10电位法和永停滴定法

合集下载

电位滴定法与永停滴定法(2010药典一部)检验标准操作规程

电位滴定法与永停滴定法(2010药典一部)检验标准操作规程

文件类别:技术标准 1/4文件名称电位滴定法与永停滴定法(一部)检验标准操作规程文件编号:09T-I684-01起草人审核人批准人日期:日期:日期:颁发部门:质量管理部生效日期:分发部门:质量控制科1.目的:建立电位滴定法与永停滴定法(一部)检验标准操作规程,并按规程进行检验,保证检验操作规范化。

2.依据:2.1.《中华人民共和国药典》2010年版一部。

3.范围:适用于所有用电位滴定法与永停滴定法(一部)测定的供试品。

4.责任:检验员、质量控制科主任、质量管理部经理对本规程负责。

5.正文:5.1.简述。

5.1.1. 电位滴定法与永停滴定法是容量分析中用以确定终点或选择核对指示剂变色域的方法。

选用适当的电极系统可以作氧化还原法、中和法(水溶液或非水溶液)、沉淀法、重氮化法或水分测定法第一法等的终点指示。

5.1.2. 电位滴定法选用两支不同的电极。

一支为指示电极,其电极电位随溶液中被分析成分的离子浓度的变化而变化;另一支为参比电极,其电极电位固定不变。

在到达滴定终点时,因被分析成分的离子浓度急剧变化而引起指示电极的电位突减或突增,此转折点称为突跃点。

5.1.3. 永停滴定法采用两支相同的铂电极,当在电极间加一低电压(例如50mV)时,若电极在溶液中极化,则在未到滴定终点时,仅有很小或无电流通过;但当到达终点时,滴定液略有过剩,使电极去极化,溶液中即有电流通过,电流计指针突然偏转,不再回复。

反之,若电极由去极化变为极化,则电流计指针从有偏转回到零点,也不再变动。

5.2.仪器装置。

5.2.1. 电位滴定可用电位滴定仪、酸度计或电位差计,永停滴定可用永停滴定仪或按图示装置。

文件名称:电位滴定法与永停滴定法(一部)检验标准操作规程文件编号:09T-I684-01 分发部门:质量控制科图:永停滴定装置。

5.2.2. 电流计的灵敏度除另有规定外,测定水分时用10-6A/格,重氮化法用10-9A/格。

所用电极可按下表选择。

电位法和永停滴定法

电位法和永停滴定法
电极薄膜
内参比电极 电极腔体
内参比溶液
将膜电极和参比电极一起插到被测溶液中,组成电池。
则电池结构为:
外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极
(敏感膜) 内外参比电极的电位值固定,且内 充溶液中离子的活度也一定,则电池电 动势为:对阳离子: E E RT ln a i 对阴离子:
0.1mol/LAg-AgCl 电极 KCl 浓度 电极电位(V) 0.1 mol / L +0.2880 标准 Ag-AgCl 电极 1.0 mol / L +0.2223 饱和 Ag-AgCl 电极 饱和溶液 +0.1990
温度校正,(标准Ag-AgCl电极),t ℃时的电极电位为: Et= 0.2223- 6×10-4(t-25) (V)
Zn → Zn2+ 双电层 动态平衡 稳定的电位差
4.电池电动势:构成化学电池的相互接触的各相界 电位的代数和,称~。
金属的电极电位产生原理:
Zn
IHP
OHP
扩散层(δ)
相界电位
液接电位如何产生及如何消除
盐桥
可逆电极和可逆电池

可逆电极:无限小电流通过时,电极反应可逆 可逆电池:由两个可逆电极组成
*盐桥的作用: 1)防止两种电解质溶液 混和,消除液接电位, 确保准确测定 2)提供离子迁移通道 (传递电子)
续前
(二)电池的表示形式与电池的电极反应
写电池式的规则:
(1)左边电极进行氧化反应,右边电极进行还原 反应。 (2) 电极的两相界面和不相混的两种溶液之间 的界面、都 用单竖线“︱‖表示。当两种溶液 通过盐桥连接时,已消除液接电位时,则用双 竖线“‖‖表示。

