有限元分析实例
有限元分析实例
机械与动力工程学院
26
1.钢板弹簧的作用
承载
导向
减振
缓和冲击
国内外研究现状
钢板弹簧的垂直方向载荷的计算上常用计算方法:
三角形板法 :假设各弹簧片为一个整体的三角形板
国 内
板端接触法
:假设力在各片弹簧间的传递仅靠各片 端来完成
共同曲率法 :假定各片的弯曲具有共同的曲率
第二,在同一工况下,例如在标定功率工况下,当活 塞的活塞顶圆角半径的变化是5 mm , 6 mm , 3 mm , 2 mm时,活塞的最高温度变化为: 361.15℃~180.96℃ ,356.94℃~180.01℃, 369.78℃~182.24℃ , 373.88℃~183.7℃。这是因为当 活塞的活塞顶圆角半径变大时,燃烧室容积变大,压 缩比变小,活塞的整体温度降低了。当活塞的活塞顶 圆角半径变小时,燃烧室容积变小,压缩比变大,活 塞的整体温度升高了。所以在设计活塞的活塞顶圆角 时应在不影响其结构时尽可能的大一点。本文中活塞 顶圆角半径为6 mm的活塞是相对较好的。
满载应力分析(少片)
最大应力 =280.68MPa<材料许
用应力=1000MPa
结论
1.对板簧的结构与尺寸设计的强度方面的校核与有限元分析 表明校核的结果符合相关技术要求。
2.在相同条件以及同样寿命的前提下,使用少片变截面钢板 弹簧,重量大约比多片弹簧减少50%左右。
基于Workbench 对发动机活塞的温度场分析
有限元结课汇报
主讲人:尹振华
主 1、基于Workbench的曲柄连杆组动力学分析——
要 成
2、基于ANSYS刹车盘应力分析——
员 及
有限元实例分析
作业一:有限元分析实例实例:请对一个盘轴配合机构进行接触分析。
轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。
盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。
问题分析说明(1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。
由于为过盈配合,属于大变形,故应考虑几何非线性的影响。
(2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计算时间。
分析过程由两个载荷步组成, 第一个载荷步为过盈分析, 求解过盈安装时的情况。
第二个载荷步为将轴从盘心拔出时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的接触应力。
它们都属于大变形问题, 属于非线性问题。
在分析时需要定义一些非线性选项来帮助问题的收敛。
(3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。
模型建立的分析说明(1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。
盘轴接触问题属于面面接触, 目标面和接触面都是柔性的,将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接触面。
分别创建名为为part1、part2的部件。
(2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入0 . 3,并将定义的材料属性赋予给part1和part2。
如下图所示。
(3)进入装配模块,创建两者间的装配关系。
(4)进入分析步模块定义名为step1和step2的两个分析步。
(5)进入相互作用模块,创建相互作用属性,设置摩擦系数;然后定义接触关系。
如下图所示。
(6)进入载荷模块,创建边界条件,依次定义名为BC -2(类型为:完全固定)、BC -3(类型为:位移/转角,约束U1、UR3),分析步均为Initial 。
实例1 四杆桁架结构有限元分析
(2)计算支反力: 将求得的节点位移代入整体刚度方程 得:
四杆桁架结构有限元分析(5)
ANSYS求解
基于图形界面(GUI)的交互式操作(step by step) 命令流方式
举例:四杆桁架结构有限元分析
各杆的弹性模量和横截面积相同:均为E = 29.5 ×104 N/mm2 ,A = 100mm2 ,试 求解该结构的节点位移、单元应力以及支反力。
四杆桁架结构有限元分析(1)
Step1.结构的离散化与编号
节点及坐标(对该结构进行自然离散)
节点
1 2 3 4
x
0 400 400 0
Step3.组装整体刚度方程
各个单元刚度矩阵/节点载荷按节点编号进行组装。
四杆桁架结构有限元分析(4)
Step4.处理边界条件求解
边界条件BC(u):
代入整体方程并化简得:
所有节点位移:
四杆桁架结构有限元分析(5)
Step5.计算其他力学分量
(1)计算单元应力:
杆单元的转换矩阵及节点位移(此处省 略了上角标)
yห้องสมุดไป่ตู้
0 0 300 300
单元编号及对应节点 单元 ① ② 节点 1 3 2 2 2
各单元的长度及轴线方向余弦
单元 ① ② ③ ④ l 400 300 500 400 nx 1 0 0.8 1 ny 0 -1 0.6 0
③
④
1
4
3
3
四杆桁架结构有限元分析(2)
Step2.单元描述
四杆桁架结构有限元分析(3)
有限元分析实例
一题描述图示为一厚壁圆筒,其内径r1=50mm,外径=100mm,作用在内孔上的压力p=10MPa,无轴向压力,轴向长度视为无穷。
要求计算厚壁圆筒的径向应力和切向应力沿半径r方向的分布。
二分析步骤1过滤界面拾取菜单Main Menu →Preference。
弹出图2话框,选择Structural项,单击OK按钮。
