外文翻译高速切削加工的发展及需求
外文翻译---高速切削加工在模具制造中的新应用
翻译部分英文原文High-speed cutting processing in mold manufacture applicationA.J.G. Nuttall *, G. LodewijksAbstract The current mold application is widespread, also had the very big development with it related die making technology. At present, used the high-speed cutting production mold already to become the die making the general trend. In some mold Manufacturer, the high speed engine bed big area substitution electrical discharge machine, the high-speed cutting production mold already gradually became the die making the general trend. It can improve mold's size, the shape and the surface roughness, reduces even omits the manual sharpening, thus reduces production cost and the reduction manufacturing cycle. This article through to the traditional mold processing craft and the high speed mold processing craft's contrast, elaborated the high-speed cutting processing superiority. In the article also briefly introduced the high-speed cutting processing in the processing craft aspect key technologies.Keywords High-speed cutting Grinding tool Grinding tool processing Process technology1 Introduction1.1 IntroductionAlong with the advance in technology and the industry swift development, the mold already became in the industrial production to use the extremely widespread main craft to equip now. The mold takes the important craft equipment, in Industry sectors and so on consumable, electric appliance electron, automobile, airplane manufacture holds the pivotal status. The manufactured products components rough machining 75%, the precision work 50% and the plastic parts 90% will complete by the mold. At present the Chinese mold market demand has reached 50,000,000,000 Yuan scales, our country die making market potential is huge. The mold is one kind of special-purpose tool, uses in forming () each metal or the nonmetallic material needs the components the shapeproduct, this kind of special-purpose tool general designation mold. The mold is in the industrial production the most foundation equipment, is realizes the few cuttings and the non-cutting essential tool. The mold has widely used in the industrial production each domain, like the automobile, the motorcycle, the domestic electric appliances, the instrument, the measuring appliance, the electron and so on, in them 60%~80% components need the mold to carry on the manufacture; The highly effective production in enormous quantities's, bolt, nut and gasket standard letters and so on plastic also need the mold to produce; The engineering plastics, the powder metallurgy, the rubber, the alloy compression casting, the glass formation and so on need to use the mold to take shape.1.2 High-speed cutting process technologyAs the name suggests, the high-speed cutting, first is the high speed, namely must have the high spindle speed, for instance 12000r/min, 18000r/min, 30000r/min, 40000r/min, even also had a higher rotational speed still in the experiment; On the other hand, should also have the bigger to feed quantity, like 30000mm/min, 40000mm/min, even 60000mm/min; Has is after again the rapid traverse, trades fast the knife, the main axle trade the knife, from the static state arrives its needs rotational speed rise time and so on, only then achieved the above standards to be able to call it high speed.Next is must aim at the different processing object, the different degree of hardness, the different material quality, the different shape to choose the corresponding reasonable parameter, but cannot pursue constantly to be high speed and be high speed, regarding the die space processing, the shape is specially complex, but the cutting tool diameter is also small time, because cutting tool's path is not the simple translation, but is the curve, even has right angle corner time, technological parameter rational especially important, if because wants to maintain the identical feed rate carries on the orthogonal cutting, will not be able to do well will cause as a result of the engine bed moving part's huge inertia the cutting tool will make when the bend angle movement to break suddenly, but the variable motion can, becauseMovements and so on acceleration and deceleration create the thickness of cutting the instantaneous change, but causes the cutter change to enable the work piece surface to have cuts, from this causes the processing drop in quality, therefore, in view of the different processing object, needs the programmers to choose the reasonable cutting tool path, optimized cutting parameter; On the other hand, according to needs to choose the suitable cutting velocity,only then can display the high-speed cutting truly like the strong point.The high-speed cutting (HSC) is an advanced technique of manufacture which for the past ten years rapidly rises. Because the high-speed cutting technology has the cutting efficiency to be high, the processing quality high, can process the hard steel stock and the good efficiency directly, causes profession and so on aviation, mold, automobile, light industry and information production efficiencies and the manufacture quality obviously enhances, and causes the processing craft and the equipment corresponding renewal. Therefore is similar to the numerical control technology is the same, the high-speed cutting and the high speed processing have become in the 21st century a machine-building industry influence profound technological revolution. At present, adapts the HSC request high speed machining center and other high speed numerically-controlled machine tool has assumed the popularization tendency in the developed country, our country recently is also speeding up the development.The high-speed cutting processing is faces for the 21st century a high technology and new technology, it is one kind is different with the traditional processing processing way. Compares with it, the high-speed cutting processing main axle rotational speed high, cuts high for the speed, the cutting quantity is small, but in the unit time material excises the quantity to increase 3 ~ 6 times actually. It take the high efficiency, the high accuracy and the high surface quality as the basic characteristic, in profession and so on in automobile industry, aerospace, mold manufacture and instrument measuring appliance has obtained the increasingly widespread application, and has obtained the significant technology economic efficiency, is the contemporary advanced manufacture technology important constituent.When with traditional way processing mold, often uses the electric spark machining, but the electrode design and makes itself is the technological process which time-consuming takes the trouble. But after uses the high-speed cutting processing, because the narrow and small region processing realization and the high grade superficial result, let the electrode the utilization ratio reduce greatly. Moreover, makes the electrode with the high speed mill also to be possible to make the production efficiency to enhance to a new scale.The major part mold may use the high-speed cutting technology to process, like the forging die, the compression casting mold, cast with the blow molding mold and so on. Hammers the cavity body shallowly, the cutting tool life is long; Compressioncasting mold size moderate, the productivity is high; Casts with the blow molding mold general size small, quite is economical.2 the high-speed cutting processing mold relative tradition processes the mold the superiority2.1 Enhances the productivityIn the high-speed cutting the main axle rotational speed and enters for the speed enhancement, may enhance material removing rate. At the same time, the4high-speed cutting may process the hard components, a many Cmmponents attipe clamps may complete thick, half essence and the precision work and so on the complete working procedure, also may meet the components surface quality requirements directly to the complex profile processing, therefore, the high-speed cutting craft often may save the electric spark Machining, manually rub repairs and so on the working procedure, reduces the craft route, then enhances the processing productivity greatly.The high-speed cutting processing permission use big to feed rate, enhances 5~10 times compared to the convention machining, the unit interval/unit time material excision rate may enhance 3~6 times, the process period may reduce greatly. This may use in processing needs to excise the metal massively the components, specially has the very vital significance regarding the aviation industry.2.2 Improvement processing precishon and surface qualhtyThe high rpeed engine bed must have high performance and so on rigidity and high accuracy, at the same time because cutting force low, the work piece thermal deformation reduces, the cutting tool distorts slightly, the high-speed cutting processing precision Is very high. Depth of cut small, but enters for the speed quickly, the processing surface roughness is very small, cuts when the aluminum alloy may reach Ra0.4 ~ 0.6, when cutting steel stock may reach Ra0.2 ~ 0.4.Compares with the conventional cutting, when high-speed cutting processing the cutting force may reduce 30% at least, this may reduce the processing regarding the processing rigidity bad components to distort, causes some thin wall class fine work piece the machining into possible. Because revolves high speed time the cutting tool cuts the excitation frequency is far away from the craft system's forced oscillation, has guaranteed the good processing condition. Because the cutting force is too small, cutthe hot influence to be small, causes the cutting tool, the work piece distortion to be small, maintained the size accuracy, moreover also caused the friction between the cutting tool work piece changes is small, the cutting destruction level thinned, the residual stress was small, has realized the high accuracy, the low roughness processing.2.3 The reduced cutting produces quantity of heatBecause the high-speed cutting processing is the shallow cutting, simultaneously the feed rate is very quick, the knife edge and the work piece contact length and the contact duration were short, reduced the knife edge and the work piece heat conduction, has avoided when the traditional processing met everywhere in the cutting tool and the work piece to have the big calorimetry shortcoming, guaranteed that the cutting tool worked under the temperature not high condition, lengthened cutting tool's service life. As shown in Figure 1, A is time the high-speed cutting processing heat conduction process, B is the traditional processing heat conduction process.Fig.1 high speed processing and traditional processing heat conductionThe high-speed cutting processing process is extremely rapid, 95% above cutting quantity of heat are extremely few, components not because the temperature rise will cause the warp or the inflation distortion. The high-speed cutting is suitable specially for the processing easy thermal deformation components. Is low regarding the processing melting point the metal which, easy to oxidize (for example magnesium), the high-speed cutting has certain significance.2.4 advantageoued in the processing thin wall componentsTime high-speed cutting's cutting force is small, has the high stability, but the high quality processes the thin wall components. Uses as shown in Figure 2 the lamination down milling the processing method, but high-speed cutting wall thickness 0.2mm, wall high 20mm thin wall components. This time, the knife edge and the work piececontact duration was short, has avoided the sidewall distortion.Figure.2 high-speed cutting thin wall components2.5 change the part substitutes certain crafts, like electric spark machining, abrasive machining and so onHigh strength and the high degree of hardness's processing is also a high-speed cutting major characteristic, at present, the high-speed cutting has been possible the work hardness to reach HRC60 the components, therefore, the high-speed cutting can process after the heat treatment hardens the work piece. In the tradition processes in mold's craft, before the precision work, hardens the work piece after the heat treatment to carry on the electric spark machining, may omit in the die making craft with the high-speed cutting processing substitution tradition cutting's processing method the electric spark machining, simplified the processing craft and the cost of investment.the mold's size, the shape and the surface roughness are very important, if after processing the mold cannot meet the requirements the quality precision, needs the massive handworks to rub repairs the work, the handwork rubs repairs can obtain the good surface quality, but it will affect mold's size and the shape precision. Therefore must omit as far as possible in the mold processing rubs manually repairs, improves the mold quality, reduces the production cost and the manufacturing cycle.Figure 3 is the traditional mold processing process: The semifinished materials -> rough machining -> semi-finishing -> heat treatment hardens -> the electric spark machining -> precision work -> to rub manually repairs. Figure 4 is the high speed mold processing process: Hardened semifinished materials -> rough machining -> semi-finishing -> precision work.Figure.3 the traditional mold processes processFigure 4 the high speed mold processes processin Figure 4, in the high speed mold machining process reduced two technological processes, probably reduces the process period 30%~50%. In the traditional processing craft's electric spark machining forms the hardened level easily in the melting processing surface layer, degree of hardness may reach 1000Hv, brings the difficulty for the following machining and the abrasive machining. The electric spark machining also easy to cause the surface layer fatigue cracking and cutting tool's breakage.2.6 Economic efficiency remarkable enhancementSynthesis above all sorts of merits, namely: The comprehensive efficiency will improve, the quality enhances, the working procedure simplifies, the engine bed investment and the cutting tool investment as well as the maintenance cost increase and so on, will use the high-speed cutting craft to cause the synthesis economic efficiency remarkable enhancement.3 high-speed cutting processing craft essential technologyThe high speed engine bed and the high speed cutter are the realization high-speed cutting premise and the basic condition, has the strict request in the high-speed cutting processing to the high speed engine bed performance and the cutting tool material choice.In order to realize the high-speed cutting processing, uses the high flexible high speed numerical control engine bed, the processing center generally, also some usespecial-purpose high speed mills, drilling machine. At the same time the engine bed has the high speed main axle to be systematic and the high rapid advance or progress gives the system, the high main axle rigidity characteristic, the high accuracy localization function and the high accuracy insert makes up the function, specially the circular arc high accuracy inserts makes up the function.The high-speed cutting cutting tool and ordinary processes the cutting tool the material to have is very greatly different. The main use cutting tool material has the hard alloy, the crystal combination diamond (PCD), the crystal combination cube boron nitride (PCBN) and the ceramics and so on.The high-speed cutting craft technology also is carries on the high-speed cutting processing the key. The cutting method chooses is improper, can make the cutting tool to intensify the attrition, cannot achieve the high speed processing completely the goal. The practice proved, if only then the high speed engine bed and the cutting tool but do not have the good craft technology to make the instruction, the expensive high-speed cutting processing equipment cannot fully play the role. The high-speed cutting processing craft essential technology mainly includes the cutting method and the cutting parameter choice optimization.a. Cutting way choiseIn the high-speed cutting processing, should select the down milling processing as far as possible, because in down milling time, the cutting tool just cut into the thickness of chip which the work piece produces to a big way, afterward reduces gradually. When up milling, the cutting tool just cut into the thickness of chip which the work piece produces to be smallest, afterward the accumulation, increased the cutting tool and the work piece friction like this gradually, has the big calorimetry on the knife edge, therefore produces in the up milling quantity of heat when down milling are more than, the radial force also greatly increases. Meanwhile in the down milling, the knife edge main compression stress, but when the up milling the knife edge tension stress, the stressful condition is bad, reduced cutting tool's service life, the down milling and the up milling the cutting tool cuts into the work piece the process, as shown in Figure 5.Figure.5 the cutting tool cuts into the work piece the process hintb. Maintains constant metal removing rateThe high-speed cutting processing is shallowly suitable for shallowly to cut the depth, the depth of cut should not surpass 0.2/ 0.2mm (ae/Ap), this is for avoids the cutting tool the position deviation, guarantees processes the mold the geometry precision. Maintains constant metal removing rate, guaranteed adds on the work piece the cutting load is constant, by obtains following several good processing effect: (1) may maintain constant cutting load; (2) may maintain the scrap size constant; (3) has the good hot shift; (4) the cutting tool and the work piece maintain at the cold condition;(5) does not need skilled to operate for the quantity and the main axle rotational speed;(6) may lengthen the cutting tool the life; (7) can guarantee the good processing quality and so on.c.choice of the Feeds wayRegarding has opens the mouth die space the region, feeds as far as possible from material outside, by real-time analysis material cutting condition. But regarding does not have the die space enclosed area, selects the screw feed method, cuts into the local region.d. As far as possible reduced cutting tool's commutation rapidlyReduces the cutting tool as far as possible the rapidly commutation, because the zigzag pattern mainly applies in the traditional processing, mainly chooses the return route or the sole way cutting in the high-speed cutting processing. This is because in commutation time the NC engine bed must stop (urgently changing down) immediately then the again execution next step of operation. As a result of engine bed acceleration limitation, but is easy to create the time the waste, stops anxiously or whips then can destroy the surface roughness, also has the possibility because has cut but produces the broach or in the outside undercut. Chooses the sole way cutting pattern to carry on thedown milling, does not sever the cutting process and the cutting tool way as far as possible, reduces the cutting tool to cut into as far as possible cuts the number of times, by obtains the relatively stable cutting process.For example, in the cutting mold corner processing, the traditional processing method is uses the translation (G1), when the cutting tool cuts to the fillet place, the velocity of movement reduces speed, at the same time when enters for the commutation the cutting tool movement is not continuously, can have the massive friction and the quantity of heat in the intermittent process, if processes the aluminum alloy or other light metal alloys, produces the quantity of heat will damage the work piece surface quality.If uses the high-speed cutting processing the method, the use is smaller than the cutting mold corner radius cutting tool, the use high speed engine bed high accuracy circular arc inserts makes up the function (G2, G3) processes the mold corner, the high speed engine bed circular arc inserts makes up the movement is the continuous process, cannot have the cutting tool intermittent motion, thus reduced the cutting tool and the mold contact length and the time, avoids having the massive heat.e In Z direction cutting continual planeThe traditional processing die space's method uses the profile milling, this processing way increased the cutting tool to cut into, to cut the work piece the number of times, has affected the work piece surface quality, has limited the engine bed and the cutting tool formidable function display. In the high-speed cutting processing, often uses the Z direction cutting continual plane. Uses step pitch which is smaller than the convention, thus reduces each tooth cutting elimination quantity, the improvement processing surface's quality, reduced the process period.4 High-speed cutting process technology in die making applicationThe high-speed cutting process technology has a series of characteristics and the production benefit aspect's great potential, already becomes country competition research and so on Germany, US and Japan important areas of technology. Now, US, Germany, Japan, France, Switzerland, Italy produce the different specification's each kind of commercialization high speed engine bed already entered the market, applies in the airplane, the automobile and the die making.Along with the high-speed cutting process technology introduction mold industry,has had the very tremendous influence to the traditional mold processing craft, changed the mold processing technical process. Because the mold profile is the very complex free surface generally, and degree of hardness is very high, uses conventional the machining method to satisfy the precision and the shape request with difficulty. The conventional processing method is after the annealing carries on the milling processing, then carries on the heat treatment, the grinding or the electric spark machining, finally the manual polish, polishing, cause the processing cycle to be very long like this. Specially the manual process period, must account for the entire processing cycle to be very big a part. HSC may achieve the accuracy requirement which the mold processes, reduced has even cancelled the manual processing, because and new cutting tool material (for example PCD, PCBN, cermet and so on) the appearance, HSC may the work hardness achieve HRC60, even degree of hardness higher work piece material, after might process hard mold, substitution electric spark machining and abrasive machining.The high speed milling processing has the highly effective high accuracy in the die making as well as may process the high hard material the merit, already obtained the widespread application in the industrially advanced country. The high-speed cutting process technology introduction mold industry, mainly applies in the following several aspects:1) hard mold die space direct processing. After using the high-speed cutting to be possible to process the hard material the characteristic direct processing hard mold die space, improved the quality which and the efficiency the mold processes, may substitute for the electric spark machining.(2) EDM (electric spark) electrode processing. Applied the high-speed cutting technology processing electrode to raise the electric spark machining efficiency to play the very major role. The high-speed cutting electrode improved electrode's surface quality and the precision, reduced the following working process.(3) fast sample workpiece manufacture. Uses the high-speed cutting processing efficiency high characteristic, may use in processing the plastic and the aluminum alloy model. After the CAD design produces the 3D full-scale mockup fast, is higher than the fast prototype manufacture efficiency, the quality is good.(4) mold's fast repair. The mold often needs to repair in the use process, lengthensthe service life, in the past was mainly completes depending on the electrical finishing, now uses the high speed processing to be possible to complete this work quickly, moreover might use the original NC procedure, did not need to establish.5 ConclusionThe high-speed cutting processing uses the high cutting velocity and the feed rate, the small radial direction and the axial depth of cut, the cutting force is small, the processing surface roughness is very small, cutting tool life enhancement; With the high-speed cutting processing way substitution tradition processing way processing mold, might omit the electric spark machining and rub manually repairs, raised the productivity which the mold processed, reduced the production cost, reduced the processing cycle; When research high-speed cutting processing, must unify closely with the high-speed cutting processing technology, realizes the high efficiency, the high accuracy truly and the redundant reliable goal.The high-speed cutting process technology is the advanced technique of manufacture, has the broad application prospect. Replaces EDM with the high-speed cutting processing (or majority of replaces) speeds up the mold development speed, realizes the craft update major step. The promoted application high-speed cutting process technology applies in the mold manufacturing industry, not only may enhance the machine-finishing large scale the efficiency, the quality, reduces the cost, moreover may lead a series of high technology and new technology industry the development. Therefore, current strengthens the high-speed cutting technology the basic research, establishes the high-speed cutting database, the high-speed cutting safety work standard, enhances the engine bed and tool profession development innovation ability, speeds up the high-speed cutting cutting tool system, the high-speed cutting engine bed system's research development and the industrial production, already was the urgent matter.References[1] A.C. Low, J.W. Kyle, Grinding tool technology recent development, TheMechanical Engineers Association, London, 1986. High-speed cutting and grinding tool manufacture[2] K.L. Johnson, High-speed cutting and grinding tool manufacture, Cambridge University Press, Cambridge, 1985.[3] W.DMay, E.L. Morris, D. Atack, new using of Cutting technology, Applied Physics 30 (1959) 1713–1724.[4] S.C. Hunter, Grinding tool manufacture, Applied Mechanics 28 (1961) 611–617.[5] G. Lodewijks, Dynamics of Belt Systems, Thesis, Delft University of Technology, Delft, 1995.[6] A.N. Gent, High-speed cutting outline, Carl Hanser Verslag, 2001.中文译文高速切削加工在模具制造中的新应用A.J.G. Nuttall *, G. Lodewijks摘要当前模具应用广泛,与之相关的模具制造技术也有了很大的发展。
外文翻译---高速切削加工的发展及需求
毕业设计(论文)外文资料翻译学院(系):机械工程系专业:机械工程及自动化姓名:学号:外文出处:High-speed machining and demandFor the development附件:1.外文资料翻译译文;2.外文原文附件1:外文资料翻译高速切削加工的发展及需求高速切削加工是当代先进制造技术的重要组成部分,拥有高效率、高精度及高表面质量等特征。
本文介绍此技术的定义、发展现状、适用领域以及中国的需求情况。
高速切削加工是面向21世纪的一项高新技术,它以高效率、高精度和高表面质量为基本特征,在汽车工业、航空航天、模具制造和仪器仪表等行业中获得了愈来愈广泛的应用,并已取得了重大的技术经济效益,是当代先进制造技术的重要组成部分。
高速切削是实现高效率制造的核心技术,工序的集约化和设备的通用化使之具有很高的生产效率。
可以说,高速切削加工是一种不增加设备数量而大幅度提高加工效率所必不可少的技术。
高速切削加工的优点主要在于:提高生产效率、提高加工精度及降低切削阻力。
有关高速切削加工的含义,目前尚无统一的认识,通常有如下几种观点:切削速度很高,通常认为其速度超过普通切削的5-10倍;机床主轴转速很高,一般将主轴转速在10000-20000r/min以上定为高速切削;进给速度很高,通常达15-50m/min,最高可达90m/min;对于不同的切削材料和所釆用的刀具材料,高速切削的含义也不尽相同;切削过程中,刀刃的通过频率(Tooth Passing Frequency)接近于“机床-刀具-工件”系统的主导自然频率(Dominant Natural Frequency)时,可认为是高速切削。
可见高速切削加工是一个综合的概念。
1992年,德国Darmstadt工业大学的H. Schulz教授在CIRP上提出了高速切削加工的概念及其涵盖的范围,如图1所示。
认为对于不同的切削对象,图中所示的过渡区(Transition)即为通常所谓的高速切削範围,这也是当时金属切削工艺相关的技术人员所期待或者可望实现的切削速度。
外文翻译数控技术和装备发展趋势及对策
外文翻译---数控技术和装备发展趋势及对策附录二数控技术和装备发展趋势及对策正文:数控技术是指用数字信息对机械运动和工作过程进行控制的技术。
而数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备。
其中数控技术和数控装备的范围覆盖很多领域:(1)机械制造技术; (2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
在未来经济技术发展的大趋势下数控技术和数控装备都有其相应的发展趋势,同时,为适应世界潮流的变化,中国在这些方面必定有自己的研究方向与发展策略。
(一)、数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。
从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面[1~4]。
