集、差集、补集。

3. 集合运算规律:分配律、交换律、结合律等。

4. 集合应用题目的解答方法和技巧。

四、教学过程:
1. 导入:通过一个生活中的例子引入集合的概念,让学生了解什么是集合。

2. 讲解:介绍集合的定义、符号表示和基本运算,并举例说明。

3. 练习:让学生做一些基础练习,巩固所学知识。

4. 拓展:讲解集合运算规律,引导学生发现规律。

5. 应用:让学生通过实际题目的解答,应用所学知识。

6. 总结:对整节课的内容进行总结,并强调重点和难点。

五、教学工具:
1. 教材课件。

2. 黑板、彩色粉笔。

3. 练习册、习题集。

六、教学评价:
1. 口头提问。

2. 课堂练习。

3. 作业检查。

七、拓展延伸:
1. 邀请学生自行寻找集合应用题目,并进行讲解。

2. 引导学生探索更多有关集合的知识和应用。

以上为本节课的教学内容,希望能够帮助学生更好地理解和掌握集合相关知识。

祝教学顺利!。

高三一轮复习课第2课集合教学设计

高三一轮复习课第2课集合教学设计

高三一轮复习课第一课集合的概念与运算一、教材分析集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。

二、教学目标(一)集合的含义与表示1、了解集合的含义、元素与集合的“属于”关系2、能用自然语言、图形语言、集合语言描述不同的具体问题(二)集合间的基本关系1、理解集合之间包含与相等的含义,能识别给定集合的子集。

2、在具体情境中,了解全集与空集的含义(三)集合的基本运算1、理解两个集合的的并集与交集的含义,会求两个检点集合的并集与交集。

2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

三、教学重点了解集合的含义,理解集合间包含与相等的含义,理解俩个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容。

四、教学难点集合相关的概念与符号的理解。

教学过程设计:基础知识自查1、集合与元素(1)集合元素的三个特征:______________ _____________ ________________(2)元素与集合的关系是:______________和______________关系,符号是:______________(3)集合的表示方法:________________________________________________________(4)集合的分类:按集合中元素的个数,集合可分为:_____ _____ _____2、集合间的基本关系(1)子集A 是B 的子集,符号:_____或_____(2)真子集:A 是B 的真子集,符号:_____或_____(3)等集:A B ⊆且B A ⊆⇔_____3、集合间的运算及性质(1)并集:符号__________ 图形语言:__________(2)交集: 符号语言__________ 图形语言:__________(3)补集: 符号语言__________ 图形语言:__________4、集合的运算性质并集的性质:(1) A ∪A= ;(2)A ∪∅= ;(3)A ∪B=交集性质: (1) A ∩A= ;例1 是(. 考点2、集合与集合的关系例2、(2010高考浙江卷)设{}4<=x x P ,{}42<=x x Q 则 A Q P ⊆ B P Q ⊆ C ⊆P ∁Q R D ⊆Q ∁P R分析:判断集合间的关系常转化为元素与集合的关系,对描述法表示的集合要抓住元素的属性,可列举出来或借助数轴、韦恩图或函数图像等手段解决。

集合的基本运算(6班)

集合的基本运算(6班)

《集合的基本运算》复习课教学设计三亚市民族中学周启界一、教学目标1、会运用列举法、数轴、韦恩图等表示集合,2、掌握集合的基本运算,3、掌握含各类常见不等式的集合的基本运算。

二、教学重难点1、教学重点:会运用数轴、列举法等表示集合中的元素,并掌握含一元二次不等式、绝对值不等式的集合运算,体会数形结合法的应用。

2、教学难点:含指数、对数不等式的集合运算三、数学素养:培养学生数学运算的核心素养能力。

四、教学过程1、复习导入①邀请两位学生上讲台,根据视觉笔记图回顾集合的三个基本运算:交集、并集、补集。

②课前热身:(2021·新高考全国Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=( )A.{3} B.{1,6} C.{5,6} D.{1,3}2、建构框架①展示近几年海南省高考中集合基本运算的题目,并对考点进行分析。