图2过滤界面对话框2创建单元类型拾取菜单Main Menu →Preprocessor →Element Type →Add/Edit/delete。
弹出图3对话框,单击Add按钮;弹出图3话框,在左侧列表中选择Structural Solid,在右侧列表中选择8node183,单击OK按钮;返回图4对话框,单击Options 按钮,弹出图5框,选择K3为Plane strain,单击OK按钮,单击图3close 按钮。
图3单元类型对话框图4 单元类型库对话框图5单元选项对话框3 定义材料特性拾取菜单Main Menu →Preprocessor →Material Models。
弹出图6话框在右侧列表中依次双击 Structural,Linear,Elasic,Isorropic,弹出图7对话框,在EX文本框中输入2e11,在PRXY文本框中输入0.3,单击OK按钮。
图6-7材料模型对话框4创建实体模型拾取菜单Main Menu →Preprocessor→Modeling →Create →Areas →Circle →By Dimensions。
弹出图8,在文本框中分别输入0.1,0。
05,90.单击OK按钮。
图8创建面对话框5划分单元拾取菜单Main Menu →Preprocessor→Meshing→Mesh Tool。
弹出图9对话框,单击Size Controls 区域中的Lines后的Set按钮,弹出拾取窗口,拾取面的任一直线边,单击OK按钮弹出图10对话框,在NDIV文本框中输入6,单击Apply按钮,再次弹出拾取窗口11取面的任一弧边,单击OK,再次弹出对话框,在NDIV文本框中输入8,单击OK按钮。
6工程结构实例有限元分析
G xz
17.0 7.4 0.37 0.62 3.6 3.6 16.9 2.808 83.46 27.2
75.0 1151.5 2000.0 1750.0 1616.7 1511.3 4500.0 1366.0 7709.0 2800.0
*注:泡沫块、膨胀胶膜的弹性模量和剪切模量的单位为 MPa ,其它材料均为 GPa ,密度 单位均为
为各向同性材料外,其它材料均为正交各向异性材料。
材料名称
泡沫块 膨胀胶膜 玻璃布 Kevlar 布
碳布 碳条 钛 Kevlar 带 1Cr18Ni3A 2618A
Ex
42.5 18.5 18.5 31.0 125.0 125.0 44.0 140.4 212.0 69.0
Ey
42.5 18.5 18.5 31.0 125.0 125.0 44.0 5.616 212.0 69.0
表 6 正交各向异性材料特性
序号 名称
材料
弹性模量 Ex
(MPa)
弹性模量 Ey
(MPa)
泊松比 xy
1
面板
玻璃钢
13700.0
2
芯层
铝蜂窝*
0.0383
13700.0 0.0383
0.15 0.9998
剪切模量 Gxy
(MPa) 300.0 0.0329
FRP蜂窝结构标志底板有限元分析
在表 6 中铝蜂窝的等效弹性模量、泊松比和剪切模量计算公式 如下:
某型机前机身结构静力有限元分析
某型机前机身结构静力有限元分析
通过MSC.Nastran对总体模型进行应力分析,得出总体模 型中最大壳单元应力为239MPa,最大梁单元应力为387MPa, 壳单元最大位移为19.9mm,梁单元最大位移为8.13mm。
有限元分析实例范文
有限元分析实例范文假设我们正在设计一个桥梁结构,希望通过有限元分析来评估其受力情况和设计是否合理。
首先,我们需要将桥梁结构进行离散化,将其分为许多小的有限元单元。
每个有限元单元具有一定的材料性质和几何形状。
接下来,我们需要确定边界条件和加载条件。
例如,我们可以在桥梁两端设置固定边界条件,然后通过加载条件模拟车辆的载荷。
边界条件和加载条件的选择需要根据实际情况和设计要求来确定。
然后,我们需要选择适当的有限元模型和材料模型。
有限元模型选择的好坏将直接影响分析结果的准确性。
材料模型需要根据材料的弹性和塑性性质来选择合适的模型。
接下来,我们可以使用有限元软件将桥梁结构的离散化模型输入计算。
有限元软件将自动求解结构的受力平衡方程,并得出结构的应力和位移分布。
通过分析这些结果,我们可以评估桥梁结构的强度、刚度和稳定性等性能。
最后,根据有限元分析结果进行设计优化。
如果发现一些部分的应力过大,我们可以对设计进行调整,例如增加材料厚度或增加结构的增强筋。
通过不断优化设计,我们可以得到一个满足强度和刚度要求的桥梁结构。
需要注意的是,有限元分析只是工程设计中的一个工具,分析结果需要结合实际情况和工程经验来进行判断。
有限元分析的准确性也取决于离散化的精度、边界条件和材料模型等的选择。
总之,有限元分析是一种重要的工程分析方法,可以用于评估结构的受力情况和设计是否合理。
通过有限元分析,我们可以优化结构的设计,提高结构的性能和安全性。
希望以上例子对你对有限元分析有所了解。
有限元超全实例
输入关键点号和坐标值,按“Apply”。 所有关键点数据 输完后按“OK”结束对话框,屏幕上即显示上述关键点的位 置和序号。
Main Menu>Preprocessor>Modeling>Create>Lines> Lines >in Active CS, 弹出下示对话框。然后用直线顺序连 接上述五个关键点,组成题设要求的形状。
例一:
如图所示的零件,所受到均布力载荷为q,分析在 该作用力下的零件的形变和应力状况,本题简化 为二维平面问题进行静力分析,零件材料为Q235。
数据(长度单位mm,分布力单位N/cm) A B C D q 278 64 148 Ф 64 3 00
序号 30
1、创建几何模型
