第八章 一般线性模型――General Linear Model菜单详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章一般线性模型――General Linear Model菜单详解
请注意,本章的标题用了一些修辞手法,一般线性模型可不是用一章就可以说清楚的,因为它包括的内容实在太多了。

那么,究竟我们用到的哪些分析会包含在其中呢?简而言之:凡是和方差分析粘边的都可以用他来做。

比如成组设计的方差分析(即单因素方差分析)、配伍设计的方差分析(即两因素方差分析)、交叉设计的方差分析、析因设计的方差分析、重复测量的方差分析、协方差分析等等。

因此,能真正掌握GLM菜单的用法,会使大家的统计分析能力有极大地提高。

实际上一般线性模型包括的统计模型还不止这些,我这里举出来的只是从用SPSS作统计分析的角度而言的一些。

好了,既然一般线性模型的能力如此强大,那么下属的四个子菜单各自的功能是什么呢?请看:
∙Univariate子菜单:四个菜单中的大哥大,绝大部分的方法分析都在这里面进行。

∙Multivariate子菜单:当结果变量(应变量)不止一个时,当然要用他来分析啦!
∙Repeted Measures子菜单:顾名思义,重复测量的数据就要用他来分析,这一点我可能要强调一下,用前两个菜单似乎都可以分析出来结果,但在
许多情况下该结果是不正确的,应该用重复测量的分析方法才对(不能再
讲了,再讲下去就会扯到多水平模型去了)。

∙Variance Components子菜单:用于作方差成份模型的,这个模型实在
太深,不是一时半会说的请的,所以我在这里就干脆不讲了。

出于模型复杂性、篇幅、应用范围及乱七八糟一系列的理由,当然主要是我懒得一一解释,我决定本章采用举例讲解的方式,及讲解一些常见的分析实例,通过这种方法来熟悉那些最为常用的分析方法。

对统计分析的数据格式不太熟悉的朋友,请一定先去看看统计软件第一课:论统计软件中的数据录入格式,会大有帮助的。

§8.1两因素方差分析
下面的这个例子来自《卫生统计学》第四版,书还没有出来,大家先尝尝鲜。

例8.1 对小白鼠喂以A、B、C三种不同的营养素,目的是了解不同营养素增重的效果。

采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。

现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。

三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?
区组号A营养素B营养素C营养素
1 50.10 58.20 64.50
2 47.80 48.50 62.40
3 53.10 53.80 58.60
4 63.50 64.20 72.50
5 71.20 68.40 79.30
6 41.40 45.70 38.40
7 61.90 53.00 51.20
8 42.20 39.80 46.20
根据统计分析的要求,我们建立了三个变量来包括上述信息,即group 表示区组,food代表使用的营养素,weight表示最终的重量,即:
group food weight
1 1 50.01
1 2 58.20
依此类推。

8.1.1 univarate对话框界面说明
这里只有一个结果变量weight,要采用univarate对话框,如下所示:
在上面的这些框框钮钮中,最常用的有:Dependent Variable框、Fixed Factors框、Model钮、Post Hoc钮,下面我们来一一解释。

【Dependent Variable框】
选入需要分析的变量(应变量),只能选入一个。

这里我们的应变量为weight,将他选入即可。

【Fixed Factors框】
即固定因素,说的通俗一些,就是--哎呀,我都不知道怎么解释好了,这样,如果你搞不明白,那么绝大多数要分析的因素都应该往里面选。

这里我们要分析的是group和food两个变量,把他们全都给我抓进去!
固定因素指的是在样本中它所有可能的取值都出现了,比如例中的food,只可能有1、2、3这三个值,并且都出现了,就被称作固定效应;而相对应的随机效应的因素指的是所有可能的取值在样本中没有都出现,或不可能都出现,如本例中的group,实际上总体中当然不可能只有这8窝,因此要用样本中group 的情况来推论总体中group未出现的那些取值的情况时就会存在误差,因此被称为随机因素。

