高中数学第一讲坐标系四柱坐标系与球坐标系简介导学案新人教A版选修44
1.4.2球坐标系 课件(人教A选修4-4)
坐标系(或空间极坐标系),有序数组(r,φ,θ)叫做点P的球坐 标,记作 P(r,φ,θ) ,其中 r≥0,0≤φ≤π,0≤θ<2π .
返回
(2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之 间的变换关系为
cos x=rsin φ· θ . sin y=rsin φ· θ z=rcos φ.
返回
点击下图进入
返回
返回
3.求下列各点的球坐标: (1)M(1, 3,2);(2)N(-1,1,- 2).
解:(1)r= x2+y2+z2= 12+ 32+22=2 2, z 2 2 由 z=rcos φ 得 cos φ=r= = . 2 2 2 π ∴φ= , 4 y 3 又 tan θ=x= = 3,x>0,y>0, 1 π ∴θ= , 3 π π ∴它的球坐标为(2 2, , ). 4 3
返回
返回
球坐标系
(1)定义:建立空间直角坐标系O xyz,设P是空间任意一 点,连接OP,记|OP|=r,OP与Oz轴正向所夹的角为φ,设P 在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所 转过的最小正角θ.这样点P的位置就可以用有序数组 (r,φ,θ) 表示.这样,空间的点与有序数组(r,φ,θ)之间 建立了一种对应关系,把建立上述对应关系的坐标系叫做球
返回
(2)由变换公式得: r= x2+y2+z2= 12+12+ 22=2. z 2 由 z=rcos φ 得:cos φ=r=- . 2 3π ∴φ= . 4 y 1 又 tan θ=x= =-1.x<0,y>0. -1 3π ∴θ= . 4 3π 3π ∴它的球坐标为(2, , ). 4 4
返回
2.将M的球坐标(π,π,π)化成直角坐标. 解:∵(r,θ,φ)=(π,π,π),
高中数学新人教A版选修4-4 柱坐标系与球坐标系简介
四柱坐标系与球坐标系简介1.柱坐标系(1)定义:建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R)表示,这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R.(2)空间任意一点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z.2.球坐标系(1)定义:建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点P 的位置就可以用有序数组(r ,φ,θ)表示.这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ)叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换关系为⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ.[例1] (1)设点A 的直角坐标为(1,3,5),求它的柱坐标. (2)已知点P 的柱坐标为⎝⎛⎭⎫4,π3,8,求它的直角坐标. [思路点拨] 直接利用变换公式求解.[解] (1)由变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得ρ2=x 2+y 2,z =z ,即ρ2=12+(3)2=4,∴ρ=2. tan θ=yx =3,又x >0,y >0.∴θ=π3,∴点A 的柱坐标为⎝⎛⎭⎫2,π3,5. (2)由变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z得x =4cos π3=2,y =4sin π3=23,z =8.∴点P 的直角坐标为(2,23,8).由直角坐标系中的直角坐标求柱坐标,可设点的柱坐标为(ρ,θ,z ),代入变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z求ρ,也可利用ρ2=x 2+y 2,求ρ.利用tan θ=yx 求θ,在求θ的时候特别注意角θ所在的象限,从而确定θ的值;同理,可由柱坐标转化为直角坐标.1.已知点M 的直角坐标为(0,1,2),求它的柱坐标. 解:ρ=x 2+y 2=02+12=1.