1、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
为此日本先端技术研究会将其列为5大现代制造技术之一。
国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在轿车工业领域,年产30万辆的生产节拍是 40 秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。
近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。
这些都对加工装备提出了高速、高精和高柔性的要求。
外文翻译---高速研磨技术的应用与展望
外文翻译英文原文:High-speed grinding ---applications and futuretechnologyAbstractThe basic mechanisms and the applications for the technology of high-speed grinding with CBN grinding wheels are presented. In addition to developments in process technology associated with high-speed machining, the grinding machine, coolant system, and the grinding tool also need to adapt to high-speed machining. Work piece-related factors inurning the results of machining are also discussed. The paper concludes with a presentation of current research and future developments in the area of high-speed grinding, and the development of high-speed CBN camshaft grinding. All rights reserved.1. IntroductionMore than 25 years of high-speed grinding have expanded the field of application for grinding from classical finish machining to high-performance machining. High-speed grinding offers excellent potential for good component quality combined with high productivity. One factor behind the innovative process has been the need to increase productivity for conventional finishing processes. In the course of process development it has become evident that high-speed grinding in combination with preliminary machining processes close to the finished contour enables the configuration of new process sequences with high-performance capabilities. Using the appropriate grinding machines and grinding tools, it is possible to expand the scope of grinding tohigh-performance machining of soft materials. Initially, a basic examination of process mechanisms is discussed that relates the configuration of grinding tools and the requirements of grinding soft materials. The effect of an effective and environmentally friendly coolant system is also investigated in addition to the effect of workpiece-related variables on the suitability of using high-speed grinding techniques.2. Theoretical basis of high-speed grindingIn view of the random distribution of cutting edges and cutting-edge shapes, statistical methods are applied to analyses the cutting mechanism in grinding. The mean unreformed chip thickness, h cu, and the mean chip length, l cu, are employed as variables to describe the shape of the chip. The unreformed chip thickness is dependent on the static density of cutting edges, C stat, and on the geometric and kinematics variables [1,2]:(1)where V w is the work piece speed, V S the grinding wheel speed, a e the depth of cut, d eq the equivalent grinding wheel diameter, and α,β,γare greater than zero. On the basis of this relationship, it can be established that an increase in the cutting speed, assuming all other conditions are constant, will result in a reduction in the unreformed chip thickness. The work piece material is machined with a larger number of abrasive grain contacts. At the same time, the number of cutting edges involved in the process decreases. This leads to the advantages promised by high-speed grinding which is characterized by a reduction in grinding forces, grinding wheel wear, and in work piece surface roughness. Consequently, increasing the speed of the grinding wheel can lead to an increase in the quality of the work piece material, or alternatively, an increase in productivity. The process technology depends on the characteristics and quality requirementsof the work piece to be machined.As the cutting speed increases, the quantity of thermal energy that is introduced into the work piece also increases. An increase in cutting speed is not normally accompanied by a proportional reduction in the tangential grinding force, and thus results in an increase in process power. Reducing the length of time the abrasive grain is in contact with the work piece can reduce the quantity of heat into the work piece. An increase in the machining rate of the process is necessary for this to happen, where the chip thickness is increased to the level that applies to lower cutting speeds withoutoverloading the grinding wheel.Experimental results [3] illustrate that increasing the cutting speed by a factor of two while maintaining the same metal removal rate leads to a reduction in the tangential force but, unfortunately, leads to an increase in the amount of work done. Owing to constant grinding time, there is an increase in the process energy per work piece and, subsequently, in the total thermal energy generated. When the material removal rate is also increased the rising tangential force results in a further increase in grinding power. The quantity of thermal energy introduced into the work piece is lower than the initial situation when the same-machined work piece volume applies despite the higher cutting speed and increased metal removal rate. These considerations show that machining productivity can be increased using high-speed grinding without having to accept undesirable thermal effects on ground components.There are three fields of technology that have become established for high-speed grinding. These are1. High-speed grinding with CBN grinding wheels.2. High-speed grinding with aluminum oxide grinding wheels.3. Grinding with aluminum oxide grinding wheels in conjunction with continuous dressing techniques (CD grinding).Material removal rates resulting in a super proportional increase in productivity for component machining have been achieved for each of these fields of technology in industrial applications [4,5] (Fig. 1). High equivalent chip thickness of between 0.5 and 10 mm are a characteristic feature of high-speed grinding. CBN high-speed grinding is employed for a large proportion of these applications. An essential characteristic of this technology is that the performance of CBN is utilized when high cutting speeds are employed.3. Grinding tools for high-speed grindingCBN grinding tools for high-speed machining are subject to special requirements regarding resistance to fracture and wear. Good damping characteristics, high rigidity, and good thermal conductivity are also desirable. Such tools normally consist of a body of high mechanical strength and a comparably thin coating of abrasive attached to the body using a high-strength adhesive. The suitability of cubic boron nitride as an abrasive material for high-speed machining of ferrous materials is attributed to its extreme hardness and its thermal and chemical durability.High cutting speeds are attainable above all with metal bonding systems (Fig. 2). One method that uses such bonding systems is electroplating, where grinding wheels are produced with a single-layer coating of abrasive CBN grain material. Theelectro-deposited nickel bond displays outstanding grain retention properties. This provides a high-level grain projection and large chip spaces. Cutting speeds of 280 m s-1 are possible [6]. The service life ends when the abrasive layer wears out.The high roughness of the cutting surfaces of electroplated CBN grinding wheels has disadvantageous effects. The high roughness is accountable to exposed grain tips that result from different grain shapes and grain diameters. Although electroplated CBN grinding wheels are not considered to be dressable in the conventional sense, the resultant workpiece surface roughness can nevertheless be influenced within narrow limits by means of a so-called touch-dressing process. This involves removing the peripheral grain tips from the abrasive coating by means of very small dressing infeed steps in the range of dressing depths of cut between 2 and 4 mm, thereby reducing the effective roughness of the grinding wheel [7].Multi-layer bonding systems for CBN grinding wheels include sintered metal bonds, resin bonds, and vitrified bonds. Multi-layer metal bonds possess high bond hardness and wear resistance. Profiling and sharpening these tools is a complex process, however, on account of their high mechanical strength. Synthetic resin bonds permit a broad scope of adaptation for bonding characteristics. However, these tools also require a sharpening process after dressing. The potential for practical application of vitrified bonds has yet to be fully exploited. In conjunction with suitably designed bodies, new bond developments permit grinding wheel speeds of up to 200 m s-1. In comparisonwith other types of bonds, vitrified bonds permit easy dressing while at the same time possess high levels of resistance to wear. In contrast to impermeable resin and metal bonds, the porosity of the vitrified grinding wheel can be adjusted over a broad range by varying the formulation and the manufacturing process. As the structure of vitrified bonded CBN grinding wheels results in a subsequently increased chip space after dressing, the sharpening process is simplified, or can be eliminated in numerous applications. Fig. 3 shows a typical microstructure of a vitrified CBN grinding wheel. The selection of the appropriate grade of vitrified CBN grinding wheel for high-speed grinding is more complicated than for aluminium oxide grinding wheels. Here, the CBN abrasive grain size is dependent on specific metal removal rate, surface roughnessrequirement, and the equivalent grinding wheel diameter. As a starting point when specifying vitrified CBN wheels, Fig. 4 shows the relationship between CBN abrasive grain size, equivalent diameter, and specific metal removal rate for outside diameter grinding operations. However, the choice of abrasive grain is also dependent on the surface roughness requirement and is restricted by the specific metal removal rate. Table 1 shows the relationship between CBN grain size and their maximum surface roughness and specific metal removal rates. The workpiece material has a significant influence on the type and volume ofvitrified bond used in the grinding wheel. Table 2 shows the wheel grade required for a variety of workpiece materials that are based on crankshaft and camshaft grindingoperations.The stiffness of the component being ground has a significant effect on the workpiece/wheel speed ratio. Fig. 5 demonstrates the relationship between this ratio and the stiffness of the component. Steels such as AISI 1050 can be ground in the hardened and the soft state. Hardened 1050 steels are in the range 62±68 HRc. They are burn sensitive and as such wheels speeds are limited to 60 m sÿ1. The standard structure contains the standard bonding system up to 23 vol.%. Whereas the abrasive grain volume is contained at 37.5 vol.%. Lower power machine tools usually have grinding wheels where a part of the standard bonding system contains hollow glass spheres (up to 12 vol.%) exhibiting comparable grinding ratios to the standard structure system. These specifications also cover most powdered metal components based on AISI 1050 and AISI 52100 ball bearing steels. Softer steels are typically not burn sensitive, but do tend to `burr' when ground. Maximum wheel and work speeds are required in order to reduce equivalent chip thickness. High pressure wheel scrubbers are required in order to prevent the grinding wheel from loading. Grinding wheel specification is based on an abrasive content in the region of 50 vol.% and a bonding content of 20 vol.% using the standard bonding system operating at 120 m s-1. Tool steels are very hard and grinding wheels should contain 23 vol.% standard bonding system and 37.5 vol.% CBN abrasive working at speeds of 60 m s-1. Inconel materials are extremely burn sensitive, and limited to wheel speeds of 50 m s-1and have large surface roughness requirements, typically 1 μm (Ra). These grinding wheels contain porous glass sphere bonding systems with 29 vol.% bond, or 11 vol.% bond content using the standard bonding system.In addition to the need to select the appropriate bonding system for grinding wheels in accordance with the requirements of the application concerned, the strength of the body of the grinding wheel requires optimization with high cutting speeds. In the case of very high cutting speeds, conventional grinding wheel designs involving a rectangular body and a bore often leads to excessive and irregular extensions of the body and cracking of the abrasive coating. In order to eliminate the possibility ofhigh-speed grinding wheels failing, the material and the geometry of the body must be able to cope with very high cutting speeds. A further aim of the body of the grinding wheel must be to reduce the magnitude of centrifugal forces by optimizing the shape of the body of the grinding wheel without impairing operational safety. Excessive stress in the body of the grinding wheel is to be avoided, and the smallest possible extension of the body is tolerated. A reduction in mass is also necessary to move critical natural frequencies of the system in the direction of higher rotational speeds. Developments in high-speed grinding wheel design have focused on redesigning and optimizing the shape of body for both vitrifiedCBN [8,9] and electroplated CBN grinding wheels [10].4. High-speed machine tool developmentThe advantages of high-speed CBN grinding can only be realised in an effective manner if the machine tool is adapted to operate at high cutting speeds. In order to attain very high cutting speeds, grinding wheel spindles and bearings are required to operate at speeds in the order of 20 000 rpm. The grinding wheel/spindle/motor system must run with extreme accuracy and minimum vibration in order to minimise the level ofdynamic process forces. Therefore, a high level of rigidity is required for the entire machine tool. Balancing of high-speed grinding wheels is also necessary at high operating speeds using dynamic balancing techniques. These techniques are required so that workpiece quality and increased tool life is preserved.Another important consideration is the level of drive power required when increases in rotational speed become considerable. The required total output is composed of the cutting power, Pc, and the power loss, Pl:The cutting power is the product of the tangential grinding force and the cutting speed:The power loss of the drive is comprised of the idle power of the spindle, PL, and power losses caused by the coolant, PKSS, and by spray cleaning of the grinding wheel, PSSP, thusThe power measurements shown in Fig. 6 confirm the influence of the effect of cutting speed on the reduction of cutting power. However, idling power has increased quite significantly. The grinding power, Pc, increases by a relatively small amount when the cutting speed increases and all other grinding parameters remain constant. However, this means that the substantial power requirement that applies at maximum cutting speeds results from a strong increase in power is due to rotation of the grinding wheel, the supply of coolant, and the cleaning of the wheel.The quantities and pressures of coolant supplied to the grinding wheel and the wheel cleaning process are the focus of attention by machine tool designers. This is shown in Fig. 7 [11]. The power losses associated with the rotation of the grinding wheel are supplemented by losses associated with coolant supply and wheel cleaning. The losses are dependent on machining parameters implying that machine settings and coolant supply need to be optimised for high-speed grinding.In addition to the advantage of effectively reducing the power required for grinding, optimisation of the coolant supply also offers ecological benefits as a result of reducing the quantities of coolant required. Various methods of coolant supply are available such as the free-flow nozzle that is conventionally used, the shoe nozzle that ensures`reduced quantity lubrication', and the mixture nozzle that ensures `minimum quantity lubrication'. The common task is to ensure that an adequate supply of coolant is presented at the grinding wheel±workpiece interface [12]. The systems differ substantially regarding their operation and the amount of energy required supplying the coolant.A shoe nozzle, or supply through the grinding wheel, enables coolant to be directed into the workpiece±wheel contact zone. A substantial reduction in volumetric flow can be achieved in this way. In comparison to the shoe nozzle, supply through the grindingwheel requires more complex design and production processes for the grinding wheel and fixtures. An advantage of this supply system is that it is independent of a particular grinding process [13]. Both systems involve a drastic reduction in supply pressures as the grinding wheel effects acceleration of the coolant. A more effective reduction in the quantity of the coolant results in `minimal quantity coolant' supply amounting to several millilitres of coolant per hour. As the cooling effect is reduced, dosing nozzles are used exclusively to lubricatethe contact zone. Lubricating systems for use with high- speed grinding wheels have been reviewed by Treffert [3] and Brinksmeier et al. [14].5. Factors affecting qualityThe aim of high-speed CBN grinding is to substitute conventional machining operations such as milling, turning, and surface broaching. The high-speed grinding process focuses on machining large volumes of material in the shortest possible time. This may lead to workpiece quality becoming impaired as the equivalent chip thickness increases in proportion to grinding forces [10,15] The machine tool must be able to absorb such large forces. It is possible to reduce the amount of heat in the grinding process using high grinding wheel speeds. However, practical experience to date shows that not all workpiece materials permit high-speed grinding [4]. The mechanical characteristics of the material to be ground have a profound affect on the chip-forming process and the resulting process forces and temperatures. When extremely tough and heat resistant materials such as nickel-based alloys are involved, the process work increases to such an extent that it is not always possible to avoid micro structural damage to the surface zone of the workpiece. These materials can be ground more effectively using the CD process.译文高速研磨技术的应用与展望摘要基本原理和应用技术在高速研磨上占有相当的地位。
切削加工新概念外文文献翻译、中英文翻译、外文翻译
中文部分切削加工新概念现今的刀具公司再也不能只是制造和销售刀具,为了成功,他们必须与全球化制造趋势保持一致,通过提高效率、同客户合作来降低成本。
在这个近乎瞬间的全球竞争的后NAFTA、后WTO时代,全世界的公司正对相同感觉作出更快、更轻、更便宜的反应。
换句话说,他们制造的产品和零件包含能在高速下运转,由于成本的压力,最好、更轻而且要制造更便宜。
取得这些目标的一个最佳途径是通过发展和应用新材料,但这些新的和改进的材料通常都难以加工。
这种商业上的动力和技术上的困难的组合在汽车和航空工业尤其突出,并已成为有见识的刀具公司研发部门的首要驱动力。
例如,拿球墨铸铁来说,它已成为发动机零件和其它汽车、农用设备和机床工业上的零件的日益见的材料。
这种合金提供较低的生产成本和良好的机械性能的组合。
他们比钢材便宜,而比铸铁有更高的强度和韧性。
但同时球墨铸铁非常耐磨,有快速磨坏刀具材料的倾向。
这种耐磨性很大程度上受珠光体含量影响。
某一已知球墨铸铁的珠光体含量越高,它的耐磨性越好,而且它的可加工性越差。
另外,球墨铸铁的多孔性导致断续切削,这更加降低寿命。
可以预计,高硬度和高耐磨的切削材质需考虑球墨铸铁的高耐磨性。
并且事实上材质包含极硬的TiC(碳化钛)或TiCN(碳氮化钛)的厚涂层在切削速度每分钟300米时加工球墨铸铁被证明通常是有效的。
但是随着切削速度的增加,切屑/刀具结合面的温度也在增加。
当发生这样的情况,TiC涂层倾向于和铁发生化学反应并软化,更多的压力作用在抗月牙洼磨损的涂层上。
在这些条件下,希望有一种化学稳定性更好的涂层,如Al2O3(虽然在较低的速度下不如TiC硬或耐磨)。
化学稳定性比耐磨性更成为一个重要的表现性能分界的因素,速度和温度取决于被加工球墨铸铁的晶粒结构和性能。
但是通常厚涂层的TiC或TiCN和仅有氧化物的较薄涂层是针对球墨铸铁应用的,因为今天大部分这类被加工材料的切削速度在每分钟150到335米之间。
模具外文翻译---高速加工和现代模具制造
毕业设计(论文)外文资料翻译学院:机械工程专业:机械设计制造及其自动化姓名:学号:3082108330外文出处:Lecture Notes in Computer science (用外文写)附件: 1.外文资料翻译译文;2.外文原文。
注:请将该封面与附件装订成册。
附件1:外文资料翻译译文高速加工和现代模具制造一、概述1 目前模具制造的发展现状和趋势模具作为重要的工艺装备,在消费品、电器电子、汽车、飞机制造等工业部门中,占有举足轻重的地位。
工业产品零件粗加工的75%,精加工的50%及塑料零件的90%将由模具完成。
目前中国模具市场需求已达500亿元之规模。
汽车模具、特别是覆盖件模具年增长速度将超过20%;建材模具也迅速发展,各种异型材模具、墙面和地面模具成为模具的新增长点,今后几年塑料门窗和塑料排水管增长将超过30%;家电模具年增长速度将超过10%;IT业年均增长速度超过20%,对模具的需求占模具市场的20%。
2004年中国机床工具工业产值将继续增长。
我国模具制造市场潜力巨大。
根据资料统计,近年来,我国模具的年总产值达到30亿美元,进口超过10亿美元,出口超过1亿美元。
增长从1995年的25%增加到2005年的50%。
国外专家预言:亚洲在全球模具制造中占据的份额,将从1995年的25%增加至2005年的50%。
中国模具工业发展迅速,形成了华东和华南两人基地,并且逐渐扩大到其他省份。
(山东,安徽,四川) 1996年~2002年,模具制造业产值年平均增长14%, 2003年增长25%。
2003年我国模具产值为450亿人民币总产量位居世界第3,出口模具3.368亿美元,比上年增长33.5%。
但是,我国技术含量低的模具已供过于求,精密、复杂的高档模具很大部分依靠进口。
每年进口模具超过10亿美元。
出口超过1亿美元,精密模具精度要求在2~3u m,大型模具需要满足8000kN合模力注塑机的要求;小型模具需满足直径1mm 塑料管的要求。
高速切削加工中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)英文:High-speed millingHigh-speed machining is an advanced manufacturing technology, different from the traditional processing methods. The spindle speed, cutting feed rate, cutting a small amount of units within the time of removal of material has increased three to six times. With high efficiency, high precision and high quality surface as the basic characteristics of the automobile industry, aerospace, mold manufacturing and instrumentation industry, such as access to a wide range of applications, has made significant economic benefits, is the contemporary importance of advanced manufacturing technology. For a long time, people die on the processing has been using a grinding or milling EDM (EDM) processing, grinding, polishing methods. Although the high hardness of the EDM machine parts, but the lower the productivity of its application is limited. With the development of high-speed processing technology, used to replace high-speed cutting, grinding and polishing process to die processing has become possible. To shorten the processing cycle, processing and reliable quality assurance, lower processing costs.1 One of the advantages of high-speed machiningHigh-speed machining as a die-efficient manufacturing, high-quality, low power consumption in an advanced manufacturing technology. In conventional machining in a series of problems has plagued by high-speed machining of the application have been resolved.1.1 Increase productivityHigh-speed cutting of the spindle speed, feed rate compared withtraditional machining, in the nature of the leap, the metal removal rate increased 30 percent to 40 percent, cutting force reducedby 30 percent, the cutting tool life increased by 70% . Hardened parts can be processed, a fixture in many parts to be completed rough, semi-finishing and fine, and all other processes, the complex can reach parts of the surface quality requirements, thus increasing the processing productivity and competitiveness of products in the market.1.2 Improve processing accuracy and surface qualityHigh-speed machines generally have high rigidity and precision, and other characteristics, processing, cutting the depth of small, fast and feed, cutting force low, the workpiece to reduce heat distortion, and high precision machining, surface roughness small. Milling will be no high-speed processing and milling marks the surface so that the parts greatly enhance the quality of the surface. Processing Aluminum when up Ra0.40.6um, pieces of steel processing at up to Ra0.2 ~ 0.4um.1.3 Cutting reduce the heatBecause the main axis milling machine high-speed rotation, cutting a shallow cutting, and feed very quickly, and the blade length of the workpiece contacts and contact time is very short, a decrease of blades and parts of the heat conduction. High-speed cutting by dry milling or oil cooked up absolute (mist) lubrication system, to avoid the traditional processing tool in contact with the workpiece and a lot of shortcomings to ensure that the tool is not high temperature under the conditions of work, extended tool life.1.4 This is conducive to processing thin-walled partsHigh-speed cutting of small cutting force, a higher degree of stability, Machinable with high-quality employees compared to the company may be very good, but other than the company's employees may Suanbu Le outstanding work performance. For our China practice, we use the models to determine the method of staff training needs are simple and effective. This study models can be an external object, it can also be a combination of internal and external. We must first clear strategy for the development of enterprises. Through the internal and external business environment and organizational resources, such as analysis, the future development of a clear business goals and operational priorities. According to the business development strategy can be compared to find the business models, through a comparative analysis of the finalization of business models. In determining business models, a, is the understanding of its development strategy, or its market share and market growth rate, or the staff of the situation, and so on, according to the companies to determine the actual situation. As enterprises in different period of development, its focus is different, which means that enterprises need to invest the manpower and financial resources the focus is different. So in a certain period of time, enterprises should accurately selected their business models compared with the departments and posts, so more practical significance, because the business models are not always good, but to compare some aspects did not have much practical significance, Furthermore This can more fully concentrate onthe business use of limited resources. Identify business models, and then take the enterprise of the corresponding departments and staff with the business models for comparison, the two can be found in the performance gap, a comparative analysis to find reasons, in accordance with this business reality, the final identification of training needs. The cost of training is needed, if not through an effective way to determine whether companies need to train and the training of the way, but blind to training, such training is difficult to achieve the desired results. A comparison only difference between this model is simple and practical training.1.5 Can be part of some alternative technology, such as EDM, grinding high intensity and high hardness processingHigh-speed cutting a major feature of high-speed cutting machine has the hardness of HRC60 parts. With the use of coated carbide cutter mold processing, directly to the installation of a hardened tool steel processing forming, effectively avoid the installation of several parts of the fixture error and improve the parts of the geometric location accuracy. In the mold of traditional processing, heat treatment hardening of the workpiece required EDM, high-speed machining replace the traditional method of cutting the processing, manufacturing process possible to omit die in EDM, simplifying the processing technology and investment costs .High-speed milling in the precincts of CNC machine tools, or for processing centre, also in the installation of high-speed spindle on the general machine tools. The latter not only has the processing capacity of general machine tools, but also for high-speed milling, a decrease of investment in equipment, machine tools increased flexibility. Cutting high-speed processing can improve the efficiency, quality improvement, streamline processes, investment and machine tool investment and maintenance costs rise, but comprehensive, can significantly increase economic efficiency.2 High-speed millingHigh-speed milling the main technical high-speed cutting technology is cutting the development direction of one of it with CNC technology, microelectronic technology, new materials and new technology, such as technology development to a higher level. High-speed machine tools and high-speed tool to achieve high-speed cutting is the prerequisite and basic conditions, in high-speed machining in the performance of high-speed machine tool material of choice and there are strict requirements.2.1 High-speed milling machine in order to achieve high-speed machiningGeneral use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the followingareas:General use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the following areas:High-speed milling machine must have a high-speed spindle, the spindle speed is generally 10000 ~ 100000 m / min, power greater than 15 kW. But also with rapid speed or in designated spots fast-stopping performance. The main axial space not more than 0 .0 0 0 2 m m. Often using high-speed spindle-hydrostatic bearings, air pressure-bearing, mixed ceramic bearings, magnetic