16页分析化学:电位法及永停滴定法永停滴定法

16页分析化学:电位法及永停滴定法永停滴定法

永停滴定法的应用
1
永停滴定法在化学分析中有着广泛的应用,可以 用于测定物质的含量、鉴定物质的成分、研究化 学反应机理等。
2
在环境监测中,永停滴定法可以用于测定水体中 的离子、有机物、重金属等物质的含量,为环境 治理提供数据支持。
3
在食品检测中,永停滴定法可以用于测定食品中 的添加剂、防腐剂、农药残留等物质的含量,保 障食品安全。
永停滴定法的定义
• 定义:永停滴定法是一种基于电化学反应的滴定分析方法 ,通过测量电位变化来确定滴定终点。
02
电位法基本原理
电位法概述
01
电位法是一种通过测量电极电位变化来进行化学分析的方法。
02
它利用了不同物质在电极上的氧化还原反应产生的电位差,从
而实现对物质浓度的测定。
电位法具有高灵敏度、高准确度和高选择性等优点,因此在分
04
实验操作方法
实验前的准备
01
02
03
仪器准备
确保电位计、滴定管、电 极等仪器干净、准确,并 进行校准。
试剂准备
根据实验需要,准备足够 的标准溶液和试剂。
环境准备
确保实验室温度、湿度适 宜,避免干扰因素。
实验步骤
安装电极
将选择好的电极安装在电位计上。
溶液准备
将待测溶液和标准溶液分别倒入烧杯中。
结果分析
电位法分析结果
通过电位滴定曲线,我们可以确定滴定终点时的电位值,从而计算出待测离子的浓度。实验结果表明 ,电位法具有较高的准确度和精密度,适用于多种离子的测定。
永停滴定法分析结果
永停滴定法是通过观察永停仪的指针偏转来判断滴定终点的方法。实验结果表明,永停滴定法具有较 高的准确度,但操作较为繁琐,需要经验丰富的操作人员。

第8章 电位法和永停滴定法-

第8章 电位法和永停滴定法-

该电极能指示待测溶液中氯离子的活度。此外,第
二类电极如上述的银-氯化银电极,还有甘汞(Hg/Hg2Cl2) 电极,常用作参比电极。
2020年10月16日11时13
GXQ10
电位法和永停滴定法
Analytical Chemistry 分析化学
2)第二类电极 :② 由金属和金属难溶氧化物组成。 Sb,Sb2O3│H+(a)
料如铂、金、碳作为电极,例如
(-)Zn∣Zn2+(0.1mol.L-1)‖H+(0.1mol.L-1)∣H2(101325 Pa),Pt(+)
2020年10月16日11时13
GXQ6
电位法和永停滴定法
Analytical Chemistry 分析化学
电解池:
电池与外加电源连接,当外加电源的电动势大于电池电 动势,电池接受电能而充电,此化学电池即为电解池: (-)Cu∣CuSO4(1mol.L-1)‖ZnSO4(1mol.L-1)∣Zn(+)
溶液或其它介质中待测组分的电化学性质及其变化规律
的一种仪器分析方法。电位法和永停滴定法属于电分析
化学方法。
分类
电位法:直接电位法和电位滴定法
伏安法:极谱法、伏安法、
电流滴定量法、库仑法和库伦滴定法
2020年10月16日11时13
GXQ2
电位法和永停滴定法
GXQ11
电位法和永停滴定法
Analytical Chemistry 分析化学
3)第三类电极 ①金属离子与具有相同阴离子的两种难
溶盐(或络离子)组成的电极体系
Ag︱Ag2S,CdS Cd2+
1
由难溶盐溶度积得
Ag
K sp(1)

永停滴定法与电位滴定法指示终点的原理的区别

永停滴定法与电位滴定法指示终点的原理的区别

永停滴定法与电位滴定法指示终点的原理的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!永停滴定法与电位滴定法指示终点的原理的区别在化学分析中,永停滴定法和电位滴定法是常用的两种滴定方法。