∵x =0,y >0,∴θ=π2,∴点M 的柱坐标为⎝⎛⎭⎫1,π2,2. 2.将下列各点的柱坐标分别化为直角坐标. (1)⎝⎛⎭⎫2,π6,1;(2)⎝⎛⎭⎫6,5π3,-2;(3)()1,π,0. 解:设点的直角坐标为(x ,y ,z ). (1)∵(ρ,θ,z )=⎝⎛⎭⎫2,π6,1,∴⎩⎪⎨⎪⎧x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,z =1,∴(3,1,1)为所求.(2)∵(ρ,θ,z )=⎝⎛⎭⎫6,5π3,-2, ∴⎩⎪⎨⎪⎧x =ρcos θ=6cos 5π3=3,y =ρsin θ=6sin 5π3=-33,z =-2,∴(3,-33,-2)为所求.(3)∵(ρ,θ,z )=(1,π,0),∴⎩⎪⎨⎪⎧x =ρcos θ=cos π=-1,y =ρsin θ=sin π=0,z =0,∴(-1,0,0)为所求.[例2] (1)已知点P 的球坐标为⎝⎛⎭⎫4,3π4, π4,求它的直角坐标; (2)已知点M 的直角坐标为(-2,-2,-22),求它的球坐标. [思路点拨] 直接套用坐标变换公式求解. [解] (1)由坐标变换公式得, x =r sin φcos θ=4sin3π4cos π4=2, y =r sin φsin θ=4sin 3π4sin π4=2,z =r cos φ=4cos 3π4=-22,故其直角坐标为(2,2,-22). (2)由坐标变换公式得,r =x 2+y 2+z 2=(-2)2+(-2)2+(-22)2=4. 由r cos φ=z =-22,得cos φ=-22r =-22,φ=3π4. 又tan θ=y x =1,则θ=5π4(M 在第三象限),从而知M 点的球坐标为⎝⎛⎭⎫4,3π4,5π4.由直角坐标化为球坐标时,可设点的球坐标为(r ,φ,θ),利用变换公式⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ求出r ,φ,θ即可;也可以利用r 2=x 2+y 2+z 2,tan θ=y x ,cos φ=zr来求.要特别注意由直角坐标求球坐标时,要先弄清楚φ和θ所在的位置.3.将下列各点的球坐标分别化为直角坐标. (1)⎝⎛⎭⎫2,π6,π3;(2)⎝⎛⎭⎫6,π3,2π3. 解:设点的直角坐标为(x ,y ,z ). (1)∵(r ,φ,θ)=⎝⎛⎭⎫2,π6,π3, ∴⎩⎪⎨⎪⎧x =r sin φcos θ=2sin π6cos π3=12,y =r sin φsin θ=2sin π6sin π3=32,z =r cos φ=2cos π6=3,∴⎝⎛⎭⎫12,32,3为所求.(2)∵(r ,φ,θ)=⎝⎛⎭⎫6,π3,2π3, ∴⎩⎪⎨⎪⎧x =r sin φcos θ=6sin π3cos 2π3=-332,y =r sin φsin θ=6sin π3sin 2π3=92,z =r cos φ=6cos π3=3,∴⎝⎛⎭⎫-332,92,3为所求.4.求下列各点的球坐标.(1)M (1,3,2);(2)N (-1,1,-2). 解:(1)由变换公式得,r =x 2+y 2+z 2=12+(3)2+22=2 2. 由z =r cos φ,得cos φ=z r =222=22,∴φ=π4,又tan θ=y x =31=3,x >0,y >0,∴θ=π3,∴它的球坐标为⎝⎛⎭⎫22,π4,π3. (2)由变换公式得,r =x 2+y 2+z 2=(-1)2+12+(-2)2=2. 由z =r cos φ,得cos φ=z r =-22,∴φ=3π4.又tan θ=y x =1-1=-1,x <0,y >0,∴θ=3π4,∴它的球坐标为⎝⎛⎭⎫2,3π4,3π4.一、选择题1.在球坐标系中,方程r =2表示空间的( ) A .球 B .球面 C .圆D .直线解析:选B r =2,表示空间的点到原点的距离为2,即表示球心在原点,半径为2的球面.2.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( ) A.⎝⎛⎭⎫2,π3,3 B.⎝⎛⎭⎫2,2π3,3 C.⎝⎛⎭⎫2,4π3,3 D.⎝⎛⎭⎫2,5π3,3 解析:选C ρ=(-1)2+(-3)2=2,∵tan θ=y x =3,x <0,y <0,∴θ=4π3,又z=3,∴点M 的柱坐标为⎝⎛⎭⎫2,4π3,3. 3.若点M 的球坐标为⎝⎛⎭⎫8,π3,5π6,则它的直角坐标为( ) A .