我这里让group也选入固定框是基于下面的事实:这样做统计分析的结论是完全相同的。

不同的只是推论的那部分。

【Random Factors框】
用于选入随机因素,如果你弄不明白,假装没看见他就是了。

【Covariate框】
用于选入协方差分析时的协变量,现在还用不到,不过下一个例子我们就要给他送礼了。

【WLS Weight框】
即用于选入最小二乘法权重系数。

别理他,根据我的理解,只有统计分析的变态狂才会想起来用他(如有雷同,纯属巧合)!
【Model钮】
单击后出现一个对话框,用于设置在模型中包含哪些主效应和交互因子,默认情况为Full factorial,即分析所有的主效应和交互作用。

我们这里没有交互作用可分析,所以要改一下,否则将作不出结果来。

将按钮切换到右侧的custum,这时中部的Build Term下拉列表框就变黑可用,该框用于选择进入模型的因素交互作用级别,即是分析主效应、两阶交互、三阶交互、还是全部分析。

这里我们只能分析主效应:选择main,再用黑色箭头将group和food选入右侧的model框中,如果对这段叙述不太清楚,请参考下面的动画。

该对话框中还有两个元素:左下方的Sum of squares框用于选择方差分析模型类别,有1型到4型四种,如果你搞不清他们之间的区别,使用默认的3型即可;中下部有个Include intercept in model复选框,用于选择是否在模型中包括截距,不用改动,默认即可。

【Contrast钮】
弹出Contrast对话框,用于对精细趋势检验和精确两两比较的选项进行定义,在这里,该对话框比单因素方差分析的时候还要专业,使用频率也更少,反正我都没用过,就干脆就不介绍了。

【Plots钮】
用于指定用模型的某些参数作图,比如用food和group来作图,用的也比较少(指国内,因为它主要是用来做模型诊断用的)。

【Post Hoc钮】
该按钮弹出的两两比较对话框和第7章单因素方差分析中的一模一样,不再重复。

本题对food作两两比较,方法为SNK法。

【Save钮】
将模型拟合时产生的中间结果或参数保存为新变量供继续分析时用,可保存的东东有预测值、残差、诊断用指标等。

【Options钮】
当然是定义选项啦!可以定义输出哪些指标的估计均数、并做所选择的两两比较,还有其他一些输出,如常用描述指标、方差齐性检验等。

好了,都解释完了,再重复以下,我们所作的操作为:
1.Analyze==>General Lineal model==>Univariate
2.Dependent Variable框:选入weight
3.Fixed Factors框:选入group和food
4.Model钮:单击
5. Custom单选钮:选中
6. Model框:选入group和food
7.单击OK
8.Post Hoc钮:单击
9. Post Hoc test for框:选入food
10. SNK复选框:选中
11. 单击OK
12.单击OK
8.1.2 结果解释
按照上题的操作,结果输出如下:
Univariate Analysis of Variance
这是一个所分析因素的取值情况列表,没有什么不好懂的。

现在大家看到的是一个典型的方差分析表,只不过是两因素的而已,我来解释一下:首先是所用方差分析模型的检验,F值为00.517,P小于0.05,因此所用的模型有统计学意义,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量GROUP,可见它也有统计学意义,不过我们关心的也不是他;第四行是我们真正要分析的FOOD,非常遗憾,它的P值为0.084,还没有统计学意义。

尽管不太愿意,我们的结论也只能是:尚不能认为三种营养素喂养的小白鼠体重增量有差别。

上表的标题内容翻译如下:
Post Hoc Tests
FOOD
Homogeneous Subsets
现在是两两比较的结果,方法为SNK法,由于前面总的比较无差异,所以这里三种食物均在一个亚组内,检验无差异,P值为0.121。