②初步建构解题思路的框架:3、边讲边练例1、(2017全国Ⅰ卷,1)设集合A={x〡x<1},B={x〡3x<1},则() A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅多维练习1、已知集合A={x|x2−2x>0},B={x|−√5<x<√5},则( ) A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B多维练习2、(2022新高考Ⅱ.1)已知集合A={-1,1,2,4},B={x||x−1|≤1},则A ∩B=( )A.{-1,2} B.{1,2} C.{1,4} D.{-1,4}注意点:例2:(2017新课标Ⅱ.2)设集合A={1,2,4},B={x〡x2−4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C.{1,3}D.{1,5}多维练习3、【2017江苏卷.1】已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为。

集合的含义及表示说课稿 教案 教学设计

集合的含义及表示说课稿 教案 教学设计

集合的含义与表示教学要求:更进一步理解集合、元素等概念,掌握集合的表示方法,会用适当的方法表示集合。

教学重点:会用适当的方法表示集合。

教学难点:选择恰当的表示方法。

教学过程:一、复习准备:1.提问:集合概念?什么叫元素?集合中元素有什么特征?集合与元素有何关系?2.集合A={x +2x +1}的元素是 ,若1∈A ,则x= 。

3.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系?二、讲授新课:1. 列举法的教学:① 比较:{方程210x -=的根}、{1,1}-、2{|10}x R x ∈-= ② 列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来。

→P4 例1 ③ 练习:分别表示方程x(x -1)=0的解的集合、15以内质数的集合。

注意:不必考虑顺序,“,”隔开;a 与{a}不同。

2. 描述法的教学:① 描述法:用集合所含元素的共同特征表示集合的方法,一般形式为{|}x A P ∈,其中x 代表元素,p 是确定条件。

→P5 例2② 练习: A.“不等式x-3>0的解”与“抛物线y =x-1上的点的坐标”用描述法表示B. 用描述法表示方程x(x -1)=0的解的集合、方程组⎩⎨⎧=+=+2732223y x y x 解集。

C.用描述法表示:所有等边三角形的集合、方程x+1=0的解集。

③ 简写原则:从上下文关系来看,x R ∈、x Z ∈明确时可省略,如{|32,}x x k k Z =+∈,{|0}x x >强调:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z 。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。

下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

高中数学集合教师教案模板

高中数学集合教师教案模板

高中数学集合教师教案模板
课题:集合
教学目标:
1. 理解集合的概念,区分集合与元素的关系。

2. 掌握集合的表示方法,包括列举法和描述法。

3. 熟练运用集合的运算,包括并集、交集、差集和补集。

4. 能够解决与集合相关的实际问题。

教学内容:
1. 集合的基本概念
2. 集合的表示方法
3. 集合的运算
教学重点和难点:
重点:集合的概念理解和表示方法掌握。

难点:集合的运算方法运用。

教学过程:
一、导入(5分钟)
通过一个生活中的例子引入集合的概念,让学生了解集合的定义。

二、概念讲解(15分钟)
1. 集合的定义和表示方法
2. 集合的基本运算
三、示例演练(20分钟)
老师以例题形式让学生进行练习,加深对集合概念和运算方法的理解。

四、练习与巩固(15分钟)
让学生进行小组练习或者个人练习,巩固集合的相关知识点。

五、作业布置(5分钟)
布置合适的练习题目,加深对集合知识的理解和掌握。

六、反馈和总结(5分钟)
对学生的表现进行反馈,总结本节课的重点和难点,引导学生加强复习。

板书设计:
集合
-概念及表示方法
-并集、交集、差集、补集
教学资源:
课件、白板、笔记等
教学方式:
讲授结合示例演练和练习
教学过程中注意事项:
1. 师生互动,鼓励学生提问,激发学生学习的兴趣。