(-6,23,4) B .(6,23,4) C .(-6,-23,4)D .(-6,23,-4)解析:选A 由x =8sin π3cos 5π6=-6,y =8sin π3sin 5π6=23,z =8cos π3=4,得点M 的直角坐标为(-6,23,4).4.若点M 的直角坐标为(3,1,-2),则它的球坐标为( ) A.⎝⎛⎭⎫22,3π4,π6 B.⎝⎛⎭⎫22,π4,π6C.⎝⎛⎭⎫22,π4,π3D.⎝⎛⎭⎫22,3π4,π3 解析:选A 设M 的球坐标为(r ,φ,θ),r ≥0,0≤φ≤π,0≤θ<2π,则r =(3)2+12+(-2)2=22, 由22cos φ=-2得φ=3π4, 又tan θ=13=33,x >0,y >0,得θ=π6,∴点M 的球坐标为⎝⎛⎭⎫22,3π4,π6.故选A. 二、填空题5.点P 的柱坐标为⎝⎛⎭⎫4,π6,3,则点P 到原点的距离为________. 解析:x =ρcos θ=4cos π6=23,y =ρsin θ=4sin π6=2.即点P 的直角坐标为(23,2,3),其到原点的距离为(23-0)2+(2-0)2+(3-0)2=25=5.答案:56.点M (-3,-3,3)的柱坐标为________. 解析:ρ=x 2+y 2=(-3)2+(-3)2=32,∵tan θ=-3-3=1,x <0,y <0,∴θ=5π4,∴点M 的柱坐标为⎝⎛⎭⎫32,5π4,3. 答案:⎝⎛⎭⎫32,5π4,3 7.已知点M 的直角坐标为(1,2,3),球坐标为(r ,φ,θ),则tan φ=________,tan θ=________.解析:如图所示,tan φ=x 2+y 2z =53,tan θ=y x =2.答案:532 三、解答题8.设点M 的直角坐标为(1,1,2),求点M 的柱坐标与球坐标. 解:由坐标变换公式,可得ρ=x 2+y 2=2, ∵tan θ=y x =1,x >0,y >0,∴θ=π4.r =x 2+y 2+z 2=12+12+(2)2=2. 由r cos φ=z =2(0≤φ≤π),得cos φ=2r =22,φ=π4. 所以点M 的柱坐标为⎝⎛⎭⎫2,π4,2,球坐标为⎝⎛⎭⎫2,π4,π4. 9.已知点M 的柱坐标为⎝⎛⎭⎫2,π4,3,点N 的球坐标为⎝⎛⎭⎫2,π4,π2,求线段MN 的长度. 解:设点M 的直角坐标为(x ,y ,z ),由变换公式得,x =ρcos θ=2cos π4=1,y =ρsin θ=2sin π4=1,z =3,∴点M 的直角坐标为(1,1,3),设点N 的直角坐标为(a ,b ,c ), 则a =ρsin φ·cos θ=2×22×0=0,b =ρsin φ·sin θ=2×22×1=2,c =ρcos φ=2×22=2,∴点N 的直角坐标为(0,2,2).∴|MN |=12+(1-2)2+(3-2)2=15-8 2.10.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图所示建立空间直角坐标系A -xyz ,以Ax 为极轴.求点C 1的直角坐标,柱坐标以及球坐标.解:点C 1的直角坐标为(1,1,1),设点C 1的柱坐标为(ρ,θ,z ),球坐标为(r ,φ,θ),其中ρ≥0,r ≥0,0≤φ≤π,0≤θ<2π,由坐标变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,且⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ,得⎩⎪⎨⎪⎧ ρ=x 2+y 2,tan θ=y x (x ≠0),且⎩⎪⎨⎪⎧r =x 2+y 2+z 2,cos φ=z r ,得⎩⎨⎧ρ=2,tan θ=1,且⎩⎪⎨⎪⎧r =3,cos φ=33.结合图形,得θ=π4,由cos φ=33得tan φ= 2.所以点C 1的直角坐标为(1,1,1),柱坐标为⎝⎛⎭⎫2,π4,1,球坐标为⎝⎛⎭⎫3,φ,π4,其中tan φ=2,0≤φ≤π.。
第一讲 坐标系 知识归纳 课件(人教A选修4-4)
2
程为 x- 3y=0,由点到直线的距离公式可知圆心到直线的 |0-2 3| 距离 d= = 3. 2
答案: 3
返回
2.(2012· 上海高考)如图,在极坐标系中, π 过点 M(2,0)的直线 l 与极轴的夹角 α= . 6 若将 l 的极坐标方程写成 ρ=f(θ)的形式, 则 f(θ)=________.