《仪器分析》——电位法及永停滴定法

《仪器分析》——电位法及永停滴定法

2.303RTlga内’, +
F
a外
2.303RTlg a外
F
a内
K1 = K2 a外 =a内
0
∵a内固定
jm K
2.303 RT lg a

F
2015/3/9
26
整个玻璃电极的电位:
j
j
j
AgCl/Ag
m
j AgCl/Ag
(K'
2.303RT lg F
外)
(j AgCl/Ag
K')
2.303RT pH F
银-氯化银电极
(silver-silver chloride electrode)
均属于金属-金属难溶盐电极
2015/3/9
19
1. 饱和甘汞电极
• 组成 金属汞、甘汞(Hg2Cl2)和KCl溶液
汞 汞-甘汞糊 石棉
• 电极表示 • 电极反应 • 电极电位
Hg|Hg2Cl2|KCl溶液
Hg2Cl2 +e
Ag|AgCl|Cl-
AgCl + e
Ag+ +Cl-
j = j - 0.059 lgcCl-
( 25℃)
C KCl 0.1mol/L
j (V) 2015/3/9
0.2880
1.0mol/L 0.2223
饱和 0.1990
第三节 直接电位法
指示电极 参比电极 待测溶液
测量原电池 的电动势
由Nernst方程 式直接求出待 测溶液浓度
34
残余液接电位及其消除
残余液接电位的产生
标准缓冲溶液
饱和甘汞电极 (SCE)
待测溶液
减小残余液接电位

电位法及永停滴定法—电位滴定法(分析化学课件)

电位法及永停滴定法—电位滴定法(分析化学课件)

电位滴定法测亚铁离子含量 三、操作步骤 1.仪器准备 (1)安装滴定台 连接电极杆,
装入搅拌器、溶液杯支架,在溶液杯 中放入搅拌珠,锁紧搅拌器和溶液杯。
电位滴定装置图
14
电位滴定法测亚铁离子含量 (2)安装滴定管 在溶液杯中插入 滴定管,连接输液管,利用接口螺 母旋紧,不得有泄漏现象,插入温 度计传感器,接口插入对应的插座,连接搅拌器接 口。
1.在待测溶液中插入合适的指示电极和参比电极组成 原电池;
2.待测溶液与滴定液发生化学反应,使待测离子的浓 度不断变化;
3.指示电极的电位也相应发生变化;
4.在化学计量点附近,指示电极的电位发生突然变 化,导致电池电动势发生突变;
5.通过测量电动势的变化,可确定终点。
8
电位滴定法原理
1.准确度高 电
尖峰所对应的V值即为
化学计量点的体积
△E/△V- 曲线
3
确定化学计量点的方法(三) 2E / V—2 V 曲线法
又称二阶微商法,用 2E / V 2 对滴定液体积作图,得 到一条具有两个极值的曲线,如下图所示。
曲线上为零时所对 应的体积,即为化 学计量点的体积。
4
确定化学计量点的方法 在实际的电位滴定中传统的操作方法正逐渐被 自动电位滴定所取代,自动电位滴定能判断滴定终 点,并自动绘制出E-V曲线,E / V - V 曲线,在很大 程度上提高了测定的灵敏度和准确度。
确定化学计量点的方法 进行电位滴定时,每加一次滴定剂,测量一次 电动势,直到超过化学计量点为止。这样就得到一 系列的滴定剂用量V和相应的电动势E数据。下面介 绍几种图解法确定化学计量点的方法:
1
确定化学计量点的方法
(一)E-V曲线法
以滴定液体积V为横坐标,电位计读数值(电池

电位法及永停滴定法—永停滴定法(分析化学课件)