前面方差分析FOOD的P值不是0.084吗?这里又是0.121,究竟哪个为准?
两两比较只是近似的比较结果,应以前面方差分析的P为准,不过这两个P值不会在检验结果上发生质的冲突,一般只是大小不同而已。

好了,上面是正确的结果,如果model选择是采用Full factor又如何呢?会得出方差分析表如下:
看到了吗?由于所谓的交互作用将自由度给全部“吃”掉了,没有误差可用于统计分析,什么结果也做不出来。

§8.2协方差分析
例8.2 某医生欲了解成年人体重正常者与超重者的血清胆固醇是否不同。

而胆固醇含量与年龄有关,资料见下表。

正常组超重组
年龄(X1) 胆固醇(Y1) 年龄(X2) 胆固醇(Y2)
48 3.5 58 7.3
33 4.6 41 4.7
51 5.8 71 8.4
43 5.8 76 8.8
44 4.9 49 5.1
63 8.7 33 4.9
49 3.6 54 6.7
42 5.5 65 6.4
40 4.9 39 6.0
47 5.1 52 7.5
41 4.1 45 6.4
41 4.6 58 6.8
56 5.1 67 9.2
该题选自《医学统计学》第二版第七章。

考虑到统计分析对数据格式的要求,我们这里建立三个变量:GROUP表示组别,AGE代表年龄,CHOL则表示胆固醇。

8.2.1 分析步骤
由于协方差分析涉及到许多较深的统计理论,这里我只好采用照本宣科的方法,告诉大家如何作,而不作过多解释,欲进一步了解原理的朋友请参考《医学统计学》原书。

首先应进行预分析,了解资料是否符合协方差分析的要求,最重要的一点就是看age的影响在两组中是否相同,这可以用age与group是否存在交互作用来表示。

对该问题,粗糙的方法可以是作分组散点图,差不多就可以,也可以进行预分析,看交互作用有无统计学意义,这里用后一种方法中最为精确的步骤来讲解。

预分析步骤:
1.Analyze==>General Lineal model==>Univariate
2.Dependent Variable框:选入chol
3.Fixed Factors框:选入group
4.Model钮:单击
5. Custom单选钮:选中
6. Model框:选入group、age和group*age(后者用interaction方法就
可选入)
7. Sum of squares列表框:改为Model I
8.单击OK
9.单击OK
该步骤用于判断group和age间是否存在交互作用,如存在,则协方差分析的条件不满足,分析不能继续。

注意这里选择了Model I,从而拟合结果和模型中变量的引入顺序有关,即侧重点在group对chol的影响大小和交互作用上。

8.2.2 结果解释
预分析步骤的结果如下:
Univariate Analysis of Variance
上表显示交互作用无统计学意义,而且P值非常大,因此交换group和age 多半交互作用也无统计学意义,因此可以不继续作预分析了,当然,严格的步骤应当交换两者的顺序继续进行预分析。

正式分析步骤:
1.Analyze==>General Lineal model==>Univariate
2.Dependent Variable框:选入chol
3.Fixed Factors框:选入group
4.Model钮:单击
5. Custom单选钮:选中
6. Model框:选入group、age
7. Sum of squares列表框:改为Model III
8.单击OK
9.Options钮:单击
10. Displsy means for框:选入group
11. Compare mean effects复选框:选中(下面的区间调整方法就用LSD(none)
即可)
12. 单击OK
13.单击OK
Univariate Analysis of Variance
这是正式的统计分析结果,显示group和age都对胆固醇含量有影响,P值分别为0.038和小于0.001。

Estimated Marginal Means
这是两组的修正均数及相应的可信区间,显然超重组的胆固醇均值较高。

下方的提示表明该修正均数是按年龄为50.2308岁的情形计算的。

§8.3其他较简单的方差分析问题
其他各种不太复杂的方差分析,如交叉设计的方差分析、析因设计的方差分析等的菜单选择和统计结果的解释我就不一一详细讲解了,大家举一反三,类似上面的方法就可以作出来。