1)以左上角一点为坐标原点确定各节点坐标 序号 X坐标(mm) Y坐标(mm) 1 0 0 2 0 -150 3 130 -64 4 278 -64 5 278 0 6 139 0 2)创建5个关键点,并形成单元。 Main Menu>Preprocessor>Modeling>Create>Keypoints >in Active CS, 弹出下示对话框。
3)加载荷 Main Menu>Solution>Define Loads >Apply> Structural>Pressure >On lines ,弹出如下对话框,单击零件右 上受载边界线,按“OK”确定,在继续弹出的对话框中输入载荷 值-300,完成后按“Ok”确定。
4)求解 Main Menu:Solution>Solve>Current LS
3)查看位移分布图 Main Menu:General Postporc>Plot Result> Contour Plot>Nodal Solution ,在弹出的对话框中顺序选择: Nodal Solution >DOF Solution>Displacement Vector Sum, 位移分布如右图:
有限元分析实例
有限元模态分析题目一:有一直梁尺寸如图1所示,材料为黄铜,要求用命令流求出该梁的第一、二阶自由伸缩模态,划分网格时要求每个单元格为1mm(六面体,长方体)。
图1梁有限元分析图:直梁一阶自由伸缩模态f=21560Hz直梁二阶自由伸缩模态f=43090Hz注:模态图中白色网格部分是原始静止位置***** INDEX OF DATA SETS ON RESULTS FILE *****SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 16324. 1 1 12 18484. 1 2 23 21560. 1 3 34 23131. 1 4 45 25635. 1 5 56 26811. 1 6 67 34727. 1 7 78 36216. 1 8 89 36252. 1 9 910 43090. 1 10 10直梁命令流:finish/clear/PREP7et,1,solid45mp,dens,1,8400 !材料密度mp,ex,1,1.0e11 !输入弹性模量mp,ey,1,1.0e11mp,ez,1,1.0e11mp,PRXY,1,0.3 !泊松比mm=0.001block,0,80*mm,0,4*mm,0,6*mmvsel,all/Replotnummrg,kp,1.0e-6vsel,allmshkey,1 ! key: 0 自由网格划分 1 映射网格划分 2 如果可能的话使用映射,否则自由mshape,0 ! key: 0 四边形(2D),六面体(3D) 1 三角形(2D), 四面体(3D)esize,0.001vmesh,all/Replotfinish!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/soluanty,modalmodopt,LANB,10,15000mxpa,10allselsolveFINISH/post1!set,list,2!set,1,1pldisp,2 !/dscale,1,0.00045/replot题目二:有一圆环尺寸如图2所示,材料为黄铜,要求用命令流求出该梁的第二、三、四阶面内弯曲模态,划分网格时要求每个单元格为1mm(六面体,长方体)。
有限元分析实例
有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
《有限元教程》20例ANSYS经典实例
《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。
其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。
下面将介绍《有限元教程》中的20个ANSYS经典实例。
1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。
2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。
3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。
4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。
5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。
6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。
7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。
8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。
9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。
10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。
11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。
12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。
13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。