电位法及永停滴定法—永停滴定法(分析化学课件)
7
永停滴定原理 永停滴定法是电位滴定法中的一种,是把两个 相同铂电极插入被测液中,在两个电极之间外加一 电压,并连一电流计,滴定过程中,根据电流的变 化来确定滴定终点的滴定方法。
8
永停滴定原理
9
永停滴定原理
两支铂电极上发生的电解反应如下
阳极 2Iˉ
I2 + 2eˉ
阴极
I2 + 2eˉ
2Iˉ
2S2O
当到达化学计量点后,溶液中稍有过量的亚硝
酸钠,溶液中便有HNO2及其分解产物NO,并组成 可逆电对,在两个电极上发生的电解反应
阴极 HNO2+ H+ + e
NO + H2O
阳极 NO + H2O - e
HNO2 + H+
14
亚硝酸钠法测定芳伯胺
操作步骤
精密量取盐酸普鲁卡因注射液 适量(约相当于盐酸普鲁卡因 0.1g),加水40mL与,用稀盐酸调 节pH4.2~4.5,然后置电磁搅拌器 上,搅拌,再加溴化钾2g,插入铂铂电极
一、滴定剂为可逆电对,待测物为不可逆电对
滴定开始时没有或只有极小的电 流通过,所以,终点前电流计的指针 停在零点。终点后I2稍过量,产生可 逆电对I2/I-,使电流计指针突然偏转, 从而指示终点的到达。
3
永停滴定法确定化学计量点的方法
二、滴定剂为不可逆电对,待测物为可逆电对 滴定刚开始时,溶液中存在I2/I-可逆电对,有
I2 +2S2O32- 2I- +S4O62-
5
永停滴定法确定化学计量点的方法
三、滴定剂、被测物均为可逆电对
滴定开始时没有或只有极小 的电流通过,随着滴定的进行, 电流逐渐增大,达到最大值后又 逐渐减小,终点时电流降到最低 点。

电位法和永停滴定法

电位法和永停滴定法
测定原理: 将两个相同Pt电极插入样品溶液中,在两极间外 加低电压,连电流计,进行滴定,通过电流计指 针的变化确定SP
玻璃电极 电极管 参比电极电解液 参比电极元件体系 微孔隔离材料
图8-7 复合pH电极结构示意图
离子选择电极(ISE)
活度电极常数
浓度电极常数
K
2.303RT nF
lg ai
K
2.303RT nF
lg Ci
活度系数
(K K 2.303 RT lg fi )
nF
i
电极膜:特定 离子的敏感膜
副反应系数
a外 a内
0
膜 K 0.059 lg a外
玻璃电极的电极电位
玻 内参 膜
AgCl / Ag K 0.059 lg a外
K 0.059 lg a外
电极常数
= K - 0.059pH
(3)玻璃电极的性能
溶液中pH变化一个单
位引起玻璃电极的电
• 转换系数(电极系数,S) 位变化值
双电层
动态平衡
相界电位(phase boundary potential) 金属电极电位(electrode potential)
液体接界电位(liquid junction potential)
液接电位:两种组成(溶质)不同或组成相 同、浓度不同的电解质溶液接触界面(液接界 面)两边存在的电位。
电解池示意图
(阴极)Zn极
Cu极(阳极)
电解池示意图
双电层的形成与结构 (double eletric layer)
金属M(金属相)
→ ←
Mn+(溶液相) Zn/ZnSO4
双电层结构示意图
双电层的形成与结构