bearing structure of the form. Spindle cooling general use within the water or air cooled.High-speed processing machine-driven system should be able to provide 40 ~ 60 m / min of the feed rate, with good acceleration characteristics, can provide 0.4 m/s2 to 10 m/s2 acceleration and deceleration. In order to obtain good processing quality, high-speed cutting machines must have a high enough stiffness. Machine bed material used gray iron, can also add a high-damping base of concrete, to prevent cutting tool chatter affect the quality of processing. A high-speed data transfer rate, can automatically increase slowdown. Processing technology to improve the processing and cutting tool life. At present high-speed machine tool manufacturers, usually in the general machine tools on low speed, the feed of the rough and then proceed to heat treatment, the last in the high-speed machine on the half-finished and finished, in improving the accuracy and efficiency at the same time, as far as possible to reduce processing Cost.2.2 High-speed machining toolHigh-speed machining tool is the most active one of the important factors, it has a direct impact on the efficiency of processing, manufacturing costs and product processing and accuracy. Tool in high-speed processing to bear high temperature, high pressure, friction, shock and vibration, such as loading, its hardness and wear-resistance, strength and toughness, heat resistance, technology and economic performance of the basic high-speed processing performance is the key One of the factors. High-speed cutting tool technology development speed, the more applications such as diamond (PCD), cubic boron nitride (CBN), ceramic knives, carbide coating, (C) titanium nitride Carbide TIC (N) And so on. CBN has high hardness, abrasion resistance and the extremely good thermal conductivity, and iron group elements between the great inertia, in 1300 ℃ would not have happened significant role in the chemical, also has a good stability. The experiments show that with CBN cutting toolHRC35 ~ 67 hardness of hardened steel can achieve very high speed. Ceramics have good wear resistance and thermal chemical stability, its hardness, toughness below the CBN, can be used for processing hardness of HRC <5 0 parts. Carbide Tool good wear resistance, but thehardness than the low-CBN and ceramics. Coating technology used knives, cutting tools can improve hardness and cutting the rate, for cutting HRC40 ~ 50 in hardness between the workpiece. Can be used to heat-resistant alloys, titanium alloys, hightemperature alloy, cast iron, Chungang, aluminum and composite materials of high-speed cutting Cut, the most widely used. Precision machining non-ferrous metals or non-metallic materials, or the choice of polycrystalline diamond Gang-coated tool.2.3 High-speed processing technologyHigh-speed cutting technology for high-speed machining is the key. Cutting Methods misconduct, will increase wear tool to less than high-speed processing purposes. Only high-speed machine tool and not a good guide technology, high-speed machining equipment can not fully play its role. In high-speed machining, should be chosen with milling, when the milling cutter involvement with the workpiece chip thickness as the greatest, and then gradually decreased. High-speed machining suitable for shallow depth of cut, cutting depth of not more than 0.2 mm, to avoid the location of deviation tool to ensure that the geometric precision machining parts. Ensure that the workpiece on the cutting constant load, to get good processing quality. Cutting a single high-speed milling path-cutting mode, try not to interrupt the process and cutting tool path, reducing the involvement tool to cut the number to be relatively stable cutting process. Tool to reduce the rapid change to, in other words when the NC machine tools must cease immediately, or Jiangsu, and then implement the next step. As the machine tool acceleration restrictions, easy to cause a waste of time, and exigency stop or radical move would damage the surface accuracy. In the mold of high-speed finishing, in each Cut, cut to the workpiece, the feed should try to change the direction of a curve or arc adapter, avoid a straight line adapter to maintain the smooth process of cutting.3 Die in high-speed milling processing ofMilling as a highly efficient high-speed cutting of the new method,inMould Manufacturing has been widely used. Forging links in the regular production model, with EDM cavity to be 12 ~ 15 h, electrodes produced 2 h. Milling after the switch to high-speed, high-speed milling cutter on the hardness of HRC 6 0 hardened tool steel processing. The forging die processing only 3 h20min, improve work efficiency four to five times the processing surface roughness of Ra0.5 ~ 0.6m, fully in line with quality requirements.High-speed cutting technology is cutting technology one of the major developments, mainly used in automobile industry and die industry, particularly in the processing complex surface, the workpiece itself or knives rigid requirements of the higher processing areas, is a range of advanced processing technology The integration, high efficiency and high quality for the people respected. It not only involves high-speed processing technology, but also including high-speed processing machine tools, numerical control system, high-speed cutting tools and CAD / CAMtechnology. Die-processing technology has been developed in the mold of the manufacturing sector in general, and in my application and the application of the standards have yet to be improved, because of its traditional processing with unparalleled advantages, the future will continue to be an inevitable development of processing technology Direction.4 Numerical control technology and equipping development trend and countermeasureEquip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said "the differences of different economic times, do not lie in what is produced, and lie in how to produce, produce with some means of labor ". Manufacturing technology and equipping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every industrially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country, not merely take the great measure to develop one's own numerical control technology and industry, and implement blockading and restrictive policy to our country in view of " high-grade, precision and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economic development in a more cost-effective manner, important way to improve the overall national strength and national position. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of fields: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology;(5)Technology of the sensor; (6)Software engineering ,etc..Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology andenlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the world at present and equipping the development trend to see, there is the following several respect [1- ] in its main research focus.5 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are subjavanufacturing technology. High-speed, high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies for this, learn (CIRP) to confirm it as the centre in the 21st century and study one of the directions in international production engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles, walls. Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidity and dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility.According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is even high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machining accuracy of lathe bring 5μm up to from 10μm already, accurate grades of machining center from 3~5μm, rise to 1~1.5μm, and ultrap recision machining accuracy is it enter nanometer grade to begin already(0.01μm).In dependability, MTBF value of the foreign numerical control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further .5.2 Link and process and compound to process the fast development of the lathe in 5 axesAdopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with the best geometry form of the cutter , not only highly polished, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link greatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt complex main shaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make 5 times process and 5 axles are processed and can be realized on the same lathe, can also realize the inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the DMUVoution series machining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly.5.3 Become the main trend of systematic development of contemporary numerical control intelligently, openly, networkedly.The numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , adaptiveoperation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc..Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of countries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numerical Control System) of China, etc.. The numerical control system melts to become the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unified operation platform, face the lathe producer and end user, through changing, increasing or cutting out the structure target(numerical control function), form the serration, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety , different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present, communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software development ,etc. are the core of present research.The networked numerical control equipment is a new light spot of the fair of the internationally famous lathe in the past two years. Meeting production line , manufacture system , demand for the information integration of manufacturing company networkedly greatly of numerical control equipment, realize new manufacture mode such as quick make , fictitious enterprise , basic Entrance that the whole world make too. Some domestic and international famous numerical control lathes and systematic manufacturing companies of numerical control have all introduced relevant new concepts and protons of a machine in the past two years, if in EMO2001 exhibition, " Cyber Production Center " that the company exhibits of mountain rugged campstool gram in Japan (Mazak) (intellectual central production control unit, abbreviated as CPC); The lathe company of Japanese big Wei (Okuma ) exhibits " IT plaza " (the information technology square , is abbreviated as IT square ); Open Manufacturing Environment that the company exhibits of German Siemens (Siemens ) (open the manufacturing environment, abbreviated as OME),etc., have reflected numerical control machine tooling to the development trend of networked direction.5.4 Pay attention to the new technical standard, normal setting-up5.4.1 Design the norm of developing about the numerical control systemAs noted previously, there are better common ability, flexibility, adaptability, expanding in theopen numerical control system, such countries as U.S.A. ,European Community and Japan ,etc. implement the strategic development plan one after another , carry on the research and formulation of the systematic norm (OMAC , OSACA , OSEC ) of numerical control of the open system structure, 3 biggest economies in the world have carried on the formulation that nearly the same science planned and standardized in a short time, have indicated a new arrival of period of change of numerical control technology. Our country started the research and formulation of standardizing the frame of ONC numerical control system of China too in 2000.5.4.2 About the numerical control standardThe numerical control standard is a kind of trend of information-based development of manufacturing industry. Information exchange among 50 years after numerical control technology was born was all because of ISO6983 standard, namely adopt G, M code describes how processes, its essential characteristic faces the processing course, obviously, he can't meet high-speed development of modern numerical control technology's needs more and more already. For this reason, studying and making a kind of new CNC system standard ISO14649 (STEP-NC) in the world, its purpose is to offer a kind of neutral mechanism not depending on the concrete system, can describe the unified data model in cycle of whole life of the products, thus realize the whole manufacture process, standardization of and even each industrial field product information.The appearance of STEP-NC may be a revolution of the technological field of the numerical control, on the development and even the whole manufacturing industry of numerical control technology, will exert a far-reaching influence. First of all, STEP-NC puts forward a kind of brand-new manufacture idea, in the traditional manufacture idea, NC processes the procedures to all concentrate on individual computer. Under the new standard, NC procedure can be dispersed on Internet, this is exactly a direction of open , networked development of numerical control technology. Secondly, STEP-NC numerical control system can also reduce and process the drawing (about 75%), process the procedure to work out the time (about 35%) and process the time (about 50%) greatly.At present, American-European countries pay much attention to the research of STEP-NC, Europe initiates IMS plan (1999.1.1-2001.12.3) of STEP-NC. 20 CAD/CAM/CAPP/CNC users, manufacturers and academic organizations from Europe and Japan participated in this plan. STEP Tools Company of U.S.A. is a developer of the data interchange software of manufacturing industry in the global range, he has already developed the super model (Super Model ) which accuses of information exchange of machine tooling by counting, its goal is to describe all processing courses with the unified norm. Such new data interchange form has already been verified in allocating the SIEMENS, FIDIA and European OSACA-NC numerical control at present.6 pairs of basic estimations of technology and industry development of numerical control of our country。
机械加工切削加工中英文对照外文翻译文献
中英文资料翻译英文部分The new concept of cutting processingThe nowadays cutting tool company cannot only be again the manufacture and the sales cutting tool, in order to succeed, they must be consistent with the globalization manufacture tendency maintenance, through enhances the efficiency, cooperates with the customer reduces the cost. Approaches the instantaneous global competition after this after NAFTA, the WTO time, the world company is making quickly to the same feeling, is lighter, a cheaper response. In other words, they make the product and the components contain can in high speed under revolve, as a result of the cost pressure, best, is lighter moreover must make cheaply. Obtains these goals a best way is through develops and applies the new material, but these is new and the improvement material usually all with difficulty processes. In in this kind of commercial power and the technical difficulty combination is especially prominent in the automobile and the aviation industry, and has become has the experience the cutting tool company to research and develop the department the most important driving influence.For example, takes the modular cast iron to say that, it has become the engine part and other automobiles, the agriculture the material which see day by day with the equipment and in the machine tool industry components. This kind of alloy provides the low production cost and the good machine capability combination. They are cheaper than the steel products, but has a higher intensity and toughness compared to the cast iron. But at the same time the modular cast iron is extremely wear-resisting, has fast breaks by rubbing the cutting tool material the tendency. In this wear resistant very great degree bead luminous body content influence. Some known modular cast iron bead luminous body content higher, its resistance to wear better, moreover its machinability is worse. Moreover, the modular cast iron porosity causes off and on to cut, this even more reduces the life.May estimate that, the high degree of hardness and the high wear-resisting cutting material quality must consider the modular cast iron the high resistance to wear. And the material quality contains extremely hard TiC in fact (carbonized titanium) or TiCN (carbon titanium nitrides) thick coating when cutting speed each minute 300 meters processes the modular cast iron to prove usually is effective. But along with cutting speed increase, scrap/The cutting tool junctionplane temperature also is increasing. When has such situation, the TiC coating favors in has the chemical reaction with the iron and softens, more pressures function in anti- crescent moon hollow attrition coating. Under these conditions, hoped has one chemical stability better coating, like Al2O3 (although under low speed was inferior to TiC hard or is wear-resisting).The chemical stability becomes an important performance performance dividing line compared to the resistance to wear the factor, the speed and the temperature is decided in is processed the modular cast iron the crystal grain structure and the performance. But usually thick coating of TiCN and TiC or only ductile iron oxides in the soil coating is applied to, because the today majority of this kinds are processed the material the cutting speed in each minute 150 to 335 meters between. Is higher than each minute 300 meter applications regarding the speed, the people to this kind of material are satisfied.In order to cause this scope performance to be most superior, the mountain high researched and developed and has promoted in view of modular cast iron processing material quality TX150. This kind of material quality has hard also the anti- distortion substrate, is very ideal regarding the processing modular cast iron. Its coating the oxide compound coating which hollowly wears by thick very wear-resisting carbon titanium nitrides and a thin anti- crescent moon, the top is thin layer TiN. This kind of coating which needs the center warm chemistry gas phase deposition using the state of the art production resistance to wear and the anti- crescent moon hollow attrition which the CVD coating complete degree of hardness moreover the tough smoothness increases (MTCVD) the craft. Substrate/The coating combination performance gives the very high anti- plastic deformation and the cutting edge micro collapses the ability, causes it to become under the normal speed to process the modular cast iron the ideal material quality.The coating ceramics also display can effectively process the modular cast iron. In the past, the aluminum oxide ceramics application which not the coating tough good such as nitriding silicon and the silicon carbide textile fiber strengthened the work piece material chemistry paralysis limit. Today but could resist the scrap distortion process through the use to have the high thermal coating cutting tool life already remarkably to increase. But certain early this domains work piece processing use aluminum oxides spread the layer crystals to have to strengthen the ceramics, today most research concentrate in the TiN coating nitriding silicon. This kind of coating can remarkably open up the tough good ceramics the application scope.When machining, the work piece has processed the surface is depends upon the cutting tool and the work piece makes the relative motion to obtain.According to the surface method of formation, the machining may divide into the knife point path law, the formed cutting tool law, the generating process three kinds.The knife point path law is depends upon the knife point to be opposite in the work piecesurface path, obtains the superficial geometry shape which the work piece requests, like the turning outer annulus, the shaping plane, the grinding outer annulus, with the profile turning forming surface and so on, the knife point path are decided the cutting tool and the work piece relative motion which provides in the engine bed;The formed cutting tool law abbreviation forming, is with the formed cutting tool which matches with the work piece final superficial outline, or the formed grinding wheel and so on processes the formed surface, like formed turning, formed milling and form grinding and so on, because forms the cutting tool the manufacture quite to be difficult, therefore only uses in processing the short formed surface generally;The generating process name rolls cuts method, is when the processing the cutting tool and the work piece do unfold the movement relatively, the cutting tool and the work piece centrode make the pure trundle mutually, between both maintains the definite transmission ratio relations, obtains the processing surface is the knife edge in this kind of movement envelope, in the gear processing rolls the tooth, the gear shaping, the shaving, the top horizontal jade piece tooth and rubs the tooth and so on to be the generating process processing.Some machining has at the same time the knife point path law and the formed cutting tool method characteristic, like thread turning.The machining quality mainly is refers to the work piece the processing precision and the surface quality (including surface roughness, residual stress and superficial hardening).Along with the technical progress, the machining quality enhances unceasingly.The 18th century later periods, the machining precision counts by the millimeter; At the beginning of 20th century, machining precision Gao Yida 0.01 millimeter; To the 50's, the machining precision has reached a micron level; The 70's, the machining precision enhances to 0.1 micron.The influence machining quality primary factor has aspects and so on engine bed, cutting tool, jig, work piece semifinished materials, technique and processing environment.Must improve the machining quality, must take the suitable measure to the above various aspects, like reduces the engine bed work error, selects the cutting tool correctly, improves the semifinished materials quality, the reasonable arrangement craft, the improvement environmental condition and so on.Enhances the cutting specifications to enhance the material excision rate, is enhances the machining efficiency the essential way.The commonly used highly effective machining method has the high-speed cutting, the force cutting, the plasma arc heating cuts and vibrates the cutting and so on.The grinding speed is called the high-speed grinding in 45 meters/second above es the high-speed cutting (or grinding) both may enhance the efficiency, and mayreduce the surface roughness.The high-speed cutting (or grinding) requests the engine bed to have the high speed, the high rigidity, the high efficiency and the vibration-proof good craft system; Requests the cutting tool to have the reasonable geometry parameter and the convenience tight way, but also must consider the safe reliable chip breaking method.The force cutting refers to the roughing feed or cuts the deep machining greatly, uses in the turning and the grinding generally.The force turning main characteristic is the lathe tool besides the main cutting edge, but also some is parallel in the work piece has processed superficial the vice-cutting edge simultaneously to participate in the cutting, therefore may enhance to feed quantity compared to the general turning several times of even several pares with the high-speed cutting, the force cutting cutting temperature is low, the cutting tool life is long, the cutting efficiency is high; The shortcoming is processes the surface to be rough.When force cutting, the radial direction cutting force death of a parent is not suitable for to process the tall and slender work piece very much.The vibration cutting is along the cutting tool direction of feed, the attachment low frequency or the high frequency vibration machining, may enhance the cutting efficiency.The low frequency vibration cutting has the very good chip breaking effect, but does not use the chip breaking equipment, makes the knife edge intensity to increase, time the cutting total power dissipation compared to has the chip breaking installment ordinary cutting to reduce about 40%.The high frequency vibration cutting also called the ultrasonic wave vibration cutting, is helpful in reduces between the cutting tool and the work piece friction, reduces the cutting temperature, reduces the cutting tool the coherence attrition, thus the enhancement cutting efficiency and the processing surface quality, the cutting tool life may enhance 40% approximately.To lumber, plastic, rubber, glass, marble, granite and so on nonmetallic material machining, although is similar with the metal material cutting, but uses the cutting tool, the equipment and the cutting specifications and so on has the characteristic respectively.The lumber product machining mainly carries in each kind of joiner's bench, its method mainly has: The saw cuts, digs cuts, the turning, the milling, drills truncates with the polishing and so on.The plastic rigidity is worse than the metal, the easy bending strain, the thermoplastic thermal conductivity to be in particular bad, easy to elevate temperature the conditioning.When cutting plastic, suitably with the high-speed steel or the hard alloy tools, selects the small to feed quantity and the high cutting speed, and uses compressed air cooling.If the cutting tool is sharp, the angle is appropriate, may produce the belt-shaped scrap, easy to carry off the quantity of heat.Glass (including semiconducting material and so on germanium, silicon) but degree of hardness high brittleness is big.To methods and so on glass machining commonly used cutting, drill hole, attrition and polishing.To thickness in three millimeters following glass plates, the simple cutting method is with the diamond or other hard materials, in glass surface manual scoring, the use scratch place stress concentration, then uses the hand to break off.To the marble, the granite and the concrete and so on the hard material processing, mainly uses methods and so on cutting, turning, drill hole, shaping, attrition and polishing.When cutting the available circular saw blade adds the grinding compound and the water; The outer annulus and the end surface may use the negative rake the hard alloy lathe tool, by 10~30 meter/minute cutting speed turning; Drills a hole the available hard alloy drill bit; The big stone material plane available hard alloy planing tool or rolls cuts planing tool shaping; The precise smooth surface, available three mutually for the datum to the method which grinds, or the grinding and the polishing method obtains.Cutting tool in hot strong alloy applicationThe aviation processing also changes rapidly. For example, nickel base heat-resisting alloy like several years ago the most people had not heard Rene88 now occupies to the aircraft engine manufacture uses the total metal quantity 10~25%. Has very good showing and the commercial reason regarding this. For example, these heat strong alloy will be able to increase the engine endurance moreover to permit the small engine work on the big airplane, that will enhance the combustion efficiency and reduces the operation cost. These tough good materials also present the expense on the cutting tool. Their thermal stability causes on the knife point the temperature to be higher, thus reduced the cutting tool life. Similarly, in these alloy carbide pellet remarkably increased the friction, thus reduces the cutting tool life.As a result of changes in these conditions, can be very pleased to have processed many titanium alloys and nickel-based alloy materials C-2 hard metal alloys, in the application to today's cutting edge of blade to the crushing and cutting depth of the trench lines badly worn. But using the latest high-temperature processing of small particles