14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。
15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。
16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。
17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。
18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。
19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。
ANSYS有限元分析实例
ANSYS有限元分析实例假设我们需要分析一个简单的悬臂梁结构,该梁由一个固定端和一个自由端组成。
其几何形状和材料属性如下:梁的长度:L = 1000mm梁的宽度:W = 20mm梁的高度:H = 10mm梁的材料:钢材材料的弹性模量:E=210GPa材料的泊松比:υ=0.3在进行有限元分析之前,我们首先需要绘制悬臂梁的几何模型,并划分网格。
对于本例,我们可以使用ANSYS软件的几何建模工具进行绘制和网格划分。
然后,我们需要定义材料属性和加载条件。
在ANSYS中,可以通过分析系统中的属性表来定义材料属性。
在本例中,我们将定义钢材的弹性模量和泊松比。
接下来,我们将定义结构的约束和加载条件。
悬臂梁的固定端不允许位移,因此我们需要将其固定。
我们还需要定义在自由端施加的外部力或力矩。
在建立有限元模型之后,我们需要进行模型网格划分并设置网格精度。
在ANSYS中,可以选择适当的网格划分工具,例如自适应网格划分或手动划分。
完成网格划分后,我们可以应用适当的材料属性和加载条件。
在ANSYS中,可以使用强度分析工具来定义材料属性,并使用负载工具来定义加载条件。
我们可以在加载条件中指定施加在自由端的外部力或力矩。
然后,我们需要选择适当的求解器类型和求解方法。
在ANSYS中,可以选择静态结构分析求解器,并选择适当的求解器设置。
在求解器设置完成后,我们可以运行有限元分析,并获得结构的响应和性能结果。
在ANSYS中,可以查看和分析各个节点和单元的应力、应变、位移等结果。
最后,我们可以通过对结果进行后处理和分析,得出结构的安全性和性能评估。
在ANSYS中,可以使用后处理工具查看节点和单元的应力云图、变形云图、反应力云图等。
综上所述,这是一个使用ANSYS有限元分析进行静态结构分析的简单实例。
通过应用ANSYS软件的建模、网格划分、材料属性定义、加载条件定义、求解器设置、求解分析等步骤,我们可以获得悬臂梁结构在不同加载条件下的响应和性能结果。
有限元分析实例
5)对活塞进行网格划分,选择[Mesh]一 [Generate Mesh],图形区显示程序自动生成 的六面体网格模型,如图:
6)施加边界条件。加载标定功率工况下活塞的第 三类边界条件,根据下表对活塞各部分进行施加 边界条件。
7)设置需要的结果,选择【Solution(A6 )】,在 工具栏中选择【Thermal】一【Temperature】
5、施加载荷
根据曲柄连杆工 作情况,综合第一类 自由约束和第三类表 面载荷对有限元模型 进行载荷定义。载荷 施加具体如图4,大 小为0.3MPa。
6、运动参数设定
曲柄转速设置 为2.09 rad/s
三、分析结果
1、Total Deformation(总变形 )
根据分析报告,总变形的最大 值为1.9232mm,在整个运动过程 中其分布呈抛物线状,变形最大 且对结构有危险的是曲柄与连杆、 连杆与活塞杆连接处。这也是设 计中需要校核和加强的地方。
满载应力分析(少片)
最大应力 =280.68MPa<材料许
用应力=1000MPa
结论
1.对板簧的结构与尺寸设计的强度方面的校核与有限元分析 表明校核的结果符合相关技术要求。
2.在相同条件以及同样寿命的前提下,使用少片变截面钢板 弹簧,重量大约比多片弹簧减少50%左右。
基于Workbench 对发动机活塞的温度场分析
位移的最大值=32mm, 装配完成后多片板簧弧高 95.5mm,在设计的装 配弧高101.2±6mm范
围内。
计算结果分析
装配后应力分析
最大应力 =207.468MPa<材料许
用应力=1000MPa
计算结果分析
满载应力分析
最大应力 =203.823MPa<材料许
有限元分析实例2
有限元分析梁的有限元分析试分析图中梁:梁承受均布载荷:1.0e5 P a图1 梁的载荷图梁截面分别采用以下三种截面(单位:m):矩形截面:圆截面:工字形截面:B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.0071.1进入ANSYS程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run1.2设置计算类型ANSYS Main Menu: Preferences →select Structural → OK1.3选择单元类型ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete…→Add…→select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window)1.4定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→ OK1.5定义截面ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK1.6生成几何模型生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入二个点的坐标:input:1(0,0),2(10,0),3(5,1)→OK 生成梁ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →lines →Straight lines →连接两个特征点,1(0,0),2(10,0) →OK1.7 网格划分ANSYS Main Menu: Preprocessor →Meshing→Mesh Attributes→Picked lines →OK→选择: SECT:1(根据所计算的梁的截面选择编号);Pick Orientation Keypoint(s):YES→拾取:3#特征点(5,1) →OK→Mesh Tool →Size Controls) lines: Set →Pick All(in Picking Menu) →input NDIV:5→OK (back to Mesh Tool window) → Mesh →Pick All(in Picking Menu) → Close (the Mesh Tool window)1.8 模型施加约束✓最左端节点加约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→ On Nodes→pick the node at (0,0) → OK→select ALL DOF → OK✓最右端节点加约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→ On Nodes→pick the node at (10,0) → OK→select UY,UZ,ROTX → OK✓施加y方向的载荷ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Pressure→ On Beams→Pick All→VALI:100 → OK1.9 分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →OK1.10 结果显示ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window) →Contour Plot→Nodal Solu →select: DOF solution, UY, Def + Undeformed, Rotation, ROTZ ,Def + Undeformed→OK。
CATIA有限元分析计算实例1
有限元分析计算实例11.1例题1 受扭矩作用的圆筒11.1-1划分四面体网格的计算(1)进入【零部件设计】工作台启动软件。
单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。
图11-1 单击【开始】→【机械设计】→【零部件设计】选项单击后弹出【新建零部件】对话框,如图11-2所示。
在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【1】。
点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。
(2)进入【草图绘制器】工作台在左边的模型树中单击选中【平面】, 如图11-3所示。
单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。
这时进入【草图绘制器】工作台。
图11-2 【新建零部件】对话框图11-3 单击选中【平面】(3)绘制两个同心圆草图点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。
在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。
用同样分方法再绘制一个同心圆,如图11-6所示。
图11-4 【草图编辑器】工具栏图11-5【轮廓】工具栏下面标注圆的尺寸。
点击【约束】工具栏内的【约束】按钮,如图11-7所示。
点击选择圆,就标注出圆的直径尺寸。
用同样分方法标注另外一个圆的直径,如图11-8所示。
图11-6 两个同心圆草图图11-7 【约束】工具栏双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。
在【直径】数值栏内输入100,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100。
用同样的方法修改第二个圆的直径尺寸为50。
修改尺寸后的圆如图11-10所示。
图11-8 标注直径尺寸的圆草图图11-9 【约束定义】对话框(4)离开【草图绘制器】工作台点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。
退出【草图绘制器】工作台,进入【零部件设计】工作台。
图11-10 修改直径尺寸后的圆图11-11【工作台】工具栏(5)拉伸创建圆筒点击【基于草图的特征】工具栏内的【凸台】按钮,如图11-12所示。
ANSYS有限元分析实例
ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。
在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。
首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。