这里只是列举对于初学者来说可能有用的几个问题:
∙需要分析的影响因素可以都选入fixed factor框,如果不是复杂的模型,一般分析结果不会有误。

∙方差分析模型多数情况下要选model III,但这在数据存在缺失值、设
计不平衡等情况下要慎重考虑,因为此时往往会要求模型进行详细的设
置。

∙model的设置对分析是非常重要的,如果设置不正确,可能什么都做不
出来,比如无重复数据的方差分析纳入了交互作用、析因设计的方差分析纳入了设计中不存在的因素,就会做不出结果。

一般线性模型的复杂性是超出大家想象的,实际上这几个敲门就有误人子弟之嫌。

千万不要以为读懂了以上内容就可以打遍天下了,一但有存在疑问的内容,一定要查阅有关统计书籍,并在必要时请教专业统计分析人员。

§8.4多元方差分析
所谓的多元方差分析,就是说存在着不止一个应变量,而是两个以上的应变量共同反映了自变量的影响程度。

比如要研究某些因素对儿童生长的影响程度,则身高、体重等都可以作为生长程度的测量因子,即都应作为应变量。

8.4.1 分析步骤
为了方便起见,我们这里直接利用SPSS自带的数据集plastic.sav,假设tear_res、gloss和opacity都使反应橡胶质量的指标(不要笑,是假设),现在要研究extrusn和additive对橡胶的质量影响如何,则应采用多元方差分析。

选择Analyze==>General Linear Model==>Multivariate,则弹出Multivariate对话框,请注意,除了没有random effect外,它的所有元素都是和univariate对话框相同的,里面的内容也相同,因此我们这里就不再重复了。

按照我们的分析要求,对话框操作步骤如下:
1.Analyze==>General Lineal model==>Multivariate
2.Dependent Variable框:选入tear_res、gloss和opacity
3.Fixed Factors框:选入extrusn和additive
4.单击OK
此处两个自变量均是二分类变量,故无需选择两两比较方法。

8.4.2 结果解释
按上面的选择,分析结果如下:
General Linear Model
这是引入模型的自变量的取值情况列表。

上表是针对模型中的自变量间及其交互作用所做的检验,采用的是四种多元检验方法。

一般他们的结果都是相同的,如果不同,一般以Hotelling's Trace 方法的结果为准。

可见在所用的模型中,extrusn和additive对结果变量是有统计学意义的,但交互作用无统计学意义。

上表实际上是四个一元方差分析表的合并,即分别考虑四个应变量时的方差分析结果。

上面的多元方差分析已经得知两自变量对应变量有影响,从现在的分析表就可以更清楚的知道是对那些自变量影响较大。

对照可知,extrusn和additive对tear resistance和gloss都有较大影响,而他们的交互作用对gloss 有影响,他们(及交互作用)对Opacity都没有影响。

§8.5重复测量的方差分析
重复测量的方差分析指的是一个应变量被重复测量好几次,从而同一个个体的几次观察结果间存在相关,这样就不满足普通分析的要求,需要用重复测量的方差分析模型来解决。

8.5.1 Repeated measures对话框界面说明
实际上,如果对普通方差分析模型作出正确的设置,两者的分析结果是完全相同的,即都正确,那么,重复测量的方差分析过程有何优势呢?我们通过下面的例子来看看:
例8.3 在数据集anxity2.sav中判断:anxiety和tension对实验结果(即trial1~trial4)有无影响;四次试验间有无差异;试验次数和两个变量有无交互作用。

anxity2.sav和anxity.sav实际上是同一个数据,但根据不同的分析目的采用了不同的数据排列方式。

如果采用anxity.sav进行分析,我们可以分析四次试验间有无差异的问题,但对另两个问题就无能为力了,因为用普通的方差分析模型,anxity和tension的影响被合并到了subject中,根本就无法分解出来进行分析,这时,我们就只能求助于重复测量的方差分析模型。