hard metal alloys to be effective, cutlery life improved, but more importantly to enhance the reliability of applications in high-temperature alloys. Small particles hard metal than traditional hard metal materials higher compression strength and hardness, only a small increase in the resilience of the cost. And resulted in high temperature alloy processing than traditional hard metal resistance common failure mode more effective.PVD (physical gas phase deposition) coating also by certificate effective processing heat-resisting alloy. TiN (titanium nitrides) the PVD coating was uses and still was most early most receives welcome. Recently, TiAlN (nitrogen calorization titanium) and TiCN (carbontitanium nitrides) the coating also could very good use. In the past the TiAlN coating application scope and TiN compared the limit to be more. But after the cutting speed enhances them is a very good choice, enhances the productivity in these applications to reach 40%. On the other hand, is decided under the low cutting speed in coating superficial operating mode TiAlN can cause to accumulate the filings lump afterwards, micro collapses with the trench attrition.Recently, used in the heat-resisting alloy application material quality already developing, these coating but became by several combinations. The massive laboratories and the scene test has already proven this kind of combination and other any kind of sole coating compares in time the very wide scope application is very effective. Therefore aims at the heat-resisting alloy application the PVD compound coating possibly to become the focal point which the hard alloy new material quality research and development continues. With the MTCVD coating, the coating ceramics gather in the same place, they hopefully become a more effective processing to research and develop newly are more difficult to process the work piece material the main impact strength.Dry processingIncluding the refrigerant question is technical and the commercial expansion industrial production tendency another domain which the cutting tool makes. North America and the European strict refrigerant management request and the biggest three automobile manufacturer forces them the core supplier to obtain the ISO14000 authentication (the ISO9000 environment management edition), this causes the refrigerant processing cost rise. To the car company and their core supplier said obviously one of responses which welcome is in the specific processing application avoids completely the refrigerant the use. This kind did the processing the new world to propose a series of challenges for the cutting tool supplier.Recently, already appeared some to concern this topic to promulgate the speed, to enter for, the coating chemical composition and other parameters very substantial comprehensive nature very strong useful technical papers. Wants to concentrate the elaboration in here me "does the processing viewpoint" in the operation and commercial meaning automobile manufacturer new.The metal working jobholders can the very good understanding related refrigerant use question, but majority cannot understand concerns except the technical challenge (for example row of filings) beside does the processing question in the cutting tool - work piece contact face between. Usually may observe to the refrigerant disperser scrap which flows out, but the pressure surpasses 3,000 pounds/An inch 2 high speed refrigerant also can help to break the filings, specially soft also the continual scrap can cause in the cutting tool - work piece contact face trouble.Uses does the cutting craft the components result is the engine bed uses the wet typeprocessing components to be hotter than. Whether before you do allow them to survey in the open-air natural cooling? If processes newly the hot components put frequently to the turnover box, elevates the environment temperature, whether components full cooling and just right enough permission precision examination? Also has the handling side several dozens on hundred components to be able to operate the worker to increase the extra burden.With many cutting tools/The work piece technical question same place, these latent questions need to state whether dryly adds the ability line. Luckily, has very many ways to elaborate these questions. For example, the compressed air was proven row of filings becomes the question in very many applications the situation to have the successful echo.Another plan is called MQL (minimum lubrication) a technology, it replaces the traditional refrigerant by the application the quite few oil mists constitution. This is a recognition compromise plan, this kind of minimum technology can large scale reduce the refrigerant the headache matter, moreover the smooth finish which processes in many applications very is also good. This domain still had very many research to do, moreover the cutting tool company positively participated in such research was absolutely essential. If they will not do fall behind the competitor, will be at the disadvantageous position.In the factory the special details design other perhaps better plan according to the world in. The manufacturing industry jobholders possibly still could ask why they do have to use recent development the technology to replace the refrigerant method diligently which the tradition already an experience number generation of person improved enhances, because implemented especially does the experiment and the defeat which the processing or the subarid processing produced possibly causes the higher short-term cutting tool cost. The concise answer is when the bit probably accounts for the model processing components cost 3%, the refrigerant cost (from purchases to maintenance, storage, processing) can account for the components cost 15%.Perhaps does the dry processing is not all suits to each application, but above discusses likely other processing questions are same, needs from a wider operation, the environment and the commercial angle appraises. Will be able to help the cutting tool company which the customer will do this to have the competitive advantage, but these will not be able to provide unceasingly is in the passive position.Cutting tool and nanotechnologyCan fiercely change the cutting tool industry the enchanting new domain is the miniature manufacture, or the processing small granule forms the product which needs. Must refer to is its here does not have about the cutting tool miniature manufacture first matter; Second must say the matter is it is not remote.Why the miniature manufacture and are the cutting tool related. Because most main is theparticle size smaller, the hard alloy toughness of material better also is more wear-resisting. (Some experts define with the nanometer level pellet for are smaller than 0.2 mu m, but other people persisted a nanometer pellet had to be smaller than the hard alloy tools prototype which 0.1 mu m) made already to complete and the test,It is said that wear resistant theatrically increase. The question is the nanometer level hard alloy pellet cannot depend on the smashing big material formation, they are certain through the smaller material constitution, but processes the molecular level granule is not easy and the economical matter.中文部分切削加工新概念现今的刀具公司再也不能只是制造和销售刀具,为了成功,他们必须与全球化制造趋势保持一致,通过提高效率、同客户合作来降低成本。
试论数控高速切削加工技术的发展与应用
试论数控高速切削加工技术的发展与应用数控高速切削技术(High Speed Machining,HSM,或High Speed Cutting,HSC),是提高加工效率和加工质量的先进制造技术之一,相关技术的研究已成为国内外先进制造技术领域重要的研究方向。
我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步落后。
研究先进技术的理论和应用迫在眉睫。
1、数控高速切削加工的含义高速切削理论由德国物理学家Carl.J.Salomon在上世纪三十年代初提出的。
他通过大量的实验研究得出结论:在正常的切削速度范围内,切削速度如果提高,会导致切削温度上升,从而加剧了切削刀具的磨损;然而,当切削速度提高到某一定值后,只要超过这个拐点,随着切削速度提高,切削温度就不会升高,反而会下降,因此只要切削速度足够高,就可以很好的解决切削温度过高而造成刀具磨损不利于切削的问题,获得良好的加工效益。
随着制造工业的发展,这一理论逐渐被重视,并吸引了众多研究目光,在此理论基础上逐渐形成了数控高速切削技术研究领域,数控高速切削加工技术在发达国家的研究相对较早,经历了理论基础研究、应用基础研究以及应用研究和发展应用,目前已经在一些领域进入实质应用阶段。
关于高速切削加工的范畴,一般有以下几种划分方法,一种是以切削速度来看,认为切削速度超过常规切削速度5-10倍即为高速切削。
也有学者以主轴的转速作为界定高速加工的标准,认为主轴转速高于8000r/min即为高速加工。
还有从机床主轴设计的角度,以主轴直径和主轴转速的乘积DN定义,如果DN值达到(5~2000)×105mm.r/min,则认为是高速加工。
生产实践中,加工方法不同、材料不同,高速切削速度也相应不同。
一般认为车削速度达到(700~7000)m/min,铣削的速度达到(300~6000)m/min,即认为是高速切削。
高速切削加工的发展及需求(中英文对照)
The development of High-speed machining and demand本文关键字:High-speed machining demand development 高速切削加工发展需求High-speed machining is contemporary advanced manufacturing technology an important component of the high-efficiency, High-precision and high surface quality, and other features. This article presents the technical definition of the current state of development of China''s application fields and the demand situation.High-speed machining is oriented to the 21st century a new high-tech, high-efficiency, High-precision and high surface quality as a basic feature, in the automobile industry, aerospace, Die Manufacturing and instrumentation industries gained increasingly widespread application, and has made significant technical and economic benefits. contemporary advanced manufacturing technology an important component part.HSC is to achieve high efficiency of the core technology manufacturers, intensive processes and equipment packaged so that it has a high production efficiency. It can be said that the high-speed machining is an increase in the quantity of equipment significantly improve processing efficiency essential to the technology. High-speed machining is the major advantages : improve production efficiency, improve accuracy and reduce the processing of cutting resistance.The high-speed machining of meaning, at present there is no uniform understanding, there are generally several points as follows : high cutting speed. usually faster than that of their normal cutting 5 -10 times; machine tool spindle speed high, generally spindle speed in -20000r/min above 10,000 for high-speed cutting; Feed at high velocity, usually 15 -50m/min up to 90m/min; For different cutting materials and the wiring used the tool material, high-speed cutting the meaning is not necessarily the same; Cutting process, bladed through frequency (Tooth Passing Frequency) closer to the "machine-tool - Workpiece "system the dominant natural frequency (Dominant Natural Frequency), can be considered to be high-speed cutting. Visibility high-speed machining is a comprehensive concept.1992. Germany, the Darmstadt University of Technology, Professor H. Schulz in the 52th on the increase of high-speed cutting for the concept and the scope, as shown in Figure 1. Think different cutting targets, shown in the figure of the transition area (Transition), to be what is commonly called the high-speed cutting, This is also the time of metal cutting process related to the technical staff are looking forward to, or is expected to achieve the cutting speed.High-speed machining of machine tools, knives and cutting process, and other aspects specific requirements. Several were from the following aspects : high-speed machining technology development status and trends.At this stage, in order to achieve high-speed machining, general wiring with high flexibility of high-speed CNC machine tools, machining centers, By using a dedicated high-speed milling, drilling. These equipment in common is : We must also have high-speed and high-speed spindle system feeding system, Cutting can be achieved in high-speed process. High-speed cutting with the traditional cutting the biggest difference is that "Machine-tool-workpiece" the dynamic characteristics of cuttingperformance is stronger influence. In the system, the machine spindle stiffness, grip or form, a long knife set, spindle Broach, torque tool set, Performance high-speed impact are important factors.In the high-speed cutting, material removal rate (Metal Removal Rate, MRR), unit time that the material was removed volume, usually based on the "machine-tool-workpiece" whether Processing System "chatter." Therefore, in order to satisfy the high-speed machining needs, we must first improve the static and dynamic stiffness of machine spindle is particularly the stiffness characteristics. HSC reason at this stage to be successful, a very crucial factor is the dynamic characteristics of the master and processing capability.In order to better describe the machine spindle stiffness characteristics of the project presented new dimensionless parameter - DN value, used for the evaluation of the machine tool spindle structure on the high-speed machining of adaptability. DN value of the so-called "axis diameter per minute speed with the product." The newly developed spindle machining center DN values have been great over one million. To reduce the weight bearing, but also with an array of steel products than to the much more light ceramic ball bearings; Bearing Lubrication most impressive manner mixed with oil lubrication methods. In the field of high-speed machining. have air bearings and the development of magnetic bearings and magnetic bearings and air bearings combined constitute the magnetic gas / air mixing spindle.Feed the machine sector, high-speed machining used in the feed drive is usually larger lead, multiple high-speed ball screw and ball array of small-diameter silicon nitride (Si3N4) ceramic ball, to reduce its centrifugal and gyroscopic torque; By using hollow-cooling technology to reduce operating at high speed ball screw as temperature generated by the friction between the lead screw and thermal deformation.In recent years, the use of linear motor-driven high-speed system of up to'''' Such feed system has removed the motor from workstations to Slide in the middle of all mechanical transmission links, Implementation of Machine Tool Feed System of zero transmission. Because no linear motor rotating components, from the role of centrifugal force, can greatly increase the feed rate. Linear Motor Another major advantage of the trip is unrestricted. The linear motor is a very time for a continuous machine shop in possession of the bed. Resurfacing of the very meeting where a very early stage movement can go, but the whole system of up to the stiffness without any influence. By using high-speed screw, or linear motor can greatly enhance machine system of up to the rapid response. The maximum acceleration linear motors up to 2-10G (G for the acceleration of gravity), the largest feed rate of up to 60 -200m/min or higher.2002 world-renowned Shanghai Pudong maglev train project of maglev track steel processing, Using the Shenyang Machine Tool Group Holdings Limited McNair friendship company production plants into extra-long high-speed system for large-scale processing centers achieve . The machine feeding system for the linear guide and rack gear drive, the largest table feed rate of 60 m / min, Quick trip of 100 m / min, 2 g acceleration, maximum speed spindle 20000 r / min, the main motor power 80 kW. X-axis distance of up to 30 m, 25 m cutting long maglev track steel error is lessthan 0.15 mm. Maglev trains for the smooth completion of the project provided a strong guarantee for technology.In addition, the campaign machine performance will also directly affect the processing efficiency and accuracy of processing. Mold and the free surface of high-speed machining, the main wiring with small cut deep into methods for processing. Machine requirements in the feed rate conditions, should have high-precision positioning functions and high-precision interpolation function, especially high-precision arc interpolation. Arc processing is to adopt legislation or thread milling cutter mold or machining parts, the essential processing methods.Cutting Tools Tool Material development:high-speed cutting and technological development of the history, tool material is continuous progress of history. The representation of high-speed cutting tool material is cubic boron nitride (CBN). Face Milling Cutter use of CBN, its cutting speed can be as high as 5000 m / min, mainly for the gray cast iron machining. Polycrystalline diamond (PCD) has been described as a tool of the 21st century tool, It is particularly applicable to the cutting aluminum alloy containing silica material, which is light weight metal materials, high strength, widely used in the automobile, motorcycle engine, electronic devices shell, the base, and so on. At present, the use of polycrystalline diamond cutter Face Milling alloy, 5000m/min the cutting speed has reached a practical level. In addition ceramic tool also applies to gray iron of high-speed machining;Tool Coating : CBN and diamond cutter, despite good high-speed performance, but the cost is relatively high. Using the coating technology to make cutting tool is the low price, with excellent mechanical properties, which can effectively reduce the cost. Now high-speed processing of milling cutter, with most of the wiring between the Ti-A1-N composite technology for the way of multi-processing, If present in the non-ferrous metal or alloy material dry cutting, DLC (Diamond Like Carbon) coating on the cutter was of great concern. It is expected that the market outlook is very significant;Tool clamping system : Tool clamping system to support high-speed cutting is an important technology, Currently the most widely used is a two-faced tool clamping system. Has been formally invested as a commodity market at the same clamping tool system are : HSK, KM, Bigplus. NC5, AHO systems.In the high-speed machining, tool and fixture rotary performance of the balance not only affects the precision machining and tool life. it will also affect the life of machine tools. So, the choice of tool system, it should be a balanced selection of good products.Cutting speed of high-speed processing of conventional shear velocity of about 10 times. For every tooth cutter feed rate remained basically unchanged, to guarantee parts machining precision, surface quality and durability of the tool, Feed volume will also be a corresponding increase about 10 times, reaching 60 m / min, Some even as high as 120 m / min. Therefore, high-speed machining is usually preclude the use of high-speed, feed and depth of cut small cutting parameters. Due to the high-speed machining cutting cushion tend to be small, the formation of very thin chip light, Cutting put the heat away quickly; If the wiring using a new thermal stability bettertool materials and coatings, Using the dry cutting process for high-speed machining is the ideal technology program.To adapt to the needs of new models, auto body panel molds and resin-prevention block the forming die. must shorten the production cycle and reduce the cost of production and, therefore, we must make great efforts to promote the production of high-speed die in the process. SAIC affiliated with the company that : Compared to the past, finishing, further precision; the same time, the surface roughness must be met, the bending of precision, this should be subject to appropriate intensive manual processing. Due to the extremely high cutting speed, and the last finishing processes, the processing cycle should be greatly reduced.To play for machining centers and boring and milling machining center category represented by the high-speed machining technology and automatic tool change function of distinctions Potential to improve processing efficiency, the processing of complex parts used to be concentrated as much as possible the wiring process, that is a fixture in achieving multiple processes centralized processing and dilute the traditional cars, milling, boring, Thread processing different cutting the limits of technology, equipment and give full play to the high-speed cutting tool function, NC is currently raising machine efficiency and speed up product development in an effective way. Therefore, the proposed multi-purpose tool of the new requirements call for a tool to complete different parts of the machining processes, ATC reduce the number of ATC to save time, to reduce the quantity and tool inventory, and management to reduce production costs. More commonly used in a multifunctional Tool, milling, boring and milling, drilling milling, drilling-milling thread-range tool. At the same time, mass production line, against the use of technology requires the development of special tools, tool or a smart composite tool, improve processing efficiency and accuracy and reduced investment. In the high-speed cutting conditions, and some special tools can be part of the processing time to the original 1 / 10 below, results are quite remarkable.HSC has a lot of advantages such as : a large number of materials required resection of the workpiece with ultrafine, thin structure of the workpiece, Traditionally, the need to spend very long hours for processing mobile workpiece and the design of rapid change, short product life cycle of the workpiece, able to demonstrate high-speed cutting brought advantages.高速切削加工的发展及需求高速切削加工是当代先进制造技术的重要组成部分,拥有高效率、高精度及高表面质量等特征。
外文翻译-高速切削加工的发展及需求(含中英文)
High-speed machining and demand for the development of it High-speed machining is an important component of contemporary advanced manufacturing technology and has high-efficiency, high-precision and high surface quality, and other features. This article presents the technical definition of the current state of development of China''s application fields and the demand situation。
High-speed machining is a new high-tech which is oriented to the 21st century, high-efficiency, High-precision and high surface quality as a basic feature, in the automobile industry, aerospace, Die Manufacturing and instrumentation industries gained increasingly widespread application, and has made significant technical and economic benefits. contemporary advanced manufacturing technology an important component part。
HSC is to achieve high efficiency of the core technology manufacturers, intensive processes and equipment packaged so that it has a high production efficiency. It can be said that the high-speed machining is an increase in the quantity of equipment significantly improve processing efficiency essential to the technology. High-speed machining is the major advantages : improve production efficiency, improve accuracy and reduce the processing of cutting resistance。
高速切削技术综述
高速切削技术综述机制092 刘维娟 201090403摘要:介绍高速切削技术的兴起和发展现状,高速切削的速度范围,高速切削的主要关键技术,高速切削的展望。
关键词:高速切削技术; 发展现状;主要关键技术;发展趋势Summary of High Speed Cutting Technology Abstract:In this paper, the rise , development current situation ,extent of speed ,main critical technology , development trend of high speed cutting technology are introduced.Keywords:High speed cutting technology ; Development current situation; Main critical technology ; Development trend高速切削的兴起和发展现状高速切削是指在比常规切削速度高出很多的速度下进行的切削加工,因此有时也成为超高速切削(Ultra-High Speed Machining)。
高速切削是20世纪20年代末德国的切削物理学家萨洛蒙(Carl Salomon)提出来的,在1931年4月发表了著名的超高速切削理论。
他指出:在常规的切削速度范围内,切削温度随着切削速度的增大而提高。
对于每一种工件材料,存在一个速度范围,在这个范围内由于切削温度太高,任何刀具都无法承受,切削加工不可能进行,但是当切削速度再增大,超过这个速度范围以后,切削温度反而降低,同时切削力也会大幅下降。
德国在1984年组织了以Darmstadt工业大学的生产工程与机床研究所(PTW)为首的等机构,全面而系统的研究超高速切削机床、刀具、控制系统以及相关的工艺技术,取得了国际公认的高水平研究成果,并在德国工厂内广泛应用,获得了良好的经济效益。
数控专业外文翻译--数控技术和装备发展趋势及对策
外文原文:Numerical control technology and equiping development trend andcountermeasureEquip engineering level , level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation , spaceflight,etc. national defense industry industry) last technology and getting more basic most equipment. Marx has ever said " the differences of different economic times, do not lie in what is produced , and lie in how to produce, produce with some means of labor ". Manufacturing technology and equiping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends . In addition every industrially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country.1 Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology and enlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the world at present and equiping the development trend to see, there is the following four respect in its main research focus .1.1A high-speed , high finish machining technology and new trend equippedThe efficiency , quality are subjavanufacturing technology. High-speed , high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power.Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies for this, learn (CIRP ) to confirm it as the centre in the 21st century and study one of the directions in international production engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles , walls . Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidity and dependability of the component improved. All these, to processing and equiping the demand which has proposed high-speed , high precise and high flexibility.1.2 Become the main trend of systematic development of contemporary numerical control intelligently , openly , networkedlilyThe numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , adaptive operation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc.. Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of countries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (OpenNumerical Control System) of China ,etc.. The numerical control system melts to become the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unified operation platform, face the lathe producer and end user, through changing, increasing or cutting out the structure target(numerical control function), form the seriation, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety , different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present, communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software developing ,etc. Is the core of present research?2 Pairs of basic estimations of technology and industry development of numerical control of our countryThe technology of numerical control of our country started in 1958, the development course in the past 50 years can roughly be divided into 3 stages: The first stage is from 1958 to 1979, namely closed developing stage. In this stages, because technology of foreign countries blockade and basic restriction of terms of our country, the development of numerical control technology is comparatively slow. During " Sixth Five-Year Plan Period”, “the Seventh Five-Year Plan Period " of the country in second stage and earlier stage in " the Eighth Five-Year Plan Period ", namely introduce technology, digest and assimilate, the stage of establishing the system of production domesticization arisesing tentatively. At this stage , because of reform and opening-up and national attention , and study the improvement of the development environment and international environment, research , development and all making considerable progress in production domesticization of the products of the technology of numerical control of our country. The third stage is and during the " Ninth Five-Year Plan Period " on the later stage in “the Eighth Five-Year Plan Period " of the country, namely implement the research of industrialization, enter market competition stage. At this stage , made substantive progress in industrialization of the domestic numerical control equipment of our country. In latter stage for " the Ninth Five-Year Plan ", the domestic occupation rate of market of the domestic numerical control lathe is up to 50%, it is up to 10% too to mix the domestic numerical control system (popular ).Make a general survey of the development course in the past 50 years of technology of numerical control of our country, especially through tackling key problems of 4 Five-Year Plans, all in all has made following achievements.a.Have establish the foundation of the technical development of numerical control, has mastered modern numerical control technology basically. Our country has already, the numerical control host computer , basic technology of special plane and fittings grasped and driven from the numerical control system and servoly basically now, among them most technology have already possessed and commercialized the foundation developed , some technology has already, industrialization commercialized.b.Have formed the industrial base of numerical control tentatively. In tackling key problems the foundation that the achievement and some technology commercialize , set up the systematic factories of numerical control with production capacity in batches such as numerical control in Central China , numerical control of the spaceflight etc.. Electrical machinery plant of Lanzhou, such factory and the first machine tool plant of Beijing , the first machine tool plant of Jinan ,etc. several numerical control host computer factories of a batch of servo systems and servo electrical machineries as the numerical control in Central China,etc.. These factories have formed the numerical control industrial base of our country basically.Watch from world , estimate roughly as follows about the engineering level of numerical control of our country and industrialization level.a.On the engineering level, in probably backward 10- 1 years with the advanced level in foreign countries, it is bigger in high-quality precision and sophisticated technology.b.On the industrialization level, the occupation rate of market is low, the variety coverage rate is little, have not formed the large-scale production yet; The specialized level of production of function part and ability of forming a complete set are relatively low; Appearance quality is relatively poor; Dependability is not high, the commercialized degree is insufficient; One's own brand effect that the domestic numerical control system has not been set up yet, users have insufficient confidence. It is analysed that the main reason for having above-mentioned disparity has the following several respect.a.Realize the respect. Know to industry's process arduousness , complexity and long-term characteristic of domestic numerical control insufficiently; It is difficult tounderestimate to add strangling , system ,etc. to the unstandard , foreign blockade of the market; It is not enough to analyse to the technological application level and ability of numerical control of our country.b.System. Pay close attention to numerical control industrialization many in the issue , consider numerical control industrialization little in the issue synthetically in terms of the systematic one , industry chain in terms of technology; Have not set up related system , perfect training , service network of intact high quality ,etc. and supported the system.3 Pairs of strategic thinking of technology and industrialized development of numerical control of our country3.1 Strategic considerationOur country make big country, industry is it accept front instead of transformation of back end to try one's best to want in shifting in world, namely should master and make key technology advancedly, otherwise in a new round of international industrial structure adjustment, the manufacturing industry of our country will step forward and " leave the core spaces ". We regard resource , environment , market as the cost, it is only an international " machining center " in the new economic pattern of the world to exchange the possibility got and " assemble the centre ", but not master the position of the manufacturing center of key technology , will so influence the development process of the modern manufacturing industry of our country seriously.We should stand in the height of national security strategy paying attention to numerical control technology and industry's question,at first seen from social safety, because manufacturing industry whether our country obtain employment most populous trade, the development of manufacturing industry not only can improve the people's living standard but also can alleviate the pressure of employment of our country , ensure the stability of the society; Secondly seen from national defence security, the western developed country has classified all the high-grade , precision and advanced numerical control products as the strategic materials of the country, realizing the embargo and restriction to our country, " Toshiba incident " and " Cox Report " is the best illustration.3.2 Development tacticsProceed from the angles of the fundamental realities of the country of our country, regard the strategic demand of the country and market demand of national economy as the direction, regard improving our country and making the comprehensivecompetitive power of equiping industry and industrialization level as the goal, use the systematic method , be able to choose to make key technology upgraded in development of equiping industry and support technology supporting the development of industrialization in our country in initial stage of 21st century in leading factor, the ability to supply the necessary technology realizes making the jump development of the equiping industry as the content of research and development.Emphasize market demand is a direction, namely take terminal products of numerical control as the core, with the complete machine (Such as the numerical control lathe having a large capacity and a wide range, milling machine , high speed high precise high-performance numerical control lathe , digitized machinery of model , key industry key equipment ,etc.) drive the development of the numerical control industry. Solve the numerical control system and relevant functions part especially The dependability that (digitized servo system and electrical machinery , high speed electric main shaft system and new- enclosure that equip ,etc. ) and production scale question. There are no products that scale will not have high dependability ; Will not have cheap and products rich in the competitiveness without scale ; Certainly, it is difficult to have day holding up one's head finally that there is no scale Chinese numerical control equipment.In equiping researching and developing high-grade , precision and advancedly , should emphasize the production, learning and research and close combination of the end user, regard " drawing, using, selling " as the goal, tackle key problems according to the national will, in order to solve the needing badly of the country.中文译文:数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
高速切削加工中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)英文:High-speed millingHigh-speed machining is an advanced manufacturing technology, different from the traditional processing methods. The spindle speed, cutting feed rate, cutting a small amount of units within the time of removal of material has increased three to six times. With high efficiency, high precision and high quality surface as the basic characteristics of the automobile industry, aerospace, mold manufacturing and instrumentation industry, such as access to a wide range of applications, has made significant economic benefits, is the contemporary importance of advanced manufacturing technology. For a long time, people die on the processing has been using a grinding or milling EDM (EDM) processing, grinding, polishing methods. Although the high hardness of the EDM machine parts, but the lower the productivity of its application is limited. With the development of high-speed processing technology, used to replace high-speed cutting, grinding and polishing process to die processing has become possible. To shorten the processing cycle, processing and reliable quality assurance, lower processing costs.1 One of the advantages of high-speed machiningHigh-speed machining as a die-efficient manufacturing, high-quality, low power consumption in an advanced manufacturing technology. In conventional machining in a series of problems has plagued by high-speed machining of the application have been resolved.1.1 Increase productivityHigh-speed cutting of the spindle speed, feed rate compared withtraditional machining, in the nature of the leap, the metal removal rate increased 30 percent to 40 percent, cutting force reducedby 30 percent, the cutting tool life increased by 70% . Hardened parts can be processed, a fixture in many parts to be completed rough, semi-finishing and fine, and all other processes, the complex can reach parts of the surface quality requirements, thus increasing the processing productivity and competitiveness of products in the market.1.2 Improve processing accuracy and surface qualityHigh-speed machines generally have high rigidity and precision, and other characteristics, processing, cutting the depth of small, fast and feed, cutting force low, the workpiece to reduce heat distortion, and high precision machining, surface roughness small. Milling will be no high-speed processing and milling marks the surface so that the parts greatly enhance the quality of the surface. Processing Aluminum when up Ra0.40.6um, pieces of steel processing at up to Ra0.2 ~ 0.4um.1.3 Cutting reduce the heatBecause the main axis milling machine high-speed rotation, cutting a shallow cutting, and feed very quickly, and the blade length of the workpiece contacts and contact time is very short, a decrease of blades and parts of the heat conduction. High-speed cutting by dry milling or oil cooked up absolute (mist) lubrication system, to avoid the traditional processing tool in contact with the workpiece and a lot of shortcomings to ensure that the tool is not high temperature under the conditions of work, extended tool life.1.4 This is conducive to processing thin-walled partsHigh-speed cutting of small cutting force, a higher degree of stability, Machinable with high-quality employees compared to the company may be very good, but other than the company's employees may Suanbu Le outstanding work performance. For our China practice, we use the models to determine the method of staff training needs are simple and effective. This study models can be an external object, it can also be a combination of internal and external. We must first clear strategy for the development of enterprises. Through the internal and external business environment and organizational resources, such as analysis, the future development of a clear business goals and operational priorities. According to the business development strategy can be compared to find the business models, through a comparative analysis of the finalization of business models. In determining business models, a, is the understanding of its development strategy, or its market share and market growth rate, or the staff of the situation, and so on, according to the companies to determine the actual situation. As enterprises in different period of development, its focus is different, which means that enterprises need to invest the manpower and financial resources the focus is different. So in a certain period of time, enterprises should accurately selected their business models compared with the departments and posts, so more practical significance, because the business models are not always good, but to compare some aspects did not have much practical significance, Furthermore This can more fully concentrate onthe business use of limited resources. Identify business models, and then take the enterprise of the corresponding departments and staff with the business models for comparison, the two can be found in the performance gap, a comparative analysis to find reasons, in accordance with this business reality, the final identification of training needs. The cost of training is needed, if not through an effective way to determine whether companies need to train and the training of the way, but blind to training, such training is difficult to achieve the desired results. A comparison only difference between this model is simple and practical training.1.5 Can be part of some alternative technology, such as EDM, grinding high intensity and high hardness processingHigh-speed cutting a major feature of high-speed cutting machine has the hardness of HRC60 parts. With the use of coated carbide cutter mold processing, directly to the installation of a hardened tool steel processing forming, effectively avoid the installation of several parts of the fixture error and improve the parts of the geometric location accuracy. In the mold of traditional processing, heat treatment hardening of the workpiece required EDM, high-speed machining replace the traditional method of cutting the processing, manufacturing process possible to omit die in EDM, simplifying the processing technology and investment costs .High-speed milling in the precincts of CNC machine tools, or for processing centre, also in the installation of high-speed spindle on the general machine tools. The latter not only has the processing capacity of general machine tools, but also for high-speed milling, a decrease of investment in equipment, machine tools increased flexibility. Cutting high-speed processing can improve the efficiency, quality improvement, streamline processes, investment and machine tool investment and maintenance costs rise, but comprehensive, can significantly increase economic efficiency.2 High-speed millingHigh-speed milling the main technical high-speed cutting technology is cutting the development direction of one of it with CNC technology, microelectronic technology, new materials and new technology, such as technology development to a higher level. High-speed machine tools and high-speed tool to achieve high-speed cutting is the prerequisite and basic conditions, in high-speed machining in the performance of high-speed machine tool material of choice and there are strict requirements.2.1 High-speed milling machine in order to achieve high-speed machiningGeneral use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the followingareas:General use of highly flexible high-speed CNC machine tools, machining centers, and some use a dedicated high-speed milling, drilling. At the same time a high-speed machine tool spindle system and high-speed feeding system, high stiffness of the main characteristics of high-precision targeting and high-precision interpolation functions, especially high-precision arc interpolation function. High-speed machining systems of the machine a higher demand, mainly in the following areas:High-speed milling machine must have a high-speed spindle, the spindle speed is generally 10000 ~ 100000 m / min, power greater than 15 kW. But also with rapid speed or in designatedspots fast-stopping performance. The main axial space not more than 0 .0 0 0 2 m m. Often using high-speed spindle-hydrostatic bearings, air pressure-bearing, mixed ceramic bearings, magnetic bearing structure of the form. Spindle cooling general use within the water or air cooled.High-speed processing machine-driven system should be able to provide 40 ~ 60 m / min ofthe feed rate, with good acceleration characteristics, can provide 0.4 m/s2 to 10 m/s2 accelerationand deceleration. In order to obtain good processing quality, high-speed cutting machines musthave a high enough stiffness. Machine bed material used gray iron, can also add a high-dampingbase of concrete, to prevent cutting tool chatter affect the quality of processing. A high-speed datatransfer rate, can automatically increase slowdown. Processing technology to improve theprocessing and cutting tool life. At present high-speed machine tool manufacturers, usually in the general machine tools on low speed, the feed of the rough and then proceed to heat treatment, the last in the high-speed machine on the half-finished and finished, in improving the accuracy and efficiency at the same time, as far as possible to reduce processing Cost.2.2 High-speed machining toolHigh-speed machining tool is the most active one of the important factors, it has a direct impact on the efficiency of processing, manufacturing costs and product processing and accuracy. Tool in high-speed processing to bear high temperature, high pressure, friction, shock and vibration, such as loading, its hardness and wear-resistance, strength and toughness, heat resistance, technology and economic performance of the basic high-speed processing performance is the key One of the factors. High-speed cutting tool technology development speed, the more applications such as diamond (PCD), cubic boron nitride (CBN), ceramic knives, carbide coating, (C) titanium nitride Carbide TIC (N) And so on. CBN has high hardness, abrasion resistance and the extremely good thermal conductivity, and iron group elements between the great inertia, in 1300 ℃ would not have happened significant role in the chemical, also has a good stability. The experiments show that with CBN cutting toolHRC35 ~ 67 hardness of hardened steel can achieve very high speed. Ceramics have goodwear resistance and thermal chemical stability, its hardness, toughness below the CBN, can be used for processing hardness of HRC <5 0 parts. Carbide Tool good wear resistance, but thehardness than the low-CBN and ceramics. Coating technology used knives, cutting tools can improve hardness and cutting the rate, for cutting HRC40 ~ 50 in hardness between the workpiece. Can be used to heat-resistant alloys, titanium alloys, hightemperature alloy, cast iron, Chungang, aluminum and composite materials of high-speed cutting Cut, the most widely used. Precision machining non-ferrous metals or non-metallic materials, or the choice of polycrystalline diamond Gang-coated tool.2.3 High-speed processing technologyHigh-speed cutting technology for high-speed machining is the key. Cutting Methods misconduct, will increase wear tool to less than high-speed processing purposes. Only high-speed machine tool and not a good guide technology, high-speed machining equipment can not fully play its role. In high-speed machining, should be chosen with milling, when the milling cutter involvement with the workpiece chip thickness as the greatest, and then gradually decreased. High-speed machining suitable for shallow depth of cut, cutting depth of not more than 0.2 mm, to avoid the location of deviation tool to ensure that the geometric precision machining parts. Ensure that the workpiece on the cutting constant load, to get good processing quality. Cutting a single high-speed milling path-cutting mode, try not to interrupt the process and cutting tool path, reducing the involvement tool to cut the number to be relatively stable cutting process. Tool to reduce the rapid change to, in other words when the NC machine tools must cease immediately, or Jiangsu, and then implement the next step. As the machine tool acceleration restrictions, easy to cause a waste of time, and exigency stop or radical move would damage the surface accuracy. In the mold of high-speed finishing, in each Cut, cut to the workpiece, the feed should try to change the direction of a curve or arc adapter, avoid a straight line adapter to maintain the smooth process of cutting.3 Die in high-speed milling processing ofMilling as a highly efficient high-speed cutting of the new method,inMould Manufacturing has been widely used. Forging links in the regular production model, with EDM cavity to be 12 ~ 15 h, electrodes produced 2 h. Milling after the switch to high-speed, high-speed milling cutter on the hardness of HRC 6 0 hardened tool steel processing. The forging die processing only 3 h20min, improve work efficiency four to five times the processing surface roughness of Ra0.5 ~ 0.6m, fully in line with quality requirements.High-speed cutting technology is cutting technology one of the major developments, mainly used in automobile industry and die industry, particularly in the processing complex surface, the workpiece itself or knives rigid requirements of the higher processing areas, is a range of advanced processing technology The integration, high efficiency and high quality for the people respected. It not only involves high-speed processing technology, but also including high-speed processing machine tools, numerical control system, high-speed cutting tools and CAD / CAMtechnology. Die-processing technology has been developed in the mold of the manufacturing sector in general, and in my application and the application of the standards have yet to be improved, because of its traditional processing with unparalleled advantages, the future will continue to be an inevitable development of processing technology Direction.4 Numerical control technology and equipping development trend and countermeasureEquip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said "the differences of different economic times, do not lie in what is produced, and lie in how to produce, produce with some means of labor ". Manufacturing technology and equipping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every industrially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country, not merely take the great measure to develop one's own numerical control technology and industry, and implement blockading and restrictive policy to our country in view of " high-grade, precision and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economic development in a more cost-effective manner, important way to improve the overall national strength and national position. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of fields: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology;(5)Technology of the sensor; (6)Software engineering ,etc..Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology andenlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the world at present and equipping the development trend to see, there is the following several respect [1- ] in its main research focus.5 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are subjavanufacturing technology. High-speed, high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shortenproduction cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies for this, learn (CIRP) to confirm it as the centre in the 21st century and study one of the directions in international production engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicleper year, and many variety process it is car that equip key problem that must be solved one of; Inthe fields of aviation and aerospace industry, spare parts of its processing are mostly the thin walland thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in asituation that cut the speed and cut strength very small high, could process these muscles, walls.Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidity and dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility.According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is even high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machining accuracy of lathe bring 5μm up to from 10μm already, accurate grades of machining center from 3~5μm, rise to 1~1.5μm, and ultrap recision machining accuracy is it enter nanometer grade to begin already(0.01μm).In dependability, MTBF value of the foreign numerical control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further .5.2 Link and process and compound to process the fast development of the lathe in 5 axes Adopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with thebest geometry form of the cutter , not only highly polished, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link greatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt complex mainshaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make5 times process and 5 axles are processed and can be realized on the same lathe, can also realizethe inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibitsthe DMUV oution series machining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly.5.3 Become the main trend of systematic development of contemporary numerical control intelligently, openly, networkedly.The numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , adaptiveoperation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc..Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of countries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numerical Control System) of China, etc.. The numerical control system melts to become the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unified operation platform, face the lathe producer and end user, through changing, increasing or cutting out the structure target(numerical control function), form the serration, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety , different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present, communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software development ,etc. are the core of present research.The networked numerical control equipment is a new light spot of the fair of the internationally famous lathe in the past two years. Meeting production line , manufacture system , demand for the information integration of manufacturing company networkedly greatly of numerical control equipment, realize new manufacture mode such as quick make , fictitious enterprise , basic Entrance that the whole world make too. Some domestic and international famous numerical control lathes and systematic manufacturing companies of numerical control have all introduced relevant new concepts and protons of a machine in the past two years, if in EMO2001 exhibition, " Cyber Production Center " that the company exhibits of mountain rugged campstool gram in Japan (Mazak) (intellectual central production control unit, abbreviated as CPC); The lathe company of Japanese big Wei (Okuma ) exhibits " IT plaza " (the information technology square ,is abbreviated as IT square ); Open Manufacturing Environment that the company exhibits of German Siemens (Siemens ) (open the manufacturing environment, abbreviated as OME),etc., have reflected numerical control machine tooling to the development trend of networked direction.5.4 Pay attention to the new technical standard, normal setting-up5.4.1 Design the norm of developing about the numerical control systemAs noted previously, there are better common ability, flexibility, adaptability, expanding in theopen numerical control system, such countries as U.S.A. ,European Community and Japan ,etc. implement the strategic development plan one after another , carry on the research and formulation of the systematic norm (OMAC , OSACA , OSEC ) of numerical control of the open system structure, 3 biggest economies in the world have carried on the formulation that nearly the same science planned and standardized in a short time, have indicated a new arrival of period of change of numerical control technology. Our country started the research and formulation of standardizing the frame of ONC numerical control system of China too in 2000.5.4.2 About the numerical control standardThe numerical control standard is a kind of trend of information-based development ofmanufacturing industry. Information exchange among 50 years after numerical control technology was born was all because of ISO6983 standard, namely adopt G, M code describes how processes, its essential characteristic faces the processing course, obviously, he can't meet high-speed development of modern numerical control technology's needs more and more already. For this reason, studying and making a kind of new CNC system standard ISO14649 (STEP-NC) in the world, its purpose is to offer a kind of neutral mechanism not depending on the concrete system, can describe the unified data model in cycle of whole life of the products, thus realize the whole manufacture process, standardization of and even each industrial field product information. The appearance of STEP-NC may be a revolution of the technological field of the numerical control, on the development and even the whole manufacturing industry of numerical control technology, will exert a far-reaching influence. First of all, STEP-NC puts forward a kind of brand-new manufacture idea, in the traditional manufacture idea, NC processes the procedures to all concentrate on individual computer. Under the new standard, NC procedure can be dispersed on Internet, this is exactly a direction of open , networked development of numerical control technology. Secondly, STEP-NC numerical control system can also reduce and process the drawing (about 75%), process the procedure to work out the time (about 35%) and process the time (about 50%) greatly.At present, American-European countries pay much attention to the research of STEP-NC, Europeinitiates IMS plan (1999.1.1-2001.12.3) of STEP-NC. 20 CAD/CAM/CAPP/CNC users, manufacturers and academic organizations from Europe and Japan participated in this plan. STEP Tools Company of U.S.A. is a developer of the data interchange software of manufacturing industry in the global range, he has already developed the super model (Super Model ) which accuses of information exchange of machine tooling by counting, its goal is to describe all processing courses with the unified norm. Such new data interchange form has already been verified in allocating the SIEMENS, FIDIA and European OSACA-NC numerical control at present.6 pairs of basic estimations of technology and industry development of numerical control of our country。