然后,在ANSYS中创建有限元模型,并进行网格划分。
接下来,进行力学分析,求解材料在给定加载下的应力和位移。
最后,通过对结果的后处理,得出最大弯曲应力和挠度。
2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。
螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。
在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。
然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。
通过求解流体场方程,计算叶片上的压力分布和受力情况。
最后,通过对结果的后处理,得出叶片的受力情况和推力性能。
3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。
散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。
在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。
然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。
通过求解热传导方程,计算散热片上各点的温度分布。
最后,通过对结果的后处理,得出散热片的温度分布和散热性能。
以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。
通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。
有限元分析实例ppt课件
Stress distribution
Reaction
有限元分析典型流程
§3-5 有限元分析法存在的问题及发展方向
• 有限元模型的建立 有限元网格的自动划分与动态划分-自适应网格
• 求解过程的优化 减少计算量,降低分析成本。
• 有限元分析结果的判读和评定 采用等值线图、明暗色彩、动态图形、过程模拟
机进行分析计算的重要工具。
但是当时限于国内大中型计算机很少,大约只有杭州汽轮机厂的 Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户 算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高, 为移植和发展PC版本的有限元程序提供了必要的运行平台。可以说国内 FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥 有较多用户(100家以上) 的有限元分析系统有大连理工大学工程力学 系的FIFEX95、北京大学力学与科学工程系的SAP84、中国农机科学研 究院的MAS5.0和杭州自动化技术研究院的MFEP4. 等。但正如上面所述, 国外很多著名的有限元分析公司已经从前些年对PC平台不屑一顾转变为 热衷发展,对国内FEA程序开发者来说发展PC版本不再具有优势。
单元类型选择
Element type:
3结点三角形平面应力单元
单元特性定义 Element properties:
材料特性:E, µ 单元厚度:t
网格划分
Mesh 1
Total number of elements:356 Total number of nodes:208
Mesh 2
Total number of elements:192 Total number of nodes:115
Rotor Dynamics(转子动力学分析) :转子动力学分析主要解决旋转机械
有限元分析实例2
29 9
VM144, BENDING OF A COMPOSITE BEAM
分析结果比较
SHELL99 model Displacement, in StressxTOP , psi StressxBOT , psi SHELL99 model (with node offset) Displacement, in StressxTOP , psi StressxBOT , psi SOLID46 model Displacement, in StressxTOP , psi StressxBOT , psi Target 0.832 2258. 1731. Target 0.832 2258. 1731. Target 0.832 2258. 1731. Analysis 0.832 2258. 1731. Analysis 0.832 2258. 1731. Analysis 0.832 2258. 1731. Ratio 1.000 1.000 1.000 Ratio 1.000 1.000 1.000 Ratio 1.000 1.000 1.000
80°F
0.014 Btu/(hr-in2°F) 80°F
建模、划分网格、加载边界条件和初始条件
铸件凝固过程中的热焓变化
1 ENTH FOR MATERIAL 2
200 180 160 140 120
ENTH
ENTH
100 80 60 40 20 0 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250
(边界上给定温度) (边界上给定热流密度) (边界上给定对流换热)
微元升温所需热量应与传入微元的热量和微体内 部产生的热量平衡。
山岭隧道受力有限元分析ANSYS实例教学