在菜单中选择Analyze==>General Lineal model==>Repeated measures,系统首先会弹出一个重复测量因子定义对话框如下:
因为是重复测量的模型,应变量被重复测量了几次,分别存放在几个变量中,所以我们这里要自行定义应变量。

默认的名称为factor1,我们将其改为trail,下面的因素等级数填入4(因一共测量了四次)。

单击Add钮,则该变量被加入,我们就完成了模型设置的第一步:应变量名称和测量次数定义。

单击define,我们开始进行下一个步骤:具体重复测量变量定义及模型设置,对话框如下:
这个对话框和我们以前看到的方差分析对话框不太一样:它没有应变量框,而是改为了组内效应框,实际上是一回事,上面我们定义了trial有四次测量,此处就给出了四个空让你填入相应代表四次测量的变量,选中trial1~trial4,将其选入;然后要选择自变量了(这里又将其称为了between subjects factor),将剩下的三个都选入即可。

最后,根据题意,不需要检验anxity与tension的交互作用对试验次数有无交互作用,所以要在model中作相应设置,把那个东东拉出来。

详细的操作步骤如下:
1.Analyze==>General Lineal model==>Repeated measures
2.Within-subject factor name框:键选入trial
3.number of levels框:键入4
4.单击ADD钮
5.单击DEFINE钮
6.Within-subject variables (trial)框:选入trial1~trial4
7.between subjects factor框:选入subject、anxity和tension
8.单击MODEL钮
9. Custom单选钮:选中
10. Within-subject Model框:选入trial
11. between subjects Model框:选入anxity和tension
12. 单击CONTINUE
13.单击OK
请注意,这里没有选入变量subject,因为它实际上在这里成为了一个记录ID,要是将它选入,则什么都检验不了了。

8.5.2 结果解释
本题的分析结果如下:
General Linear Model
上表给出了所定义的4次测量的变量名,在模型中它们都代表一个应变量trial,只是测量的次数不同而已。

这是引入模型的其它自变量的情况列表。

上表是针对所检验的结果变量trial,以及他和另两个引入模型的自变量间的交互作用是否存在统计学意义,采用的是四种多元检验方法。

一般他们的结果都是相同的,如果不同,我一般以Hotelling's Trace方法的结果为准。

可见在所用的模型中,trial的四次测量间的确是存在着统计学差异的,但它和另两个变量间的交互作用无统计学意义。

上表是球形检验,因为重复测量的方差分析模型要求所检验的应变量服从一种叫做球形分布的东东。

上面可能有些内容不好懂,不过没关系,只要看到近
似卡方为9.383,自由度为5,P值为0.097就可以了。

因此trial是勉强服从球形分布的,可以进行重复测量的方差分析。

上面又用方差分析的方法对组内因素进行了检验,注意第一种为球形分布假设成立时的结果,就是我们所要看的。

如果该假设不成立,则根据不同的情况可能看下面三种检验结果之一,或放弃该检验方法。

上表是非常重要的一部分:各次重复测量间变化趋势的模型分析,这里要求检验没有统计学意义,否则说明变化趋势不服从该曲线。

以trial为例,对Linear的检验P值小于千分之一,Quadratic的P值略大于0.05。

只有Cubic 的P值在0.5附近,因此最佳的拟合曲线应为Cubic(三次方曲线);但由于一共才四次测量,三次方曲线显然太奢侈了,因此如果没有任何其它提示或专业上的知识,最终的拟和曲线应为Quadratic(二次方曲线)。

上表为最后一张,为组间效应的方差分析结果,可见anxiety和tension 均无统计学意义。

最后,为了再确认一下几次测量间的变化趋势,我们另外用plots子菜单作出模型估计的四次测量均数值如下图:
可见四次测量均数实际上还是近似于直线趋势的,因此前面的模型应为线性最佳。

相关文档
最新文档