返回
解析:在直线 l 上任取点 P(ρ,θ),在△OPM 中,由正弦定 OM OP 2 ρ 理得 = ,即 = ,化简得 ρ π 5π sin∠OPM sin∠OMP sin -θ sin 6 6 1 1 = ,故 f(θ)= . π π sin -θ sin -θ 6 6
1 答案: π sin -θ 6
返回
在给定的平面上的极坐标系下,有一个二元方程F(ρ,
θ)=0 如果曲线C是由极坐标(ρ,θ)满足方程的所有点组成的, 则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程. 由于平面上点的极坐标的表示形式不唯一,因此曲线 的极坐标方程和直角坐标方程也有不同之处,一条曲线上 的点的极坐标有多组表示形式,有些表示形式可能不满足
(2)点 M 的直角坐标为(1, 3),直线 l 过点 M 和原点, ∴直线 l 的直角坐标方程为 y= 3x. 曲线 C 的圆心坐标为(1,1),半径 r= 2,圆心到直线 l 的 3-1 距离为 d= ,∴|AB|= 3+1. 2
返回
点击下图进入
返回
方程为ρcos θ-2ρsin θ+7=0,则圆心到直线的距离为
________.
[解析] 将 ρ=2cos θ 化为 ρ2=2ρcos θ,即有
高中数学人教新课标A版选修4-4第一章坐标系1.1.6柱坐标系与球坐标系课件2
3.坐标系是联系数与形的桥梁,利用坐标系可以实现几何
问题与代数问题的相互转化.但不同的坐标系有不同的特点,
在实际应用时,要根据问题的特点选择适当的坐标系,使
研究过程方便、简捷.
提高训练
设地球的半径为R,在球坐标系中,点A的坐标为(R,45°,
70°),点B的坐标为(R,45°,160°),求A,B两点间的球
故点 M 的柱坐标为
π
1, ,5
2
2
.
[A
基础达标]
5π
4, ,3
1.点 P 的柱坐标是
4
,则其直角坐标为(
)
A . 2 2,2 2,3
B . -2 2,2 2,3
C . -2 2,-2 2,3
D . 2 2,-2 2,3
5π
5π
解析:选 C.x=ρcos θ=4cos
=-2 2,y=ρsin θ=4sin
π
6
.故点 M 的球坐标为 2 2, ,
6
7π
4
.
B基础训练达标
4.已知点
则|P1P2|=(
π 5π
π
P1 的球坐标为4, 2, 3 ,P2 的柱坐标为2, 6,1,
)
A. 21
B. 29
C. 30
D.4 2
解析:选 A.设点 P1 的直角坐标为(x1,y1,z1),
数学选修4-4:坐标系与参数方程
第一章 坐标系
1.1.6 柱坐标系与球坐标系
学习目标
思维脉络
1.了解在柱坐标系、
球坐标系中刻画空间 柱坐标系与球坐标系
人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系
3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.
人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
山西省太原名校数学(人教A)选修4-4学案 1.4.1柱坐标系
选修4-4 第一讲 坐标系
1.4.1 柱坐标系
【学习目标】
记住在柱坐标系中刻画空间中点的位置的方法; 能把柱坐标与直角坐标点的坐标互化。
在圆形体育场内,如何确定看台上某个座位的位置.体会柱坐标系在解决相关实际问题的便利.
【文本研读】
1. 阅读范围: 选修4—4柱坐标系与球坐标系简介:柱坐标系P16---P17。
2. 学习要求: 体会柱坐标系的建立;对条件的限制在实际运用中能注意到;记住转换公式。
3.知识拓展: 复习在直角坐标系中点的确立。
【情境链接】
建立一个空间直角坐标系,并标明点P (1,1,1)的位置。
【问题探究】
问题1.写出柱坐标系的定义。
(特别要注意条件)
问题2.写出空间点P 的直角坐标系(x,y,z )与柱坐标
)z ,,(θρ之间的变换公式。
练习1.点A 的柱坐标是)7,6
,2(π
,则它的直角坐标是什么?
练习2.点B 的直角坐标是)222,2(,
-,则它的柱坐标是什么?
【实战演练】(要求:严格进行板书)
1.将下列各点的柱坐标化为直角坐标:)3,3
2,
4(),1,6
,2(-π
π
Q P .
2.建立适当的柱坐标系,表示棱长为3的正四面体的四个顶点.