外文翻译---模具高速铣削加工技术
外文翻译---模具高速铣削加工技术外文资料翻译Mold high speed milling processing technologyThe abstract Introduced the high speed milling in the mold processing application as well as the influence, and brief introduction high speed milling engine bed structure, control system and cutting tool. Has carried on the simple analysis to the high speed processing craft.Key word high speed milling; mold processingFirst, forewordIn the modern mold production, along with to models artistic and the function must obtain more and more high, models the internal structure to design more and more complex, the mold contour design day by day is also complex, the free curved surface accounts for the proportion to increase unceasingly, the corresponding mold structure also designs more and more complex. These all set a higher request to the mold processing technology, not only should guarantee the high manufacture precision and the surface quality, moreover must pursue the processing surface artistic. Along with is unceasingly thorough to the high speed processing engineering research, is processing the engine bed, the numerical control system, the cutting tool system, CAD/ especiallyCorrelation technology and so on CAM software develops unceasingly under the impetus, high speed processes the technology more and more many to apply in the mold cavity processing and the manufacture.The numerical control high-speed cutting processing took in the mold manufacture a most important advanced manufacturetechnology, is the collection is highly effective, high quality, the low consumption in a body advanced manufacture technology. Is opposite in the traditional machining, its cutting speed, entered to the speed had the very big enhancement, moreover cut the mechanism not to be same. The high-speed cutting caused the machining to have the leap, its specific power metal excision rate enhanced 30%~40%, the cutting force reduced 30%, the cutting tool working durability enhanced 70%, remained hotly large scale reduces in the workpiece cutting, the low step shudder vanished nearly. Along with the cutting speed enhancement, unit time semifinished materials material removing rate increased, the cutting time reduced, the processing efficiency enhanced, thus reduced the product manufacture cycle, enhanced the product market competitive power. At the same time, the high speed processing small amount entered quickly causes the cutting force to reduce, the scrap high speed discharged reduced the work piece cutting force and the thermal load distorts, enhances the rigidity to be bad and the thin wall components machining possibility. Because cutting force reducing, the rotational speed enhancement causes the cutting system the operating frequency to be far away the engine bed the low step natural frequency, but the work piece surface roughness is most sensitive to the low step frequency, from this reduced the surface roughness. In mold high hard steel stock (HRC45~HRC65) in the processing process, uses the high-speed cutting to be possible to substitute for the working procedure which the electrical finishing and rubs truncates polishes, thus has avoided the electrode manufacture and the time-consuming electrical finishing, large scale reduced fitter'spolishing with to throw the light quantity. Thin wall mold work piece more and more needs which regarding some markets in, the high speed milling also may smoothly complete, moreover in the high speed milling CNC processing center, a mold attire clamps may complete the multiplex step of processing.The high speed processing technology has had the huge influence to the mold processing craft, changed the traditional mold processing to use "the annealing→milling processing→heat treatment→to rub truncates" or"the electric spark machining→manually polishes, polishes" and so on the complex long technical process, even might use the high-speed cutting processing substitution original complete working procedure. The high speed processing technology besides may apply in the hard mold cavity direct processing (in particular half precision work and precision work), in EDM aspect and so on electrode processing, fast type manufacture also obtained the widespread application. The mass productions practice indicated that, the application high-speed cutting technology may save in the mold following processing 80% handwork to grind the time approximately, saves the processing cost expense nearly 30%, the mold face work precision may reach 1 m, the cutting tool cutting efficiency may enhance one time.Second, high speed milling processing engine bedThe high-speed cutting technology is one of machining technology main development directions, it along with foundation technology the and so on CNC technology, microelectronic technology, new material and new structure development but steps a higher stair. Because the mold processes particular as well as high speed processing technology own characteristic, (processed engine bed, numerical controlsystem, cutting tool to the mold high speed processing related technology and the craft system and so on) proposed processeda higher request compared to the traditional mold.1. High stable engine bed strut partThe high-speed cutting engine bed lathe bed and so on supports the part to be supposed to have very well moves, the static rigidity, hot rigidity and best damping characteristic. The majority of engine beds all use high grade, the high rigidity and Gao Kangzhang the gray iron took the strut part material, some engine bed companies also increase the high damping characteristic in the foundation polymer concrete, by increases its vibration-proof and the thermostability, this not only may guarantee the engine bed precision is stable, also may prevent when cutting the cutting tool inspires trembles. Uses the enclosed lathe bed design, the overall casting lathe bed, the symmetrical lathe bed structure and has the densely covered stiffener and so on also enhances the engine bed stable important measure. Some engine bed companies' research and development departments in design process, but also uses the modality analysis and the finite element structure computation and so on, optimized the structure, stably causes the engine bed strut part to be reliable.2. Engine bed main axleThe high speed engine bed main axle performance is the realization high-speed cutting processing important condition. The high-speed cutting engine bed main axle rotational speed scope is 10000~100000m/Min, the main axle power is bigger than 15kW. Is not bigger than 0.005mm through the main axle compressed air of or axial play between the cooling system control hilt and the main axle. Also requests the main axle to havethe fast vertical speed, to assign the performance which the position is fast stops (namely to have extremely high angle addition and subtraction speed), therefore the high speed main axle often uses the liquid static pressure bearing type, the air static pressure bearing type, the thermo-compression nitriding silicon (Si3N4) the ceramic bearing magnetism aerosol bearing type isostructuralism form. Lubricates uses technology and so on oil gas lubrication, splash lubrication. The main axle cools uses the main axle interior water cooling generally or air cooled.3. The engine bed actuates the systemIn order to satisfy the mold high speed processing the need, high speed processesthe engine bed the actuation system to be supposed to have the following characteristic:(1) high entering for speed.The research indicated that, regarding the minor diameter cutting tool, enhances the rotational speed and each tooth enters for the quantity is advantageous in reduces the cutting tool attrition. At present commonly used entering for the speed range is 20~30m/Min, like uses leads greatly the ball bearing guide screw transmission, enters may reach 60m/ for the speedMin; Uses the straight line electrical machinery thenmay enable to achieve 120m/ to the speedMin.(2) high acceleration.Has the good acceleration characteristic to the three dimensional complex curved surface silhouette high speed processing request actuation system, the request provides the driver which the high rapid advance or progress gives (to enter speed approximately 40m/ quicklyMin, the 3D outline processingspeed is 10m/Min), can provide 0.4m/S2 to 10m/The s2 acceleration and reduces the speed.The engine bed manufacturer mostly uses the entire closed loop position servo-control slightly to lead, the great size, the high grade ball bearing guide screw or leads greatly many guide screws. Along with the electrical machinery technology development, the advanced straight line electric motor already was published, and the success applied in the CNC engine bed. The advanced straight line direct motor drive enable the CNC engine bed no longer to have the mass inertia, in advance, question and so on lag and vibration, sped up the servo speed of response, increased the servo-control precision and the engine bed processing precision.4. Numerical control systemThe advanced numerical control system is guaranteed the mold complex curved surface high speed processing quality and the efficiency key aspect, the mold high-speed cutting processing to the numerical control system basic request is:A. High speed numerical control return route (Digital control loop), including:32 or above 64 bit parallel processors and 1.5Gb hard disk; Extremely short straight line electrical machinery sampling time.B. Speed and acceleration feed-forward control (Feed forward control); Digitalactuation system crawling control (Jerk control).C. Advanced inserts makes up the method (to insert based on the NURBS transect makes up), by obtains the good surface quality, the precise size and the high geometry precision.D. Pretreatment (Look-ahead) function. The request has the large capacity cushion register, may read in advance and inspectsmany segments (for example the DMG engine bed to be possible to reach 500 segments, the Simens system may reach a 1000~2000 segment), in order to when is processed the superficial shape (curvature) changes may promptly adopt changes for measure and so on speed by avoids cutting and so on.E. The error compensatory function, including because the straight line electrical machinery, the main axle and so on gives off heat the hot error which causes to compensate, the quadrantal error compensates, the measurement system error compensates and so on the function. In addition, the mold high-speed cutting processing very is also high to the data transmission speed request.F. The traditional data connection, like the RS232 serial mouth transmission speed is 19.2kb, but many advanced processings centers have used the ether local area network (Ethernet) to carry on the data transmission, the speed may reach 200kb.5. Cooling lubricationThe high speed processing uses the belt coating the hard alloy tools, in high speed, the high temperature situation does not need the cutting compound, the cutting efficiency to be higher. This is because: The milling main axle high speed revolves, the cutting compound if achieved the cutting area, first must overcome the enormous centrifugal force; Even if it overcame the centrifugal force to enter the cutting area, also was possible as a result of the cutting area high temperature but to evaporate immediately, the cooling effect very small did not even have; At the same time the cutting compound can cause the cutting tool edge of a sword the temperature intense change, is easy to causethe crack the production, therefore must pick the oil used/Gas cooling lubrication dry type cutting way. This way may use the compressed gas rapidly the cutting which the cutting area produces, thus the massive cuttings hotly will carry off, at the same time might forms extremely thin microscopic protective film after the atomization lubricating oil in the cutting tool edge of a sword and the work piece surface, but effectively will lengthen the cutting tool life and enhances the components the surface quality.Third, high-speed cutting processing cutting toolThe cutting tool is in the high-speed cutting processing one of most active important factors, it is affecting the processing efficiency, the production cost and the product processing precision directly. The cutting tool must withstand load and so on high temperature, high pressure, friction, impact and vibration in the high speed processing process, the high-speed cutting cutting tool should have the good machine capability and the thermostability, namely has the good anti- impact, the wearability and resists heat the weary characteristic. The high-speed cutting processing cutting tool technological development speed is very quick, application many like diamonds (PCD), cubic boron nitride (CBN), ceramic cutting tool, coating hard alloy, (carbon) titanium nitrides hard alloy TIC (N) and so on.In the processing cast iron and in the alloy steel cutting tool, the hard alloy is the most commonly used cutting tool material. Hard alloy tools resistance to wear good, but the solidity ratio cube boron nitride and the ceramics are low. In order to enhance degree of hardness and the superficially attractive fineness, uses the cutting tool coating technology, the coating material for thetitanium nitrides (TiN), the aluminium nitride titanium (TiALN) and so on. The coating technology causes the coating by the sole coating development for multilayered, the many kinds of coating material coating, has become one of enhancement high-speed cutting ability essential technical. The diameter in the 10~40mm scope, also has the carbon titanium nitrides coating the hard alloy bit to be able to process the Luo river degree of hardness to be smaller than 42 materials, but the titanium nitrides aluminum coating cutting tool can process the Luo river degree of hardness is 42 even higher materials. When high-speed cutting steel products, the cutting tool material should select the hot rigidity and the fatigue strength high P kind of hard alloy, the coating hard alloy, the cubic boron nitride (CBN) and the CBN compound cutting tool material (WBN) and so on. The cutting cast iron, should select the fine grain K kind of hard alloy to carry on the rough machining, selects the compound nitrided silicon ceramics or the crystal combination cube boron nitride (PCNB) the compound cutting tool carries on the precision work. When precise processing non-ferrous metal or nonmetallic material, should select crystal combination diamond PCD or the CVD diamond coating cutting tool. When choice cutting parameter, in view of the circular shear blade and a ball milling cutter, should pay attention to the effective diameter the concept. The high speed milling cutting tool should press the balance design manufacture. The cutting tool front anglemust be smaller than the conventional cutting tool front angle, the clearance angle is slightly big. The host vice- cutting edge attachment point should the cavetto or the lead angle, increases the vertex angle, prevents the knife point place hot attrition. Should enlarge nearby the knife point the cutting edgelength and the cutting tool material volume, enhances the cutting tool rigidity. Is safe in the guarantee and satisfies the processing request under the condition, the cutting tool hangs extends as far as possible short, cutter body central toughness is friends with. The hilt must be sturdier than the cutting tool diameter, connects the handle to assume but actually the pyramidal, by increases its rigidity. As far as possible central the refrigerant hole in the cutting tool and the cutting tool system. A ball end mill must consider effectively cuts the length, the cutting edge must be as far as possible short, two spiral grooves balls end mill usually uses in the thick mill complex curved surface, four spiral grooves balls end mill usually uses in the fine mill complex curved surface.Fourth, mold high speed processing craftThe high speed processing including take removes the remainder as the goal rough machining, the residual rough machining, as well as take gains the high grade processing surface and the slight structure as the goal half precision work, the precision work and the mirror surface processing and so on.1. Rough machiningThe mold rough machining essential target is pursues in the unit time material removing rate, and is half precision work preparation work piece geometry outline. In the high speed processing rough machining should adopt the craft plan is the high cutting speed, Gao Jin giving rate and the small cutting specifications combination. The contour processing way is one processing way which the multitudinous CAM software uses generally. Using is spiral contour and so on the Z axis contour two ways which are many, also is in processes the region only time to feed, in does not lift the knife in the situation to producecontinuously the smooth cutting tool way, enters, draws back the knife way to use the circular arc to cut into, to cut. The spiral contour way characteristic is, has not waited the high level between the knife road migration, may avoid frequently lifting the knife, feeding to the components surface quality influence and mechanical device nonessential consuming. To is steep and the flat site processes separately, the computation suits contour and suits the use similar 3D bias the region, and may use the spiral way, in very little lifts the cutting tool way which the knife in the situation produces optimizes, obtains the better surface quality. In the high speed processing, certainly must adopt the circular arc to cut into, to cut the connection way, as well as the circular arc transition, avoids changing the cutting tool to enter suddenly for the direction, the prohibition use direct under knife connection way, avoids burying the cutting tool the work piece. When processes the mold cavity, should avoid the cutting tool vertical insertion work piece under, but should use inclines the knife way (commonly used angle of bank for 20°~30°), best uses the screw type under knife by to reduce the cutting tool load. When processes the mold core, should under the knife then level cut into the work piece as far as possible first from the work piece. The cutting tool cuts into, cuts when the work piece should use as far as possible inclines the type (or round arc-type) cuts into, cuts, vertically avoids cutting into, cutting. Uses climbs up the type cutting to be possible to reduce the cutting heat, reduces the cutting tool stress and the work hardening degree, improves the processing quality.2. Half precision workThe mold half precision work essential target is causes the work piece outline shape smoothly, surface finish remainder even,this especially is important regarding the tool steel mold, because it will affect time the precision work cutting tool layer of cutting area change and cutting tool load change, thus influence cutting process stability and precision work surface quality.The rough machining is based on the volume model, the precision work then is based on the face mold. Before develops CAD/The CAM system to the components geometry description is not continual, after because has not described in front of the rough machining, the precision work processes the model the average information, therefore the rough machining surface surplus processing remainder distribution and the great surplus processing remainder is unknown. Therefore should fifty-fifty the precision work strategy carry on the optimization after to guarantee half precision work the work piece surface has the even surplus processing remainder. The optimized process includes: After the rough machining the outline computation, the great surplus processing remainder computation, the biggest permission processing remainder determination, is bigger than the biggest permission processing remainder the profile district (for example transition radius and so on scoop channel, corner is smaller than rough machining cutting tool radius region) as well as when half precision work the knife heart path computation to the surplus processing remainderand so on.The existing mold high speed processes CAD/The CAM software has the surplus processing remainder analysis function mostly, and can act according to the surplus processing remainder the size and the distribution situation uses the reasonable half precision work strategy. After like the MasterCAM software provided has tied the shape milling (Pencil milling) andthe surplus milling (Rest milling) and so on the method eliminates the rough machining the surplus processing remainder big quoin by to guarantee the following working procedure even processing remainder.3. Precision workThe mold high speed precision work strategy is decided by the cutting tool and the work piece contact point, but the cutting tool and the work piece contact point but changes along with the processing surface curved surface slope and the cutting tool effective radius change. Regarding by the complex curved surface processing which many curved surface combination but becomes, should carry on the continuous treating as far as possible in a working procedure, but is not carries on the processing separately to each curved surface, by reduces lifts the knife, under the knife number of times. However, because processes the superficial slope change, if only defines the processing the side to eat the knife quantity (Step over), possibly creates on the slope different surface the actual step of distance non-uniformity, thus influence processing quality.In the ordinary circumstances, the precision work curved surface radius of curvature should be bigger than the cutting tool radius 1.5 times, by evades the no admittance to the direction suddenly transformation. In the mold high speed precision work, when each time cuts into, cuts the work piece, enters for the direction change should as far as possible use the circular arc or the curve switches over, avoids using the straight line to switch over, by maintains the cutting process the stability.Fifth, concluding remarkThe high-speed cutting technology is one of machining technology main development directions, at present mainlyapplies in the automobile industry and the mold profession, in the processing complex curved surface domain, work piece itself or the cutting tool system rigidity request high processing domain and so on, is the many kinds of advanced processings technology integration in particular, its is highlyeffective high grade, esteems for the people. It not only involves to the high speed processing craft, moreover also includes high speed processes the engine bed, the numerical control is systematic, the high-speed cutting cutting tool and CAD/CAM technology and so on. The mold high speed processing technology generally has applied at present in the developed country mold manufacturing industry, but still waited for in our country's application scope and the application level the enhancement, because it had the tradition to process the incomparable superiority, still will be the next processing technology inevitable development direction.模具高速铣削加工技术摘要介绍了高速铣削在模具加工中的应用以及影响,并简要的介绍了高速铣削机床的结构、控制系统和刀具。
高速切削加工技术
高速切削加工高速切削加工(high-speed cutting, HSC)是先进制造技术的一个重要组成部分,其主要优点是可实现加工的高效率和高品质。
近年来高速切削加工技术在世界主要经济发达国家(如德、英、美、意、日等)发展迅猛,这些国家生产的高速切削加工机床及辅、配、软、硬件几乎每年都以一个新台阶的速度更新换代,目前所能达到的性能指标已是令人瞠目。
Micron、Jobs、Haas、Fpt、Dmg等世界著名机床公司近年来大力发展的快速更换主轴头技术使同一台机床能适应多种负载和速度要求(即所谓粗精加工同机“一次过”),在工件的定位、安装、传输等环节可节约大量的非加工时间。
机床主轴的高速旋转以及进给速度、加速度的相应提高,一方面可直接缩短加工时间,另一方面还因高速切削具有激振频率特别高、工作平稳、振动小的优势而有利于提高加工表面质量,即高速切削加工可作为模具和结构零件的最终加工,通过“以切代磨”或“以切代放电”来提高加工效率和加工质量(即勿需进行费时低效的后续磨削工序、模具电极电火花加工);工件还可先淬火后切削,直接将硬度高达65HRC的材料高速切削加工至最终尺寸。
高速切削加工的实现除需高速机床外还需配备适宜高速切削的刀具。
根据2002年广东省国际模具高速加工技术研讨会上Micron、Jobs、肯纳飞硕等公司的特邀报告,近年来德国SGS、日本三菱(神钢)及住友、瑞士山特维克、美国肯纳飞硕等国外著名刀具公司都先后推出了各自的高速切削刀具,不仅有高速切削普通结构钢的刀具,还有能直接高速切削淬硬钢的陶瓷刀具等超硬刀具,尤其是涂层刀具异军突起,在淬硬钢的半精加工和精加工中发挥着巨大作用。
近年来我国(尤其华南地区)制造业发展迅速,模具和汽车、摩托车制造业发达,拥有高速切削机床的企业不断增多。
然而,与高速切削机床和刀具技术的快速发展相比,这些企业在高速切削工艺、检测及应用软件等方面的技术还比较落后,与硬件不能配套,致使不少厂家进口的先进设备根本没有发挥其应有作用。
机械加工切削加工中英文对照外文翻译文献