2. 引导学生学会自主探究,培养学生的解决问题的能力。

3. 鼓励学生进行思维的横向拓展和纵向延伸,培养学生的综合思维能力。

高中数学集合全集教案

高中数学集合全集教案

高中数学集合全集教案
一、教学目标:
1.了解集合的概念和基本性质;
2.掌握集合的表示方法;
3.掌握集合的运算;
4.能够解决集合问题。

二、教学重点:
1.理解集合的概念和基本性质;
2.掌握集合的表示方法。

三、教学难点:
1.掌握集合的运算;
2.解决集合问题。

四、教学过程:
1.引入:老师向学生介绍集合的概念,让学生了解集合的基本性质。

2.讲解:教师详细讲解集合的表示方法和运算规则,让学生掌握集合的基本知识。

3.练习:老师出一些练习题,让学生巩固所学的知识,提高解题能力。

4.拓展:教师可对集合的运算和表示方法进行拓展,让学生了解更多相关知识。

五、作业:布置相关的作业,让学生巩固所学知识,并在下节课进行讲解。

六、教学反思:
1.学生普遍对集合的概念和表示方法掌握得比较好;
2.集合的运算部分学生掌握得不够好,需要加强练习;
3.结合实际生活场景,讲解更多集合问题,提高学生的综合能力。

七、教学反馈:
1.通过作业和课堂练习,发现学生对集合的运算和表示方法掌握得较好;
2.需要加强对集合问题的讲解,并综合运用所学知识解决问题。

三年级上册数学教案《2 集合复习》人教新课标

三年级上册数学教案《2 集合复习》人教新课标

三年级上册数学教案《2 集合复习》人教新课标
一、教学目标
1.认识什么是集合,理解集合的含义和表示方法。

2.能够利用集合的概念解决实际问题。

3.了解集合的运算,学会求集合的交、并、差等操作。

二、教学重点
1.能够准确理解集合的概念。

2.掌握集合的表示方法和运算规则。

3.能够灵活运用集合的概念解决问题。

三、教学内容
1.集合的定义和表示方法。

2.集合的运算:交集、并集、差集。

3.集合的应用:解决实际问题。

四、教学步骤
第一步:导入
通过一个生活实例引入集合的概念,让学生了解集合的含义和重要性。

第二步:讲解
1.介绍集合的定义和表示方法。

2.讲解集合的运算规则,包括交集、并集、差集的概念和运算方法。

第三步:练习
让学生进行练习,巩固集合的概念和运算方法,帮助他们提高应用集合解决问题的能力。

第四步:拓展
引导学生思考集合在日常生活中的应用场景,拓展他们对集合的认识和理解。

第五步:总结
对本节课的内容进行总结,强调集合的重点和要点,解答学生对集合相关问题的疑惑。

五、教学反思
本节课主要围绕集合的概念和运算展开,通过生动的例子和实际练习,让学生深入理解集合的含义和意义。

在教学过程中,需要根据学生的实际情况进行调整,确保每个学生都能够掌握集合的相关知识和技能。

六、课后作业
1.完成相关练习题。

2.思考集合在日常生活中的应用场景,并写下自己的体会。

通过本节课的教学,希望学生能够对集合有更深入的理解,提高自己的数学思维能力,为学习更高级数学知识奠定基础。

【精品】《集合》复习课教学设计

【精品】《集合》复习课教学设计

《集合》复习课教学设计教学目标:(1)掌握集合、交集、并集、补集的概念及有关性质;(2)掌握集合的有关术语和符号;(3)运用性质解决一些简单的问题。

教学重点:集合的相关运算。

教学难点:集合知识的综合运用。

教学过程:一、复习回顾:1.提问:什么叫集合?元素?集合的表示方法有哪些?2.提问:什么叫交集?并集?补集?符号语言如何表示?图形语言如何表示?3.提问:什么叫子集?真子集?空集?相等集合?有何性质?4.交集、并集、补集的有关运算结论有哪些?5.集合问题的解决方法:Venn图示法、数轴分析法。

二、讲授新课:(一)集合的基本运算:例1:设U=R,A={x|-5<x<5},B={x|0≤x<7},求A∩B、A∪B、CUA、CUB、(CU A)∩(CUB)、(CUA)∪(CUB)、CU(A∪B)、CU(A∩B)。