电位法和永停滴定法

电位法和永停滴定法


A. 还原反应
B. 正极
C. 氧化反应、负极
D. 阴极
2. 下列永停滴定中,以电流指针突然下降至零并保持不再
变动为滴定终点的是(

A. I2液滴定Na2S2O3液
B. NaNO2液滴定磺胺嘧啶
C. Karl Fischer法测定微量水
D.
Na
2S2O3液滴定I

2
3.甘汞电极的电极电位表达式是( )
8.4. 电位滴定法 8.4.1 仪器装置和措施原理 用电化学措施指示滴定终点旳滴定分析法。 把指示电极、参比电极和被测液构成原电池,
边滴定边统计滴定体积和电动势。化学计量点 附近,被测离子浓度有一突越,电动势也有一 突跃,从该突跃即可拟定滴定终点。
与指示剂指示终点相比旳优点: a.精确度高、易于实现自动化 b.不受溶液有色、浑浊旳限制
8.4.3 多种类型旳电位滴定
1. 酸碱滴定
常用pH玻璃电极为指示电极,饱和甘汞 电极为参比电极,与待测液构成原电池。 测定滴定过程中电动势旳变化。
也可用于测定弱酸(碱)旳平衡常数。
2. 沉淀滴定 3. 氧化还原滴定 4. 配位滴定 5. 非水溶液滴定
8.5. 永停滴定法
1. 基本原理 永停滴定法 dead-sto产生电解,无电流通过,该电极
叫不可逆电极。
例1:含I2和I-溶液中插入两 个铂电极,外加一小电压, 接正极端旳铂极: 2I- =I2+2e 氧化反应 接负极端旳铂极: I2+2e= 2I- 还原反应 产生电解,有电流经过, 所以:I2/2I-电对是可逆电对。
永停滴定过程中,反应电对: 氧化型浓度=还原型浓度时, 电流到达最大; 氧化型浓度≠还原型浓度时, 由浓度小旳氧化型或还原型浓度决定

电位滴定与永停滴定、非水滴定

电位滴定与永停滴定、非水滴定

电位滴定与永停滴定简述??电位滴定法与永停滴定法在中国药典1990年版中主要用于容量分析确定终点或帮助确定终点。

它们对一些尚无合适指示剂确定终点的容量分析和一些虽然有指示剂确定终点、但终点时颜色变化复杂难以描述终点颜色的方法非常适合。

此外对观察终点很不方便的外指示剂法和某些必须过量滴定液才能指示终点到达的容量分析方法采用电位或永停滴定法能使结果更加准确。

由于该方法设备简单精密度高所以中国药典有很多重氮化滴定法和一些非水溶液滴定法都采用它们判断终点。

还有一些巴比妥类药物为了提高方法的准确度也多采用电位法指示终点。

??药典中电位滴定法明确规定了滴定方法和电极系统以及终点的确认和计算测定电位的仪器常用通常的pH计或专用的电位滴定仪。

永停滴定法除可用专用的永停滴定仪外药典还介绍了一种简单的仪器装置按照规定装置测定结果是完全满意的。

仪器和性能要求电位滴定法和永停滴定法是较早的分析方法之一20世纪60年代我国就有商品的电位滴定仪而且一般的pH计上都装有电位测定部分可以满足电位滴定用所以使用比较广泛。

70年代后又出现自动电位滴定仪滴定到达终点时由于电级电位的急剧变化通过仪器的放大驱动而使滴定自动停止。

国外有些自动化程度更高的仪器不仅可以自动停止滴定还可以自动处理讯号和计算结果但是价格昂贵。

操作方法??按药典品种规定称取样品加溶剂溶解后置烧杯中放于电磁搅拌器上。

按规定方法选择电极系统并将电极冲洗干净用滤纸吸干水将电极连于测定仪上并浸入供试液中搅匀调整仪器电极电位至规定值作为零点然后自滴定管中分次滴加规定的滴定液同时记录滴定液读数和电位数值。