3.点A 的柱坐标是)4,6
,2(π
-,则它的直角坐标是什么?
4.点P 的直角坐标是)3,3,3(--,则它的柱坐标是什么?。
第一讲 坐标系 知识归纳 课件(人教A选修4-4)
直角坐标方程化极坐标方程可直接将x=ρcos θ,y= ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极 坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替 较为方便,常常两端同乘以ρ即可达到目的,但要注意变形 的等价性.
返回
[例4]
已知圆的极坐标方程ρ=2cos θ,直线的极坐标
(2)点 M 的直角坐标为(1, 3),直线 l 过点 M 和原点, ∴直线 l 的直角坐标方程为 y= 3x. 曲线 C 的圆心坐标为(1,1),半径 r= 2,圆心到直线 l 的 3-1 距离为 d= ,∴|AB|= 3+1. 2
返回
点击下图进入
返回
方程,这里要求至少有一组能满足极坐标方程. 返回
求轨迹方程的方法有直接法、定义法、相关点代入法, 在极坐标中仍然适用,注意求谁设谁,找出所设点的坐标 ρ、 θ 的关系. [例 3] 1 △ABC 底边 BC=10, ∠A= ∠B, B 为极点, 以 2
BC 为极轴,建立极坐标系,求顶点 A 的轨迹的极坐标方程.
返回
考情分析 通过对近几年新课标区高考试题的分析可知,高考对本 讲的考查集在考查极坐标方程、极坐标与直角坐标的互化 等.预计今后的高考中,仍以考查圆、直线的极坐标方程为 主.
返回
真题体验 1.(2012· 安徽高考)在极坐标系中,圆 ρ=4sin θ 的圆心到直 π 线 θ= (ρ∈R)的距离是________. 6 解析:将 ρ=4sin θ 化成直角坐标方程为 x2+y2=4y,即 x2
[答案]
8 5 5
返回
[例 5]
π 在极坐标系中,点 M 坐标是(2, ),曲线 C 的 3
π 方程为 ρ=2 2sin(θ+ ); 以极点为坐标原点, 极轴为 x 轴的 4 正半轴建立平面直角坐标系,直线 l 经过点 M 和极点. (1)写出直线 l 的极坐标方程和曲线 C 的直角坐标方程; (2)直线 l 和曲线 C 相交于两点 A、B,求线段 B 的长.
高中数学选修4-4第一讲四柱坐标系与球坐标系简介.docx
人教版高中数学选修 4-4 同步辅导第一讲 坐标系四、柱坐标系与球坐标系简介A 级基础巩固一、选择题1.空间直角坐标系 Oxyz 中,下列柱坐标对应的点在平面Oyz内的是 ( )A. 1, π,2B. 2, π,02 3C. , π , πD. 3 , π , π3 4 66 2π解析:由 P(ρ,θ,z),当 θ= 2 时,点 P 在平面 Oyz 内. 答案: AM1, π π,则它的直角坐标为 () .已知点 的球坐标为, 2 3 6A. 1, π πB. 3 3 1 3, 6 4,4 ,23 3 1 33 3 C. 4, 4,2 D.4 ,4,2 解析:设点 M 的直角坐标为 (x ,y ,z),π π因为点 M 的球坐标为 1,3,6 ,ππ 3 所以 x =1·sin 3cos 6=4,ππ3y =1·sin 3sin 6= 4 ,π 1z =1·cos 3= 2.33 1所以 M 的直角坐标为 4, 4 ,2 .答案: B3.设点 M 的直角坐标为 (2,0,2),则点 M 的柱坐标为 ()A .(2, 0,2)B .(2,π,2)C .( 2,0,2)D .( 2,π,2)解析:设点 M 的柱坐标为 (ρ, θ,z),所以 ρ= x 2+y 2=2,tan θ=y=0,x所以 θ=0,z =2,所以点 M 的柱坐标为 (2,0,2).答案: A4.在空间直角坐标系中的点M(x , y ,z),若它的柱坐标为π)3,,3 ,则它的球坐标为 (3π πB. 3π πA. 3, ,4 2, , 43 3π π D. 3 2, π πC. 3, ,3 4 , 34解析:因为 M 点的柱坐标为 π,设点 M 的直角坐标 M 3, , 33为(x ,y , z).