(学生画图→在草稿上写出答案→订正)说明:不等式的交、并、补集的运算,用数轴进行分析,注意端点。

例2:全集U={x|x<10,x∈N+},A⊆U,B⊆U,且(CUB)∩A={1,9},A∩B={3},(CU A)∩(CUB)={4,6,7},求A、B。

说明:列举法表示的数集问题用Venn图示法、观察法。

(二)集合性质的运用:例3:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}, 若A∪B =A,求实数a的值。

说明:注意B为空集可能性;一元二次方程已知根时,用代入法、韦达定理,要注意判别式。

例4:已知集合A={x|x>6或x<-3},B={x|a<x<a+3},若A∪B=A,求实数a的取值范围。

(三)巩固练习:1.已知A={x|-2<x<-1或x>1},A∪B={x|x+2>0},A∩B={x|1<x≦3},求集合B。

2.P={0,1},M={x|x⊆P},则P与M的关系是。

3.已知50名同学参加跳远和铅球两项测验,分别及格人数为40、31人,两项均不及格的为4人,那么两项都及格的为人。

第一章集合与逻辑章末复习课教学设计-2024-2025学年高一上学期数学(2019)

第一章集合与逻辑章末复习课教学设计-2024-2025学年高一上学期数学(2019)

一、集合的基本概念教 学 内 容二、集合间的基本关系1.集合间的基本关系包括包含、真包含、相等.能从实例中抽象并识别出子集、真子集、空集的概念,能根据集合间的关系,利用数形结合和分类讨论的思想求参数的值或范围.2.掌握集合间的基本关系,提升数学抽象、逻辑推理和直观想象素养.例2 已知集合A ={x |x <1或x ≥1},B ={x |2a <x ≤a +1,a <1},若B ⊆A ,则实数a 的取值范围为 . 答案 {a |a <−2或12≤a <1}跟踪训练2 已知A ={x |2a ≤x ≤a +3},B ={x |x <1或x >4},若A ⊆B ,则实数a 的取值范围是 . 答案 a <4或a >2三、集合的基本运算 1.集合的运算主要包括交集、并集和补集运算.这也是高考对集合部分的主要考查点.对于较抽象的集合问题,解题时需借助Venn 图或数轴等进行数形分析,使问题直观化、形象化,进而能使问题简捷、准确地获解. 2.掌握集合的概念与运算,重点提升逻辑推理和数学运算素养. 例3 (多选)已知集合A =(∞,2),B ={x |32x >0},则( AB )A.A ∩B =(−∞,32)B.A ∩(∁R B )=[32,2)C.A ∪B =(−∞,32) D.(∁R A )∪B =R跟踪训练3 已知集合M ={(x ,y )|y =3x 2},N ={(x ,y )|y =5x },则M ∩N 中的元素个数为( C ) A.0 B.1 C.2 D.3 四、充分条件与必要条件 1.若p ⇒q ,且q p ,则p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件; 若p ⇔q ,则p 是q 的充要条件,同时q 是p 的充要条件. 2.掌握充要条件的判断和证明,提升逻辑推理和数学运算素养. 例4 设集合A ={x |1<x <3},集合B ={x |2a <x <2+a }.。

高中数学集合模块总结教案

高中数学集合模块总结教案

高中数学集合模块总结教案
教学内容:高中数学集合模块
教学目标:掌握集合的基本概念、运算规律以及应用;能够熟练解决与集合相关的问题;
培养学生的逻辑思维和数学推理能力。