??开始时每次可加入较多量搅拌均匀记录。

至将近终点时则应每次加少量搅拌记录。

至突跃点已过仍应继续滴加几次滴定液并记录滴定液读数和电位。

??终点的确定可以采用E -V曲线法即以电位值和滴定液毫升数为纵、横座标曲线的转折部分即为滴定终点。

或以△E/△V即间隔两次的电位差和加入滴定液的体积差之比为纵座标以滴定体积V为横座标绘制△E/△V -V曲线并以△E/△V的极大值为滴定终点。

中国药品检验标操作规程 电位滴定法与永停滴定法

中国药品检验标操作规程  电位滴定法与永停滴定法

电位滴定法与永停滴定法1 简述电位滴定法与永停滴定法在《中国药典》2010年版中主要用于容量分析确定终点或帮助确定终点。

它们对一些尚无合适指示剂确定终点的容量分析和一些虽然有指示剂确定终点、但终点时颜色变化复杂,难以描述终点颜色的方法非常适合。

此外对观察终点很不方便的外指示剂法和某些必须过量滴定液才能指示终点到达的容量分析方法,采用电位或永停滴定法能使结果更加准确。

由于该方法设备简单,精密度高,所以《中国药典》有很多重氮化滴定法和一些非水溶液滴定法都采用它们判断终点。

还有一些巴比妥类药物,为了提高方法的准确度也多采用电位法指示终点。

《中国药典》中电位滴定法明确规定了滴定方法和电极系统,以及终点的确认和计算,测定电位的仪器常用通常的pH计或专用的电位滴定仪。

永停滴定法除可用专用的永停滴定仪外,《中国药典》还介绍了一种简单的仪器装置,按照规定装置测定,结果是完全满意的。

2 仪器和性能要求电位滴定法和永停滴定法是较早的分析方法之一,20世纪60年代我国就有商品的电位滴定仪,而且一般的pH计上都装有电位测定部分,可以满足电位滴定用,所以使用比较广泛。

70年代后又出现自动电位滴定仪,滴定到达终点时,由于电级电位的急剧变化,通过仪器的放大驱动,而使滴定自动停止。

国外有些自动化程度更高的仪器不仅可以自动停止滴定,还可以自动处理讯号和计算结果。

永停滴定仪《中国药典》主要用作重氮化法的终点指示或水分测定的终点指示。

它是采用二支相同的铂电极,在二电极间加上低电压(例如50mV),若溶液中的电极处于极化状态,则在未到滴定终点前二电极间无电流或仅有很小的电流通过;当到达终点时,滴定液略有过剩使电极去极化,电极间即有电流通过,电流计指针突然偏转不再恢复。

《中国药典》附录的装置简单适用,能满足《中国药典》规定的重氮化滴定需要,但使用的电流表必须符合要求,测水分可用10-6A/格,重氮化法可用10-9 A/格。

自动永停滴定仪的滴定液能自动停止滴加,但必须严格掌握滴定条件,否则容易产生故障,近年来一些产品质量和功能虽然有所提高,但在使用时仍需十分注意。

电位法和永停滴定法

电位法和永停滴定法
阳离子 用“+” ; 阴离子用“-”。
(二)电极性能
1.选择性:指电极对被测离子和共存干扰 离子响应程度的差异。
2.303RT K lg( a X nX F

a
n X nY K X,Y aY
)
电位选择性系数 K X,Y
aX
n X nY Y
X:响应离子;Y:干扰离子 ; nX、nY:待测离子、干扰离子的电荷。
3.特点: (1)准确度高,重现性和稳定性好; (2)灵敏度高,10-4~10-8 mol / L; (3)选择性好(排除干扰); (4)应用广泛(常量、微量和痕量分析); (5)仪器设备简单,易于实现微型化、自动 化。
§2
电位法基本原理
一、化学电池: 一种电化学反应器,由两个电极插入适当电 解质溶液和外电路组成,实现化学反应能与电能 相互转化。【无液接界电池和有液接界电池】
SCE 0.2412 V
1.电极引线; 2.侧管; 3.汞; 4.甘汞糊; 5.石棉或纸浆; 6.玻璃管; 7.KCl溶液; 8.电极玻壳; 9.素烧瓷片
3.银-氯化银电极: 电极表示式 Ag︱AgCl︱Cl- (x mol/L) 电极反应式 AgCl + e → Ag + Cl-
0.059 lg aCl
2. 分类:根据所测量化学电池的电化学参数 的不同分为: ⑴ 电解分析法:电重量法,库仑法,库仑滴 定法; ⑵电位分析法:直接电位法,电位滴定法; ⑶ 电导分析法:直接电导法,电导滴定法; ⑷ 伏安分析法:极谱法,溶出法,电流滴定 法。
电位分析法:
将试样溶液与适当的电极组成化 学电池,通过对化学电池的电池电动 势和电极电位的测定,根据电极电位 与化学电池电解质溶液中某种组分浓 度的对应关系而实现定量测量。 根据电动势或电极电位的变化来 确定滴定终点的方法称为电位滴定法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档