机械加工切削加工中英文对照外文翻译文献中英文资料翻译英文部分The new concept of cutting processingThe nowadays cutting tool company cannot only be again the manufacture and the sales cutting tool, in order to succeed, they must be consistent with the globalization manufacture tendency maintenance, through enhances the efficiency, cooperates with the customer reduces the cost. Approaches the instantaneous global competition after this after NAFTA, the WTO time, the world company is making quickly to the same feeling, is lighter, a cheaper response. In other words, they make the product and the components contain can in high speed under revolve, as a result of the cost pressure, best, is lighter moreover must make cheaply. Obtains these goals a best way is through develops and applies the new material, but these is new and the improvement material usually all with difficulty processes. In in this kind of commercial power and the technical difficulty combination is especially prominent in the automobile and the aviation industry, and has become has the experience the cutting tool company to research and develop the department the most important driving influence.For example, takes the modular cast iron to say that, it has become the engine part and other automobiles, the agriculture the material which see day by day with the equipment and in the machine tool industry components. This kind of alloy provides the low production cost and the good machine capability combination. They are cheaper than the steel products, but has a higher intensity and toughness compared to the cast iron. But atthe same time the modular cast iron is extremely wear-resisting, has fast breaks by rubbing the cutting tool material the tendency. In this wear resistant very great degree bead luminous body content influence. Some known modular cast iron bead luminous body content higher, its resistance to wear better, moreover its machinability is worse. Moreover, the modular cast iron porosity causes off and on to cut, this even more reduces the life.May estimate that, the high degree of hardness and the high wear-resisting cutting material quality must consider the modular cast iron the high resistance to wear. And the material quality contains extremely hard TiC in fact (carbonized titanium) or TiCN (carbon titanium nitrides) thick coating when cutting speed each minute 300 meters processes the modular cast iron to prove usually is effective. But along with cutting speed increase, scrap/The cutting tool junctionplane temperature also is increasing. When has such situation, the TiC coating favors in has the chemical reaction with the iron and softens, more pressures function in anti- crescent moon hollow attrition coating. Under these conditions, hoped has one chemical stability better coating, like Al2O3 (although under low speed was inferior to TiC hard or is wear-resisting).The chemical stability becomes an important performance performance dividing line compared to the resistance to wear the factor, the speed and the temperature is decided in is processed the modular cast iron the crystal grain structure and the performance. But usually thick coating of TiCN and TiC or only ductile iron oxides in the soil coating is applied to, because the today majority of this kinds are processed the material the cutting speed in each minute 150 to 335 meters between. Is higher than each minute 300 meter applications regarding thespeed, the people to this kind of material are satisfied.In order to cause this scope performance to be most superior, the mountain high researched and developed and has promoted in view of modular cast iron processing material quality TX150. This kind of material quality has hard also the anti- distortion substrate, is very ideal regarding the processing modular cast iron. Its coating the oxide compound coating which hollowly wears by thick very wear-resisting carbon titanium nitrides and a thin anti- crescent moon, the top is thin layer TiN. This kind of coating which needs the center warm chemistry gas phase deposition using the state of the art production resistance to wear and the anti- crescent moon hollow attrition which the CVD coating complete degree of hardness moreover the tough smoothness increases (MTCVD) the craft. Substrate/The coating combination performance gives the very high anti- plastic deformation and the cutting edge micro collapses the ability, causes it to become under the normal speed to process the modular cast iron the ideal material quality.The coating ceramics also display can effectively process the modular cast iron. In the past, the aluminum oxide ceramics application which not the coating tough good such as nitriding silicon and the silicon carbide textile fiber strengthened the work piece material chemistry paralysis limit. Today but could resist the scrap distortion process through the use to have the high thermal coating cutting tool life already remarkably to increase. But certain early this domains work piece processing use aluminum oxides spread the layer crystals to have to strengthen the ceramics, today most research concentrate in the TiN coating nitriding silicon. This kind of coating can remarkably open up the tough good ceramics the application scope.When machining, the work piece has processed the surface is depends upon the cutting tool and the work piece makes the relative motion to obtain.According to the surface method of formation, the machining may divide into the knife point path law, the formed cutting tool law, the generating process three kinds.The knife point path law is depends upon the knife point to be opposite in the work piecesurface path, obtains the superficial geometry shape which the work piece requests, like the turning outer annulus, the shaping plane, the grinding outer annulus, with the profile turning forming surface and so on, the knife point path are decided the cutting tool and the work piece relative motion which provides in the engine bed;The formed cutting tool law abbreviation forming, is with the formed cutting tool which matches with the work piece final superficial outline, or the formed grinding wheel and so on processes the formed surface, like formed turning, formed milling and form grinding and so on, because forms the cutting tool the manufacture quite to be difficult, therefore only uses in processing the short formed surface generally;The generating process name rolls cuts method, is when the processing the cutting tool and the work piece do unfold the movement relatively, the cutting tool and the work piece centrode make the pure trundle mutually, between both maintains the definite transmission ratio relations, obtains the processing surface is the knife edge in this kind of movement envelope, in the gear processing rolls the tooth, the gear shaping, the shaving, the top horizontal jade piece tooth and rubs the tooth and so on to be the generating process processing.Somemachining has at the same time the knife point path law and the formed cutting tool method characteristic, like thread turning.The machining quality mainly is refers to the work piece the processing precision and the surface quality (including surface roughness, residual stress and superficial hardening).Along with the technical progress, the machining quality enhances unceasingly.The 18th century later periods, the machining precision counts by the millimeter; At the beginning of 20th century, machining precision Gao Yida 0.01 millimeter; To the 50's, the machining precision has reached a micron level; The 70's, the machining precision enhances to 0.1 micron.The influence machining quality primary factor has aspects and so on engine bed, cutting tool, jig, work piece semifinished materials, technique and processing environment.Must improve the machining quality, must take the suitable measure to the above various aspects, like reduces the engine bed work error, selects the cutting tool correctly, improves the semifinished materials quality, the reasonable arrangement craft, the improvement environmental condition and so on.Enhances the cutting specifications to enhance the material excision rate, is enhances the machining efficiency the essential way.The commonly used highly effective machining method has the high-speed cutting, the force cutting, the plasma arc heating cuts and vibrates the cutting and so on.The grinding speed is called the high-speed grinding in 45 meters/second above /doc/9c977104.html es the high-speed cutting (or grinding) both may enhance the efficiency, and mayreduce the surface roughness.The high-speed cutting (or grinding) requests the engine bed to have the high speed, thehigh rigidity, the high efficiency and the vibration-proof good craft system; Requests the cutting tool to have the reasonable geometry parameter and the convenience tight way, but also must consider the safe reliable chip breaking method.The force cutting refers to the roughing feed or cuts the deep machining greatly, uses in the turning and the grinding generally.The force turning main characteristic is the lathe tool besides the main cutting edge, but also some is parallel in the work piece has processed superficial the vice-cutting edge simultaneously to participate in the cutting, therefore may enhance to feed quantity compared to the general turning several times of even several /doc/9c977104.htmlpares with the high-speed cutting, the force cutting cutting temperature is low, the cutting tool life is long, the cutting efficiency is high; The shortcoming is processes the surface to be rough.When force cutting, the radial direction cutting force death of a parent is not suitable for to process the tall and slender work piece very much.The vibration cutting is along the cutting tool direction of feed, the attachment low frequency or the high frequency vibration machining, may enhance the cutting efficiency.The low frequency vibration cutting has the very good chip breaking effect, but does not use the chip breaking equipment, makes the knife edge intensity to increase, time the cutting total power dissipation compared to has the chip breaking installment ordinary cutting to reduce about 40%.The high frequency vibration cutting also called the ultrasonic wave vibration cutting, is helpful in reduces between the cutting tool and the work piece friction, reduces the cutting temperature, reduces the cuttingtool the coherence attrition, thus the enhancement cutting efficiency and the processing surface quality, the cutting tool life may enhance 40% approximately.To lumber, plastic, rubber, glass, marble, granite and so on nonmetallic material machining, although is similar with the metal material cutting, but uses the cutting tool, the equipment and the cutting specifications and so on has the characteristic respectively.The lumber product machining mainly carries in each kind of joiner's bench, its method mainly has: The saw cuts, digs cuts, the turning, the milling, drills truncates with the polishing and so on.The plastic rigidity is worse than the metal, the easy bending strain, the thermoplastic thermal conductivity to be in particular bad, easy to elevate temperature the conditioning.When cutting plastic, suitably with the high-speed steel or the hard alloy tools, selects the small to feed quantity and the high cutting speed, and uses compressed air cooling.If the cutting tool is sharp, the angle is appropriate, may produce the belt-shaped scrap, easy to carry off the quantity of heat.Glass (including semiconducting material and so on germanium, silicon) but degree of hardness high brittleness is big.To methods and so on glass machining commonly used cutting, drill hole, attrition and polishing.T o thickness in three millimeters following glass plates, the simple cutting method is with the diamond or other hard materials, in glass surface manual scoring, the use scratch place stress concentration, then uses the hand to break off.To the marble, the granite and the concrete and so on the hard material processing, mainly uses methods and so on cutting, turning, drill hole, shaping, attrition and polishing.When cuttingthe available circular saw blade adds the grinding compound and the water; The outer annulus and the end surface may use the negative rake the hard alloy lathe tool, by 10~30 meter/minute cutting speed turning; Drills a hole the available hard alloy drill bit; The big stone material plane available hard alloy planing tool or rolls cuts planing tool shaping; The precise smooth surface, available three mutually for the datum to the method which grinds, or the grinding and the polishing method obtains.Cutting tool in hot strong alloy applicationThe aviation processing also changes rapidly. For example, nickel base heat-resisting alloy like several years ago the most people had not heard Rene88 now occupies to the aircraft engine manufacture uses the total metal quantity 10~25%. Has very good showing and the commercial reason regarding this. For example, these heat strong alloy will be able to increase the engine endurance moreover to permit the small engine work on the big airplane, that will enhance the combustion efficiency and reduces the operation cost. These tough good materials also present the expense on the cutting tool. Their thermal stability causes on the knife point the temperature to be higher, thus reduced the cutting tool life. Similarly, in these alloy carbide pellet remarkably increased the friction, thus reduces the cutting tool life.As a result of changes in these conditions, can be very pleased to have processed many titanium alloys and nickel-based alloy materials C-2 hard metal alloys, in the application to today's cutting edge of blade to the crushing and cutting depth of the trench lines badly worn. But using the latest high-temperature processing of small particles hard metal alloys to be effective, cutlery life improved, but more importantly to enhance thereliability of applications in high-temperature alloys. Small particles hard metal than traditional hard metal materials higher compression strength and hardness, only a small increase in the resilience of the cost. And resulted in high temperature alloy processing than traditional hard metal resistance common failure mode more effective.PVD (physical gas phase deposition) coating also by certificate effective processing heat-resisting alloy. TiN (titanium nitrides) the PVD coating was uses and still was most early most receives welcome. Recently, TiAlN (nitrogen calorization titanium) and TiCN (carbontitanium nitrides) the coating also could very good use. In the past the TiAlN coating application scope and TiN compared the limit to be more. But after the cutting speed enhances them is a very good choice, enhances the productivity in these applications to reach 40%. On the other hand, is decided under the low cutting speed in coating superficial operating mode TiAlN can cause to accumulate the filings lump afterwards, micro collapses with the trench attrition.Recently, used in the heat-resisting alloy application material quality already developing, these coating but became by several combinations. The massive laboratories and the scene test has already proven this kind of combination and other any kind of sole coating compares in time the very wide scope application is very effective. Therefore aims at the heat-resisting alloy application the PVD compound coating possibly to become the focal point which the hard alloy new material quality research and development continues. With the MTCVD coating, the coating ceramics gather in the same place, they hopefully become a more effective processing to research and develop newly are moredifficult to process the work piece material the main impact strength.Dry processingIncluding the refrigerant question is technical and the commercial expansion industrial production tendency another domain which the cutting tool makes. North America and the European strict refrigerant management request and the biggest three automobile manufacturer forces them the core supplier to obtain the ISO14000 authentication (the ISO9000 environment management edition), this causes the refrigerant processing cost rise. To the car company and their core supplier said obviously one of responses which welcome is in the specific processing application avoids completely the refrigerant the use. This kind did the processing the new world to propose a series of challenges for the cutting tool supplier.Recently, already appeared some to concern this topic to promulgate the speed, to enter for, the coating chemical composition and other parameters very substantial comprehensive nature very strong useful technical papers. Wants to concentrate the elaboration in here me "does the processing viewpoint" in the operation and commercial meaning automobile manufacturer new.The metal working jobholders can the very good understanding related refrigerant use question, but majority cannot understand concerns except the technical challenge (for example row of filings) beside does the processing question in the cutting tool - work piece contact face between. Usually may observe to the refrigerant disperser scrap which flows out, but the pressure surpasses 3,000 pounds/An inch 2 high speed refrigerant also can help to break the filings, specially soft alsothe continual scrap can cause in the cutting tool - work piece contact face trouble.Uses does the cutting craft the components result is the engine bed uses the wet typeprocessing components to be hotter than. Whether before you do allow them to survey in the open-air natural cooling? If processes newly the hot components put frequently to the turnover box, elevates the environment temperature, whether components full cooling and just right enough permission precision examination? Also has the handling side several dozens on hundred components to be able to operate the worker to increase the extra burden.With many cutting tools/The work piece technical question same place, these latent questions need to state whether dryly adds the ability line. Luckily, has very many ways to elaborate these questions. For example, the compressed air was proven row of filings becomes the question in very many applications the situation to have the successful echo.Another plan is called MQL (minimum lubrication) a technology, it replaces the traditional refrigerant by the application the quite few oil mists constitution. This is a recognition compromise plan, this kind of minimum technology can large scale reduce the refrigerant the headache matter, moreover the smooth finish which processes in many applications very is also good. This domain still had very many research to do, moreover the cutting tool company positively participated in such research was absolutely essential. If they will not do fall behind the competitor, will be at the disadvantageous position.In the factory the special details design other perhaps betterplan according to the world in. The manufacturing industry jobholders possibly still could ask why they do have to use recent development the technology to replace the refrigerant method diligently which the tradition already an experience number generation of person improved enhances, because implemented especially does the experiment and the defeat which the processing or the subarid processing produced possibly causes the higher short-term cutting tool cost. The concise answer is when the bit probably accounts for the model processing components cost 3%, the refrigerant cost (from purchases to maintenance, storage, processing) can account for the components cost 15%.Perhaps does the dry processing is not all suits to each application, but above discusses likely other processing questions are same, needs from a wider operation, the environment and the commercial angle appraises. Will be able to help the cutting tool company which the customer will do this to have the competitive advantage, but these will not be able to provide unceasingly is in the passive position.Cutting tool and nanotechnologyCan fiercely change the cutting tool industry the enchanting new domain is the miniature manufacture, or the processing small granule forms the product which needs. Must refer to is its here does not have about the cutting tool miniature manufacture first matter; Second must say the matter is it is not remote.Why the miniature manufacture and are the cutting tool related. Because most main is theparticle size smaller, the hard alloy toughness of material better also is more wear-resisting. (Some experts define with the nanometer level pellet for are smaller than 0.2 mu m, but otherpeople persisted a nanometer pellet had to be smaller than the hard alloy tools prototype which 0.1 mu m) made already to complete and the test,It is said that wear resistant theatrically increase. The question is the nanometer level hard alloy pellet cannot depend on the smashing big material formation, they are certain through the smaller material constitution, but processes the molecular level granule is not easy and the economical matter.中文部分切削加工新概念现今的刀具公司再也不能只是制造和销售刀具,为了成功,他们必须与全球化制造趋势保持一致,通过提高效率、同客户合作来降低成本。
机械制造专业外文翻译--超精密加工与超高速加工技术
外文原文:Ultraprecisio processing,andultra-high-speedprocessing technologiesFirst, Technical overviewSophisticated, ultra-precision processing is a relative concept but as a general increase in the level of craftsmanship, different divisions have different age limits, but no strict uniform standards. From the current level of mechanical processing technology and ultra precision processing usually processing precision<0.3μm ,Surface roughness Ra value<0.03μm.Hypervelocity processing technology refers to the cutlery used paint materials through greatly increased cutting speed and chin to improve the material removal rate of speed, accuracy and Processing processing quality modern processing technology. Hypervelocity scope for cutting speed processing different working materials, different ways and different machines. Currently, the general view, ultra high speed machining of the cutting speed range of materials : aluminum alloy over 1600m /min, cast iron for 1500m /min, ultra heat -300m /min nickel alloys, titanium alloys to 150 ~1000m /min, fibre reinforced plastics for 2000 ~9000m /min. The cutting speed range of alternative processes for Chexue 700 ~7000m /min, Xianxiao 300 ~6000m /min, drilling 200 ~1100m /min, grinding 250m /s above, and so on.Ultra high speed processing technologies include : ultra high speed machining and grinding research mechanisms, hypervelocity main modules manufacturing technology, ultra high speed into the module manufacturing technology, ultra high-speed processing with cutlery and abrasive manufacturing technology, ultra high speed processing online automatic detection and control technologies.Ultra precision processing refers to the current processing components size precision than 0.1μm, the surface roughness Ra <0.025 μm, and the machine tools used in the resolution positioning accuracy and repetitive than 0.01μm processing technology, also known as the Asian micrometres processing technology, and is to nano-class processing technology development.Ultra precision processing technology include : ultra precision processing experiment,ultra precision processing equipment manufacturing technology research, tools and Renmo super precision processing technology research, technology and ultra-precision measurement error compensation technology research, ultra precision processing work study environmental conditions.Second, the current situation and development trend1)Ultra high speed processingDeveloped ultra-high-speed processing of industrial research earlier, the high level. In this technology, in a leading position in the country mainly Germany , Japan , the United States , Italy .In hypervelocity processing technology, the frame material to achieve ultra high speed processing tool is the prerequisite and preconditions, ultra high speed grinding machine technology is a modern method of hypervelocity processing techniques, and high-speed digital machine tools and processing center is the key to achieving ultra-high-speed processing equipment. Currently, cutlery materials from carbon steel and alloy tool steel, the high-speed steel, hard alloy steel, ceramic materials, the development of artificial diamonds and Jujing diamond (PCD), and Ju Jing cubic feet Danhuapeng Danhuapeng (CBN). Cutting speed is as innovative materials and cutlery from the former 12m /min to 1200m /min above. Abrasive Wheels materials used in the past primarily corundum is, silicon carbide is, the United States G. E companies in the 1950s, synthetic diamonds success, the 1960s was the first success CBN. 1990s ceramic or resin combination agents CBN grinding wheel, diamond grinding wheel speed up 125m /s lines, some up to 150m /s and single-level electroplating CBN grinding wheel to 250m /s. It was felt that with the new cutlery (Saint), the continuous development of materials, cutting speed to be doubled every decade, the emergence of subsonic and supersonic processing will not be too far off. In hypervelocity cutting technology, developed in 1976 by a U.S. company Vought Taiwan hypervelocity milling machine, the maximum rotational speed of 20000rpm reached. Special attention is the Federal University of production engineering and machine tools industry Darmstadt Institute (PTW) from 1978 began a systematic study of hypervelocity alternative mechanisms for the various metals and non-metallic materials for high-speed machining tests Federal dozens of enterprises and organizations provided more than 2,000 million DM in support of the study, since the late 1980s, since the commercialization of emerging ultra-high-speed machining machine tools, super-high-speed machine tools from a single super high-speed milling machine into hypervelocity vehicles milling machine, drilling of high-speed milling machine and processing centres. Switzerland , the United Kingdom , Japan has launched its ultra high speed machine tools. Japan Hitachi smart machines HG400III maximum rotational speed of the speech-processing center 36000 ~40000r/min, workstations rapid mobile speed 36 ~40m /min. Using linear electrical U.S.-based high-speed processing HVM800 Ingersoll companies to move into the center for 60m /min speed.In high-speed and ultra-high-speed grinding technology, people developed high-speed, ultra high speed grinding, deep relief for grinding into, deep into the fast grinding (HEDG), multi-piece grinding wheel and multi-grinding wheel-grinding, and many other high-speed efficient grinding, high-speed efficient grinding technology in the past 20 years has been considerable development and application. Germany Guehring Automation Company in 1983 created the first time the world's most powerful 60kw Taiwan Firm CBN grinding wheel grinder, versus reach 140 ~160m /s. A German enjoy Industrial University, the University of Bremen in high-skills research achieved world-recognized achievements, and actively in the aluminum alloy, titanium alloys, nickel alloys, and other difficult for recreational materials for the efficient processing of deep research skills. German Bosch company processing applications CBN grinding wheel speed grinding wheel Chixing using hypervelocity grinding electroplating CBN grinding wheel to replace the original roll teeth and shaving teeth processing techniques, and materials processing 16MnCr5 gear Chixing, Vs= 155m /s its reach 811mm 3 /mm.s Q, German companies use high-speed Kapp deep processing lumber mill parts Shencao, working materials for 100Cr6 bearing steel, using electroplating CBN grinding wheel, reached 300m /s versus the Q`= 140mm 3 /mm.s, grinding processing, the leaves will quench pump rotors a Zhuangjia 10, a meticulous rotor shafts, grinding, her chin to speed 1.2m /min average processing time within 10 seconds of each rotor, Caokuan accuracy assured in two 16ug m, a grinding wheel chain 1,300 working. Currently, the Japanese industry has 200m /s practical grinding pace, the United States Conneticut University grinding Research Center , 1996 its intention Bamboo high-speed grinder, the grinding wheel grinding maximum speed of 250m /s.2)Ultra precision processingUltra precision processing technology in the leading position internationally in thecountries the United States , Britain and Japan . These countries not only ultra-precision processing technology sets the overall high level, but also a very high degree of commercialization.The United States is conducting the first study ultra-precision processing technology, and so far its leading position in the world countries. Back in the 1950s, because of space needs in the development of sophisticated technology, the United States developed the first ultra-precision machining diamond cutlery technology called "SPDT technology" (Single Point Diamond Turning), or "micro-inch technology" (1 micro-inch =0.025μm) and the development of corresponding ultra-precision air bearing spindle machine tools. For processing laser nuclear fusion reflection mirror, and tactical missiles and manned spacecraft with large spherical non-spherical parts, and so on. If the United States LLL Y-12 factories and laboratories in support of the United States Department of Energy in July 1983 successfully developed large ultra-precision diamond lathe DTM-3 type, the machine tool chain largest parts 2100mm , weight 4500kg laser nuclear fusion using a mirror reflection of the various metals, using infrared devices spare parts, large celestial telescopes (including X-ray celestial telescopes). The processing precision machine tools to shape error to reach 28nm (radius), Yuan degrees and horizontal degrees of 12.5nm, surface roughness for Ra4.2nm processing. The Machine Tool Laboratory in 1984 with the development of ultra-precision lathe, a large Lodtm is now recognized in the world the highest level of technology, precision highest-precision lathe large diamonds.In ultra-precision processing technology, the British Cranfield Institute of Technology belongs Cranfield Precision Engineering Institute (short for CUPE) enjoy higher prestige, it is the world's precision engineering research centres, the British super-precision processing technology unique. If CUPE production Nanocentre (nanometer processing center) for ultra-sophisticated Chexue can also carry Motou can conduct ultra precision grinding, precision processing final shape up 0.1μm, the surface roughness RaCrystal Mirror processing methods usually used grinding, grinding