教学重点:集合的基本概念、运算规律和应用。

教学难点:集合的运算规律和应用。

教学准备:教材、多媒体课件、作业册、练习题等。

教学过程:
一、导入(5分钟)
教师可以通过提出一个问题引入集合的概念,让学生思考并讨论,激发学生的兴趣。

二、概念讲解(15分钟)
1. 集合的概念:集合是具有某种共同属性的事物的总体,用符号表示为一个大括号,其中
列出所有满足共同属性的元素。

2. 集合的表示方法:列举法、描述法、集合公式等。

3. 集合的基本运算:并集、交集、补集、差集等。

三、示例分析(20分钟)
通过举例分析集合的运算规律和应用,让学生掌握集合的相关计算方法。

四、练习训练(20分钟)
进行练习和训练,让学生熟练掌握集合的运算规律和应用。

五、总结归纳(10分钟)
对集合模块的重点内容进行总结归纳,强化学生的记忆和理解。

教学反思:通过本节课的教学,学生应该掌握集合的基本概念、运算规律和应用,同时培
养学生的逻辑思维和数学推理能力。

在教学过程中,要注意引导学生积极思考和解决问题,帮助他们建立正确的学习方法和思维模式。

高中数学集合教案怎么写

高中数学集合教案怎么写

高中数学集合教案怎么写
教学目标:学生能够掌握集合的基本概念和运算规则,能够解决集合相关问题。

教学内容:集合的定义、元素、子集、交集、并集、补集、差集、空集等。

教学重点:集合的基本概念和运算规则。

教学难点:差集和补集的理解与运用。

教学过程:
一、导入(5分钟)
教师引导学生回顾集合的定义,并以生活实例引入集合的基本概念,激发学生的学习兴趣。

二、讲解(15分钟)
1. 集合的元素和子集
2. 集合的运算规则:交集、并集、差集、补集
3. 空集的概念和特点
三、练习(20分钟)
1. 练习集合的表示方法和基本运算
2. 练习集合的关系和特征
3. 练习集合的运算规则和性质
四、实践(10分钟)
学生分组完成集合相关问题的解答,展示集合的运算过程和结果。

五、总结(5分钟)
教师总结本节课的内容,强调集合的重要性和应用,并鼓励学生积极思考集合问题,提高
解决问题的能力。

六、作业布置(5分钟)
布置相关集合练习题,巩固学生对集合的理解和应用能力。

教学反思:本节课内容紧凑,学生参与度高,但练习时间稍显不足,下节课可适度增加练
习环节。

(以上为教学范本,具体教学内容和时间可根据实际情况调整)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合概念与运算教学内容分析
高中数学教学设计滦平职教中心叶金财
教学过程设计
通过大屏幕展示本章的知识网络结构图,提问本章主要内容。

例一:多媒体展示有学生回答
特别提示:解答集合问题,必须准确理解集合的有关概念,对于用描述法给出的集合,要紧紧抓住竖线前面的代表x以及它所具有的性质P,是点集还是数集、是定义域还是值域,并注重通性表示.
首先展示解决此类题型要注意的亮点内容:
1.紧扣新定义
新定义型试题的难点就是对新定义的理解和运用,在解决问题时要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型试题难点的关键所在.2.用好集合的性质
集合的性质(概念、元素的性质、运算性质等)是破解集合类创新型试题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.
然后通过讲解例二,让学生基本掌握此种题型的基本解题方法。

要抓住问题的本质。

展示例题三:
考点解读:
1、上述两题分别是08、09浙江高考真题,充分考查了集合的运算,突出测试补集的运算和思想。

2、对于无限集的补集运算,“两者之间的补集在两者之外,两者之外的补集在两者之间,等号只出现一次”。

展示例四,学生快速回答
展示练习
引申:
有n个元素的集合的子集、真子集、非空真子集的个数分别是:2^n 2^n-1 2^n-2
提示:
(1)空集是任何集合的子集;是任何非空集合的真子集。

(2)任何集合都是它本身的子集。

(3)在子集和真子集的概念题型下,空集要优先考虑。

例五:
1、等价转换思想,集合关系为:B⊆A
2、数形结合的思想
合作讨论:。

a 求实数

A
B
A

0},
2
ax
|
{x
B
0},
2
3x
-
x|
{x
A
集合2=
=
-
=
=
+
=
分析:1、集合关系的等价转换找出A、B的关系
2、集合B的转化,不能直接除以a,因为a的值未知,可能等
于零。

总结:集合关系的分类讨论题型要突出空集优先的原则!!
教学反思。

相关文档
最新文档