山岭隧道受力ANSYS有限元分析实例教学目录一、问题重述 (1)二、模型的建立 (3)2.1模型绘制 (3)2.2模型参数选取 (3)2.3模型网格划分 (3)2.4计算外荷载(计算DK5+632断面) (4)2.5施加荷载与约束 (7)三、求解模型与受拉地基弹簧的修正 (8)四、求解结果 (10)4.1弯矩、轴力应力云图 (10)4.2关键节点内力 (10)五、附录 (11)附录1 全部节点等效荷载表 (11)附录2 全部节点内力表 (13)附录3 剪力图 (16)一、问题重述隧道起讫里程为DK4+843.5~DK6+430,全长1586.5m ,DK5+632处采用暗挖法施工,该断面的地层及结构等信息见下图。
(a) 纵断面图(单位:m )(b) 横断面图(单位:cm )里程 D K 5+632300°∠65°根据地质资料得:围岩级别为Ⅳ级,隧道上方土体重度依次从上往下取γ1 =18 kN/m3,γ2=23kN/m3。
请采用荷载-结构模式对该断面衬砌结构(仅二次衬砌)进行受力分析:(1)试求隧道围岩压力和有限元模型的等效节点力(不考虑重力)?(要求:单元长度取0.3m,画出单元和节点图,编制表格列出各节点的等效节点力)。
(2)采用有限元软件计算结构内力,绘制弯矩图和轴力图,列出特征部位的内力二、模型的建立2.1模型绘制在ANSYS建模,以二次衬砌中轴线为轮廓,隧道断面模型如下图:图2.1 隧道断面尺寸示意图(cm)二次衬砌采用Beam188梁单元模拟,地基弹簧采用Combin14弹簧单元模拟。
隧道纵向计算长度取为1m,二次衬砌参数选取如下表:2.3模型网格划分单元长度取0.3m,网格划分后,单元图、节点图分别如下:图2.2 离散化-节点图图2.3离散化-单元图2.4外荷载的计算(计算DK5+632断面) 2.4.1 验算坑道高度与跨度之比1232644.3032120.902 1.71232723.553212H B ++++==++++<式中,H 表示坑道高度,B 表示坑道跨度根据我国《铁路隧道设计规范》,可以采用统计法计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.选择“File”→“Clear&Start New”。
2.选择“File”→“Change Jobname”命令,弹出如图1-1所示的“Change jobname”对话框。
在“Enter new Jobname”文本框中输入“example”,同时“New log and error files”中的复选框“NO”不选,并单击“OK”按钮。
图1-1 “Change Jobname”对话框
3.选择Main Menu→Preferences。
弹出的图1-2所示的对话框,选中“Structure”项,单击“OK”按钮。
图1-2
4.选择Main Menu→Preprocessor→
Element Type→Add/Edit/Delete。
弹
出如图1-3所示的对话框,单击“ADD”
按钮;弹出图1-4所示的对话框,在
左侧“Structure Beam”,在右侧列表
中选“2 node 188”,单击“OK”按钮;
返回到图1-3所示的对话框,单击对
话框中的“Close”按钮。
图1-3
图1-4
5.拾取Main Menu→Preprocessor→
Section→Beam→Common Section。
在弹出的“Beam tool”对话框中输
入B→3,H→3单击“OK”按钮。
6.拾取Main Menu→Preprocessor→Material Props→Material Modles→Structural→linear→Isotropic如图1-5
如图1-5
如图1-6
弹出如图1-6所示的对话框输入EX=2e11,PRXY=0.3 7.拾取Main Menu→Preprocessor→Modeling→Create→
Keypoints→In Active CS。
弹出如图1-7所示的对话框
图1-7
在“NPT”中输入1,在“X,Y,Z”文本框中人别输入0,0,0,以下类似分别输入2/5,0,0;3/10,0,0;
8..拾取Main Menu→Preprocessor→Modeling→Create→Lines→Lines→Straight Lines.弹出拾取窗口,把点1,2,3,依次链接起来,单击“OK”按钮。
9.拾取Main Menu→Preprocessor→Meshing→MeshTool。
弹出“MeshTool”对话框,单击“Size Control”区域中“Lines”后“Set”按钮,弹出拾取窗口,拾取直线,单击“OK”按钮,在“DIV”文本框中输入50,单击“OK”按钮;单击“Mesh”区域的“Mesh”按钮,拾取直线,单击“OK”按
10.拾取Main Menu→Preprocessor→Solution→
Define Loads→Apply→Structure→Displacement→On Keypoint。
弹出拾取窗口,拾取关键点2,单击“OK”按钮,弹出如图1-8所示的对话框,在列表中选“ALL DOF”,单击“OK”按钮
图1-8
11.拾取Main Menu→Preprocessor→Solution→
Define Loads→Apply→Structure→Force/Moment→On KEypoint。
弹出拾取窗口,拾取关键点1,3;单击“OK”,弹出如图1-9所示的对话框,选择“Lab”为“FY”,在“VALUE”文本框中输入-100,单击“OK”按钮。
图1-9
12.拾取Main Menu→Solution→Solve→Current LS。
单击“Solve Current Load Step”对话框的“OK”按钮。
出现“Solution is done!”提示时,求解结束,即可查看结果。