pace of the V=25 ~35m /s, Cumo, t=0.02 ~0.07mm , Jingmo, t=3 ~10μm; When the oil stone, left, V=10 ~50m /min, material removal rate to 0.1μm ~1μm/min. Ultra-precision grinding may reach 0.01μm ~0.002μm Ra Yuan degrees and the surface roughness.Spherical mirror research, and he requested a study be maintained in the processing of surface upward law, there are two guaranteed ways : First, through the Site (1) positioning itself since the body to reach; Second, through the use of digital systems for ground first (2) in favor of one Kok to achieve. Spherical mirror of himself behind in the use of laser processing law is the establishment of interference device (4) surface (3) measurement error basis. Measurement, laser interference device along the X and Y coordinates of movement in one direction or along X,Y movement and workstations (5) rotation, the mirror errors measurements were recorded in analog or digital volume of memory devices, and then proceed to deal with. According to the directive from digital systems Motou (the Site) was marked by the movement of a given face the greatest error and bias Department finds inter materials. After the surface was re-testing and duplication processes. It was so gradual convergence in the way of achieving the required face precision. Graphic processing is the mirror of the main methods used for grinding and processing techniques behind the current bill could have reached the highest level degrees3)Physical processing of FranceThere are many methods of physical processing, which was the most widespread application is Feb abrasive polishing and ion beams surface processing. The former is the essence of the electrolytic processes resulting from the oxidation and left by the abrasive material removed from the surface to be processed was the mirror; After firing on ion generator which is the ion beams on the surface.In addition to the above methods, there are other ultra-sophisticated composite processing methods, such as electric spark shape processed and then used fluid polishing law, electrochemical polishing law, ultrasonic chemical polishing law, power equipment suspended law, law and the use of magnetic fluid grinding Elid grinding technology law. Elid technology used optical glass processing non-spherical lenses, face up to 0.2μm accuracy, surface roughness is reached Ra=20nm.Thrid,Super-precision processing machine tool design and manufactureUltra precision processing machine tool design and manufacture of key and core issue is that super-precision machining and objectives. Thus, the super-precision processing machine tool design and manufacture of the basic principles and requirements are : toeliminate or reduce the sources of heat and Zhenyuan machine tools; Improve the structure of rigidity and geometric precision machine tools; Reduce the deformation machine tools (including temperature deformation and strength deformation) of the impact of precision machine tools for processing. To achieve these basic principles and requirements, ultra precision processing machine tool design, some of the principles often take measures :The first is to be made or used friction heat large transmission devices (such as mechanical Mojitiaosu devices), and the process of heat large sources of heat (such as electrical, cooling lubricants boxes, etc.) and structural separation or machine tools identity insulation to avoid heat from the structure of the machine tool machine tools identity caused hot deformation.Choice of hot and heat conduction rate coefficient alpha coefficient of the material for low value of machine tool λimportant parts materials. Meanwhile, it should be used as thermal physical properties to the same or similar materials in the manufacture of machine tool components and spare parts.Components designed to heat symmetrical structure, but should consider forced air or liquid cooling and set aside corresponding coolant flow cycle routes. When cooling in the size range 200mm ~1500mm , wind flow should be (3 ~10) m 3 /s or liquid flux for (1 ~10) L/s, thereby maintaining separate temperature fluctuations ±0.05°C and ±0.02°C meridian east. Service to individual strong sources of heat (such as main bearings) arising from the heat and, if necessary, be devoted to the thermal control away. Ultra precision processing machine tools not only to consider the installation and work in constant temperature room, but in a very high-precision requirements, should be considered in the temperature control machine tools ±0.01°C meridian east of the oil shower thermostatic box, the machine tool must be fully automated process or remotely, it was not at the scene, to avoid human activity and temperature conditions impact on the environment.In order to avoid vibration impact processing accuracy, in addition to the installation of machine tools in the air supports, spring-loaded supports or other effective Gezhen device supports the foundations, the machine tool rotary movement of a motion to strictly, the volume of residual imbalance to be smaller than 0.5 ~1g .mm. At the same time, in order to eliminate and reduce machine tool itself Zhenyuan, a campaign to try to smooththe drivetrain system, such as non-contact pneumatic and liquid transmission, or to avoid using an impact on the transmission, if the gap for the institutions.Zhenyuan vibration frequencies through adjustments (such as changes in rotational speed), or through the quality of machine tool technology systems and spring-loaded cut for the choice of parameters to the vibration frequencies and Zhenyuan machine tool technology systems inherent frequency away from each other, avoid resonance zone, and reduce the impact of vibration on the machine tool.Choice of a high Zunijishuo materials such as natural marble, artificial marble, ceramic, or using the double wall unclear sand cast iron pieces as the structure of machine tools to ensure a high degree of internal decay and external from the vibration, because vibration decay results in direct ratio Zunijishuo (decay index). Under normal conditions, the decay index for 0.006 ~0.008 cast iron, and the degradation of natural marble and artificial marble index respectively 0.02 ~0.04 0.06 ~0.08; unclear sand and the double wall of the metal structure can greatly increase damping, and thus greatly enhance decay vibration effects.The main components of the design is a key indicator of rotation accuracy and rigidity, for the priority use of a low noise temperature axis of electrical or electromagnetic torque and through the membrane and the couplings connected with the main axis of a driven, since the main bearings are used with the functional positioning liquid static pressure spherical bearings structures. The main structure in this precision (radial and axial beating) to 0.01μm. When the pressure of work for 0.3MPa ~0.6MPa, bearings average cut for 200N ~400N/μm, liquid static pressure bearings and 600N ~1000N/μm. But for the sake of not more than 0.05 μm line beating, oil pressure fluctuations should not be greater than the value of 0.01 MPa, fluctuations should not be larger than 0.05°CInto the design to the transmission main requirements are : to ensure effective compensation for the error dynamic precision; 5nm the minimum achievable pulse displacement; After the introduction of amendments to the system of 2nm high positioning accuracy. To this end, the choice to run into the following manner : Gunzhusigang deputy. Characterized by rigidity large, achievable incremental shift to 100nm (0.1μm).Friction transmission. Transmission cut to 50N ~100N/μm, pull-100N, achievable incremental movement to 5nm. Deficiency is the low life expectancy, lack of flexibility.(a) transmission. Only suitable for use in computerized bed.Piezoelectric and magnetostrictive transmission. Movement of less than 5nm can, but the general itinerary of a small, only 100 ~200μm, the majority of cases it is with other transmission methods (such as Gunzhusigang Deputy) portfolio.Since the positioning of static pressure Sigang deputy. Chixing Kok characterized as small (only 10 meridian east), the cut large (up to 100N ~1000N/μm) and can achieve modest incremental displacement. Youwen shortcomings is the guarantee of stability and hydraulic systems more complex.Incremental-hydrauli ctransmission.Cut up 600N/μm,80nm displacement incremental, but oil complex systems.Electromagnetic Sigang Deputy transmission. It is a rare material from the magnetic Tu Sigang mixture of the nut with a coil interaction to achieve transmission. Achievable modest incremental displacement, but cut too low, only 10N/μm.Guide design. Guide is ultra precision processing machine tools, to ensure the realization of sophisticated trace into one of the important elements that have multiple choices, but is most widely used in liquid static pressure guide and guide. The former cut to 6KN ~8KN/μm and 0.02μm ~0.04μm accuracy guarantee displacement 1μm/ 400mm itinerary; For the latter cut 1KN ~2KN/μm, when gas membrane thickness for 4μm ~8μm, and liquid static pressure guide can guarantee the same displacement precision. Static pressure of the liquid and Qguide may be as high as 0.02μm/ 100mm linear.In the overall layout design, ultra-precision machine tool processing structure shall be divided into parts and bearing measurement. At this time, the precision machine tools can achieve largely depends on the validity of measurement systems. Therefore, generally using laser interference devices such as high-precision, high-resolution instruments for measuring devices, and installed in separate supports the measurement framework, and not only the installation of measuring devices, Abeche principles to be observed in a broader understanding, but also to comply with the principles of Abeche. Abeche principles, to be close to the knife point measurement axis, in order to eliminate the possibility of error by lever principles enlarged. From this standpoint, guide andmeasuring devices should be located at the same level ground, carrying system in the machine tool to cut and avoid the use of air-shen not constant element.中文译文:超精密加工与超高速加工技术一.技术概述精密、超精密加工是个相对概念,而且随着工艺水平的普遍提高,不同年代有着不同的划分界限,但并无严格统一的标准。
高速切削加工技术及应用论文
浅谈高速切削加工技术及应用摘要:高速切削(high speed cutting,hsc)是近年来迅速崛起的一项先进制造技术。
本文就高速切削加工技术的发展、特点、关键技术及其应用作一简要的研究与阐述。
关键词:高速切削加工;技术;研究;应用中图分类号:tg659 文献标识码:a 文章编号:1006-3315(2011)11-175-0011931年4月德国物理学家carl.j.saloman最早提出了高速切削(high speed cutting)的理论,并于同年申请了专利。
他指出:在常规切削速度范围内,切削温度随着切削速度的提高而升高,但切削速度提高到一定值之后,切削温度不但不会升高反而会降低,且该切削速度vc与工件材料的种类有关。
对于每一种工件材料都存在一个速度范围,在该速度范围内,由于切削温度过高,刀具材料无法承受,切削加工不可能进行。
要是能越过这个速度范围,高速切削将成为可能,从而大幅度地提高生产效率。
由于实验条件的限制,当时高速切削无法付诸实践,但这个思想给后人一个非常重要的启示。
一、高速切削加工概述1.高速切削历史和现状高速切削的起源可追溯到20世纪20年代末期。
德国的切削物理学家萨洛蒙博士于1929年进行了超高速切削模拟试验。
1931年4月发表了著名的超高速切削理论,提出了高速切削假设。
我国早在20世纪50年代就开始研究高速切削,但由于各种条件限制,进展缓慢。
近10年来成果显著,至今仍有多所大学、研究所开展了高速加工技术及设备的研究。
2.切削速度的划分根据高速切削机理的研究结果,高速切削不仅可以大幅度提高单位时间材料切除率,而且还会带来一系列的其他优良特性。
高速切削的速度范围定义在这样一个给切削加工带来一系列优点的区域。
这个切削速度区比传统的切削速度高得多,因此也称超高速切削。
通常把切削速度比常规高出5~10倍以上的切削加工叫做高速切削或超高速切削。
3.高速切削的优势高速切削具有以下特点:①可提高生产效率;②降低了切削力;③提高加工质量;④高速切削的切削热对工件的影响小;⑤加工能耗低,节省制造资源;⑥高速切削可以加工难加工材料;⑦简化了加工工艺流程;⑧可降低加工成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文翻译高速切削加工的发展及需求毕业设计(论文)外文资料翻译系部: 机械工程系专业: 机械工程及自动化姓名:学号:外文出处:Foreign Patent Documemts . 15,35.(用外文写)2002附件: 1.外文资料翻译译文,2.外文原文。
指导教师评语:此译文简单介绍了高速切削加工的发展及需求,从高速切削加工对机床、刀具和切削工艺过程的要求三方面进行阐述。
翻译用词比较准确,文笔也较为通顺,为在以后工作中接触英文资料打下了基础。
签名:2009年3 月 18日注:请将该封面与附件装订成册。
附件1:外文资料翻译译文高速切削加工的发展及需求高速切削加工是当代先进制造技术的重要组成部分,拥有高效率、高精度及高表面质量等特征。
本文介绍此技术的定义、当前的发展现状、中国的适用领域以及需求情况。
高速切削加工是面向21世纪的一项高新技术,它以高效率、高精度和高表面质量为基本特征,在汽车工业、航空航天、模具制造和仪器仪表等行业中获得了愈来愈广泛的应用,并已取得了重大的技术和经济效益,是当代先进制造技术的一个重要组成部分。
高速切削是实现高效率制造的核心技术,工序的集约化和设备的通用化使之具有很高的生产效率。
可以说,高速切削加工是一种增加设备质量而大幅度地改善加工效率的必需技术。
高速切削加工的优点主要在于:提高生产效率、加工精度及降低切削阻力。
有关高速切削加工的含义,目前尚无统一的认识,通常有如下几种观点:切削速度很高,通常认为其速度超过普通切削的5-10倍;机床主轴转速很高,一般将主轴转速在10000-20000r/min以上定为高速切削;进给速度很高,通常达15-50m/min,最高可达90m/min;对于不同的切削材料和所釆用的刀具材料,高速切削的含义也不一定相同;切削过程中,刀刃的通过频率(Tooth Passing Frequency)接近于“机床,刀具,工件”系统的主导自然频率(Domine Natural Frequency)时,所以能够被认为是高速切削。
可见高速切削加工是一个全面而综合的概念。
1992年,德国Darmstadt工业大学的H. Schulz教授在52年代渐渐地提出了高速切削加工的概念及其涵盖的范围,正如图1所示。
认为对于不同的切削对象,图区中所示的过渡区(Transition)即为通常所说的高速切削加工范围,这也是当时金属切削加工工艺过程中相关的技术人员所期待的或者渴望能够实现的切削速度。
高速切削加工对机床、刀具和切削工艺过程和其他方面都有一些具体的要求。
下面分别从这几个方面阐述高速切削加工技术的发展现状和趋势。
现阶段,为了实现高速切削加工,一般釆用高柔性的高速数控机床、加工中心,也有釆用专用的高速铣、钻床。
这些设备的共同之处是:必须同时具有高速主轴系统和高速进给系统,才能实现材料切削过程的高速化。
高速切削与传统切削最大的区别是,“机床,刀具,工件”系统的动态特性对切削操作性能有更强的影响力。
在这个系统中,机床主轴的刚度或者刀柄形式、刀具长度设定、主轴拉刀力、刀具扭力设定等,都是影响高速切削性能的重要因素。
在高速切削中,材料去除率(Metal Removal Rate,MRR),即单位时间内材料被切除的体积,通常受以“机床-刀具-工件”工艺系统是否出现“颤振”为基础。
因此,为了满足高速切削加工的需求,首先我们必须要提高机床主轴动刚度和静刚度尤其是主轴的刚度特性。
现阶段高速切削之所以能够成功,一个非常关键的因素在于对系统动态特性问题的掌握和处理能力。
为了更好地描述机床主轴的刚度特性,工程上提出新的无量纲参数—DN值,用以评价机床的主轴结构对高速切削加工的适应能力。
所谓DN值即“主轴直径与每分钟转速之积”。
近来新开发的加工中心主轴DN值大都已超过100万。
为了减轻轴承的重量,还釆用了比钢制品要轻得多的陶瓷球轴承;轴承润滑方式大都釆用油和气混合的润滑方式。
在高速切削加工领域中,目前已开发空气轴承和磁轴承以及由磁轴承和空气轴承合并构成的磁气/空气混合主轴。
在机床进给机构方面,高速切削加工所用的进给驱动机构通常都为大导程、多头高速滚珠丝槓,滚珠釆用小直径氮化硅(Si3N4)陶瓷球,以减小其离心力和螺纹的螺力矩;釆用空心强冷技术来减少高速滚珠丝槓运转时由于螺钉间的摩擦产生温升而造成的丝槓热变形。
近几年来,用直线电机驱动的高速进给系统问世,这种进给方式取消了从电动机到工作台溜板之间的一切中间机械传动环节,实现了机床进给系统的零传动。
由于直线电机没有任何旋转元件,不受离心力的作用,可以大大提高进给速度。
直线电机的另一大优点是行程不受限制。
直线电机的次极是一段一段连续铺在机床的床身上。
次极铺到哪里,初极工作台就可运动到哪里,而且对整个进给系统的刚度没有任何影响。
釆用高速丝槓或直线电机,能够大大提高机床进给系统的快速响应。
直线电机最高加速度可达2-10G(G为重力加速度),最大进给速度可达60-200m/min或更高。
2002年举世瞩目的上海浦东磁悬浮列车工程中的磁浮轨道钢梁加工,釆用沈阳机床控股有限公司集团中捷友谊公司厂生产的超长进给系统高速大型加工中心实现。
该机床的进给系统为直线导轨和齿轮齿条传动,工作台最大进给速度60m/min,快速行程100m/min,加速度2g,主轴最高转速20000r/min,主电机功率80kW。
其X轴的行程长达30m,切削25m长的磁浮轨道钢梁误差小于0.15mm,为磁悬浮列车工程的顺利竣工提供了有力的技术保证。
此外,机床的运动性能也将直接影响加工效率和加工精度。
在模具及自由曲面的高速切削加工中,主要釆用小切深大进给的加工方法。
要求机床在大进给速度条件下,应具有高精度定位功能和高精度插补功能,特别是圆弧高精度插补。
圆弧加工是釆用立铣刀或螺纹刀具加工零部件或模具时,必不可少的加工方法。
刀具材料的发展:高速切削技术发展的历史,也就是刀具材料不断进步的历史。
高速切削的代表性刀具材料是立方氮化硼(CBN)。
端面铣削使用CBN刀具时,其切削速度可高达5000m/min,主要用于灰口铸铁的切削加工。
聚晶金刚石(PCD)刀具被称之为21世纪的刀具,它特别适用于切削含有SiO2的铝合金材料,而这种金属材料重量轻、强度高,广泛地应用于汽车、摩托车发动机、电子装置的壳体、底座等方面。
目前,用聚晶金刚石刀具端面铣削铝合金时,5000m/min的切削速度已达到实用化水平,此外陶瓷刀具也适用于灰口铸铁的高速切削加工;涂层刀具:CBN和金刚石刀具尽管具有很好的高速切削性能,但成本相对较高。
釆用涂层技术能够使切削刀具既价格低廉,又具有优异性能,可有效降低加工成本。
现在高速加工用的立铣刀,大都釆用TiAIN系的复合多层涂镀技术进行处理,如目前在对铝合金或有色金属材料进行干式切削时,DLC(Diamond Like Carbon)涂层刀具就受到极大的关注,预计其巿场前景十分可观;刀具夹持系统:刀具的夹持系统是支撑高速切削的重要技术,目前使用最为广泛的是两面夹紧式工具系统。
已作为商品正式投放巿场的两面夹紧式工具系统主要有:HSK、KM、Bigplus、NC5、AHO等系统。
在高速切削的情况下,刀具与夹具回转平衡性能的优劣,不仅影响加工精度和刀具寿命,而且也会影响机床的使用寿命。
因此,在选择工具系统时,应尽量选用平衡性能良好的产品。
高速加工的切削速度为常规切速的10倍左右。
为了使刀具每齿进给量基本保持不变,以保证零件的加工精度、表面质量和刀具的耐用度,则进给量也必须相应提高10倍左右,达到60m/min以上,有的甚至高达120m/min。
因此,高速切削加工通常是釆用高转速、大进给和小切深的切削工艺参数。
由于高速切削的切削余量往往很小,所形成的切屑很薄很轻,把切削时产生的热量很快带走;若釆用全新耐热性更好的刀具材料和涂层,釆用干切削工艺也是高速切削加工的理想工艺方案。
用高速加工中心组成高效率的柔性生产线(FTL或FML),具有小型化、柔性突出以及易于变更加工内容等显着特点。
图2为上汽集团某发动机公司利用该生产线加工发动机机体、汽缸盖、滤清器座等工件的实例。
为了尽快适应新车型的需要,汽车车身覆盖件模具和树脂防冲挡的成形模具等,均必须缩短制作周期和降低生产成本,因此,必须下大力推进模具生产高速化的进程。
上汽集团所属各公司认为:与过去的精加工相比,进一步实现高精度化;同时必须满足表面粗糙度、弯曲度的精度要求,为此应施以适当的手工精修加工,由于切削速度的极大提高,与过去的精加工工序相比,加工周期应大幅度缩短。
为了发挥以车削加工中心和镗铣类加工中心为代表的高速切削加工技术和自动换刀功能的优势,提高加工效率,对复杂零件的加工应尽可能釆用集中工序的原则,即要求在一次装夹中实现多道工序的集中加工,淡化传统的车、铣、镗、螺纹加工等不同切削工艺的界限,充分发挥设备和刀具的高速切削功能,是当前提高数控机床效率、加快产品开发的有效途径。
为此,对刀具提出了多功能的新要求,要求一种刀具能完成零件不同工序的加工,减少换刀次数,节省换刀时间,以减少刀具的数量和库存量,有利于管理和降低制造成本。
较常用的有多功能车刀、铣刀、镗铣刀、钻铣刀、钻,铣螺纹,倒角等刀具。
与此同时,在批量生产线上,使用针对工艺需要开发的专用刀具、复合刀具或智能刀具,可以提高加工效率和精度,减少投资。
在高速切削条件下,有的专用刀具可将零件的加工时间降至原来的1/10以下,效果十分显着。
高速切削具有相当多的好处,例如:有大量材料需要切除的工件,具有超细、薄结构的工件,传统上需要花相当长的机动工时加工的工件以及设计变更快速、产品周期短的工件,均能显示出高速切削所带来的优点。
附件2:外文原文,复印件,High-speed machining and demand for thedevelopment ofHigh-speed machining is contemporary advanced manufacturingtechnology an important component of the high-efficiency, High-precision and high surface quality, and other features. This article presents the technical definition of the current state of development of China's application fields and the demand situation.High-speed machining is oriented to the 21st century a new high-tech, high-efficiency, High-precision and high surface quality as a basic feature, in the automobile industry, aerospace, Die Manufacturing and instrumentation industries gained increasingly widespread application,and has made significant technical and economic benefits. contemporary advanced manufacturing technology an important component part.HSC is to achieve high efficiency of the core technology manufacturers, intensive processes and equipment packaged so that it has a high production efficiency. It can be said that the high-speed machining is an increase in the quantity of equipment significantly improve processing efficiency essential to the technology. High-speed machining is the major advantages : improve production efficiency, improve accuracy and reduce the processing of cutting resistance.The high-speed machining of meaning, at present there is no uniform understanding, there are generally several points as follows : high cutting speed. usually faster than that of their normal cutting 5 -10 times; machine tool spindle speed high, generally spindle speed in 10000-20000r/min above 10,000 for high-speed cutting; Feed at high velocity, usually 15 -50m/min up to 90m/min; For different cutting materials and the wiring used the tool material, high-speed cutting the meaning is not necessarily the same; Cutting process, bladed through frequency (Tooth Passing Frequency) closerto the "machine-tool - Workpiece "system the dominant natural frequency (Dominant Natural Frequency), can be considered to be high-speed cutting. Visibility high-speed machining is a comprehensive concept.1992. Germany, the Darmstadt University of Technology, Professor H. Schulz in the 52th on the increase of high-speed cutting for the conceptand the scope, as shown in Figure 1. Think different cutting targets, shown in the figure of the transition area (Transition), to be what is commonly called the high-speed cutting, This is also the time of metal cutting process related to the technical staff are looking forward to,or is expected to achieve the cutting speed.High-speed machining of machine tools, knives and cutting process, and other aspects specific requirements. Several were from the following aspects : high-speed machining technology development status and trends.At this stage, in order to achieve high-speed machining, general wiring with high flexibility of high-speed CNC machine tools, machining centers, By using a dedicated high-speed milling, drilling. These equipment in common is : We must also have high-speed spindle system and high-speed feeding system, Cutting can be achieved in high-speed process. High-speed cutting with the traditional cutting the biggest differenceis that"Machine-tool-workpiece" the dynamic characteristics of cutting performance is stronger influence. In the system, the machine spindle stiffness, grip or form, a long knife set, spindle Broach, torque tool set, Performance high-speed impact are important factors.In the high-speed cutting, material removal rate (Metal Removal Rate, MRR), unit time that the material was removed volume, usually based on the "machine-tool-workpiece" whether Processing System "chatter." Therefore, in order to satisfy the high-speed machining needs, we must first improve the static and dynamic stiffness of machine spindle isparticularly the stiffness characteristics. HSC reason at this stage to be successful, a verycrucial factor is the dynamic characteristics of the master and processing capability.In order to better describe the machine spindle stiffnesscharacteristics of the project presented new dimensionless parameter - DN value, used for the evaluation of the machine tool spindlestructure on the high-speed machining of adaptability. DN value of the so-called "axis diameter per minute speed with the product." The newly developed spindle machining center DN values have been great over one million. To reduce the weight bearing, but also with an array of steel products than to the much more light ceramic ball bearings; Bearing Lubrication most impressive manner mixed with oil lubrication methods. In the field of high-speed machining. have air bearings and the development of magnetic bearings and magnetic bearings and air bearings combined constitute the magnetic gas / air mixing spindle.Feed the machine sector, high-speed machining used in the feed drive is usually larger lead, multiple high-speed ball screw and ball array of small-diameter silicon nitride (Si3N4) ceramic ball, to reduce its centrifugal and gyroscopic torque; By using hollow-cooling technology to reduce operating at high speed ball screw as temperature generated by the friction between the lead screw and thermal deformation.In recent years, the use of linear motor-driven high-speed system of up to'' Such feed system has removed the motor from workstations toSlide in the middle of all mechanical transmission links, Implementation of Machine Tool Feed System of zero transmission. Because no linear motor rotating components, from the role of centrifugal force, can greatly increase the feed rate. Linear Motor Another major advantage of the trip is unrestricted. The linear motor is a very time for a continuous machine shop in possession of the bed. Resurfacing of the very meeting where a very early stage movement can go, but the whole system of up to the stiffness without any influence. By using high-speed screw, or linear motor can greatlyenhance machine system of up to the rapid response. The maximum acceleration linear motors up to 2-10G (G for the acceleration of gravity), the largest feed rate of up to 60 -200m/min or higher.2002 world-renowned Shanghai Pudong maglev train project of maglev track steel processing, Using the Shenyang Machine Tool Group Holdings Limited McNair friendship company production plants into extra-longhigh-speed system for large-scale processing centers achieve . The machine feeding system for the linear guide and rack gear drive, the largest table feed rate of 60 m / min, Quick trip of 100 m / min, 2 g acceleration, maximum speed spindle 20000 r / min, the main motor power 80 kW. X-axis distance of up to 30 m, 25 m cutting long maglev track steel error is less than 0.15 mm. Maglev trains for the smooth completion of the project provided a strong guarantee for technology In addition, the campaign machine performance will also directly affect the processing efficiency and accuracy of processing. Mold andthe free surface of high-speed machining, the main wiring with small cut deep into methods for processing. Machine requirements in the feed rate conditions, should have high-precision positioning functions and high-precision interpolation function, especially high-precision arc interpolation. Arc processing is to adopt legislation or thread milling cutter mold or machining parts, the essential processing methods.Cutting Tools Tool Material development :high-speed cutting andtechnological development of the history, tool material is continuous progress of history. The representation of high-speed cutting tool material is cubic boron nitride (CBN). Face Milling Cutter use of CBN, its cutting speed can be as high as 5000 m / min, mainly for the gray cast iron machining. Polycrystalline diamond (PCD) has been described as a tool of the 21st century tool, It is particularly applicable to the cutting aluminum alloy containing silica material, which is light weight metal materials, high strength, widely used in the automobile, motorcycle engine, electronicdevices shell, the base, and so on. At present, the use of polycrystalline diamond cutter Face Milling alloy, 5000m/min the cutting speed has reached a practical level. In addition ceramic tool also applies to gray iron of high-speed machining;Tool Coating : CBN and diamond cutter, despite good high-speed performance, but the cost is relatively high. Using the coating technology to make cutting tool is the low price, with excellent mechanical properties, which can effectively reduce the cost. Now high-speed processing of milling cutter, with most of the wiring between the Ti-A1-N composite technology for the way of multi-processing, If present in the non-ferrous metal or alloy material dry cutting, DLC (DiamondLike Carbon) coating on the cutter was of great concern. It is expected that the market outlook is very significant;Tool clamping system : Tool clamping system to support high-speed cutting is an important technology, Currently the most widely used is a two-faced tool clamping system. Has been formally invested as a commodity market at the same clamping tool system are : HSK, KM, Bigplus. NC5, AHO systems.In the high-speed machining, tool and fixture rotary performance of the balance not only affects the precision machining and tool life. it will also affect the life of machine tools. So, the choice of tool system, it should be a balanced selection of good products.Process Parameters :Cutting speed of high-speed processing ofconventional shear velocity of about 10 times. For every toothcutter feed rate remained basically unchanged, to guarantee parts machining precision, surface quality and durability of the tool, Feed volume will also be a corresponding increase about 10 times, reaching 60 m / min, Some even as high as 120 m / min. Therefore, high-speed machining is usually preclude the use of high-speed, feed and depth of cut small cutting parameters. Due to the high-speed machining cutting cushion tend to be small, the formation of very thin chip light, Cutting put the heat away quickly; If the wiringusing a new thermal stability better tool materials and coatings, Using the dry cutting process for high-speed machining is the ideal technology program.Machining center is made up of High-speed machining field of application and Flexible efficient production line.To adapt to the needs of new models, auto body panel molds andresin-prevention block the forming die. must shorten the productioncycle and reduce the cost of production and, therefore, we must make great efforts to promote the production of high-speed die in the process. SAIC affiliated with the company that : Compared to the past, finishing, further precision; the same time, the surface roughness must be met, the bending of precision, this should be subject to appropriate intensive manual processing. Due to the extremely high cutting speed, and the last finishing processes, the processing cycle should be greatly reduced.To play for machining centers and boring and milling machiningcenter category represented by the high-speed machining technology and automatic tool change function of distinctions Potential to improve processing efficiency, the processing of complex parts used to be concentrated as much as possible the wiring process, that is a fixturein achieving multiple processes centralized processing and dilute the traditional cars, milling, boring, Thread processing different cutting the limits of technology, equipment and give full play to the high-speed cutting tool function, NC is currently raising machine efficiency and speed up product development in an effective way. Therefore, theproposed multi-purpose tool of the new requirements call for a tool to complete different parts of the machining processes, ATC reduce the number of ATC to save time, to reduce the quantity and tool inventory, and management to reduce production costs. More commonly used in a multifunctional Tool, milling, boring and milling, drilling milling, drilling-milling thread-range tool. At the same time, mass production line, against the use of technology requires the development of special tools, tool or a smart composite tool, improve processing efficiency and accuracy and reduced investment. In the high-speedcutting conditions, and some special tools can be part of the processing time to the original 1 / 10 below, results are quite remarkable.HSC has a lot of advantages such as : a large number of materials required resection of the workpiece with ultrafine, thin structure of the workpiece, Traditionally, the need to spend very long hours for processing mobile workpiece and the design of rapid change, short product life cycle of the workpiece, able to demonstrate high-speed cutting brought advantages.。