π 3π 3 3所以 x =3cos 3=2,y =3sin 3=2 ,z =3,3 3 3所以 M 点的直角坐标为 2, 2 ,3 .设点 M 的球坐标为 (γ, φ,θ).γ是球面的半径,φ为向量 OM 在 xOy 面上投影到 x 正方向夹角,θ为向量 OM 与 z 轴正方向夹角.所以 r=9+27+9=3π2,容易知道φ=,同时结合点 M 的4433 3 3直角坐标为2,2,3 ,z32可知 cosθ===,π所以θ=4,π π所以 M 点的球坐标为 3 2,3,4 .答案: B5.在直角坐标系中,点 (2,2,2)关于 z 轴的对称点的柱坐标为(),3π,πA. 2,2B. 2,22424,5π,7πC. 2,2D. 22,2244解析: (2, 2,2)关于 z 轴的对称点为 (-2,- 2,2),(-2)2+(-2)2=2 2,tanθ=y=-2=1,x -2因为点 (-2,- 2)在平面 Oxy 的第三象限内,5π所以θ=4,5π所以所求柱坐标为 2 2,4,2 .答案: C二、填空题π 3π6.已知点 M 的球坐标为 4,4,4,则它的直角坐标为 _______,它的柱坐标是 ________.答案:-,,,3π22)2,2 2(2224.已知在柱坐标系中,点M 的柱坐标为2,2π,5,且点 M73在数轴 Oy 上的射影为 N,则 |OM|=________,|MN |=________.解析:设点 M 在平面 Oxy 上的射影为 P,连接 PN,则 PN 为线段MN 在平面 Oxy 上的射影.因为 MN ⊥直线 Oy,MP⊥平面 Oxy,所以 PN⊥直线 Oy.2π所以 |OP|=ρ=2,|PN|=ρcos 3=1,所以 |OM|=ρ2+z2=22+(5)2=3.在Rt△MNP 中,∠ MPN =90°,所以 |MN|= |PM|2+|PN|2=(5)2+12= 6.答案: 36.已知点M 的球坐标为,π,3π,则点 M 到 Oz 轴的距离8444为________.解析:设点 M 的直角坐标为 (x,y,z),π3π则由 ( r,φ,θ)=4,4,4,π3π知x=4sin4 cos 4=- 2,π3πy=4sin4 sin 4=2,πz=4cos4=2 2,所以点 M 的直角坐标为 (-2, 2,2 2).故点 M 到 Oz 轴的距离为(- 2) 2+22=2 2.答案: 2 2三、解答题9.设点 M 的直角坐标为 (1,1,2),求点 M 的柱坐标与球坐标.解:由坐标变换公式,可得ρ= x 2+y 2= 2,ytan θ=x =1,πθ= 4(点 1,1)在平面 xOy 的第一象限.r = x 2+y 2+z 2= 12+12+( 2)2=2.2 2 π由 rcos φ=z = 2(0≤φ≤π),得 cos φ= r =2 ,φ=4.π 2 ,球坐标为 π π所以点 M 的柱坐标为2, 4, 2,4, 4 . .在柱坐标系中,点 M 的柱坐标为 2,2π, 5 ,求点 M 到 10 3原点 O 的距离.解:设点 M 的直角坐标为 (x , y ,z). 由 ρ,θ, = ,2π,5 知(z)2 32 2 3,x = ρcos θ=2cosπ=- 1,y =2sin π=33因此 |OM|=x 2+y 2+z 2= (- 1)2+( 3)2+( 5)2=3.B 级能力提升1.空间点 P 的柱坐标为 (ρ,θ,z),点 P 关于点 O(0, 0,0)的对称点的坐标为 (0<θ≤π)()人教版高中数学选修4-4 同步辅导A.(-ρ,-θ,- z) C.(ρ,π+θ,- z)B.(ρ,θ,- z) D.(ρ,π-θ,- z)解析:点 P(ρ,θ,z)关于点 O(0,0, 0)的对称点为 P′(ρ,π+θ,- z).答案: C2.以地球中心为坐标原点,地球赤道平面为 Oxy 坐标面,由原点指向北极点的连线方向为z 轴正向,本初子午线所在平面为Ozx 坐标面,如图所示,若某地在西经 60°,南纬 45°,地球的半径为R,则该地的球坐标可表示为 ________.解析:由球坐标的定义可知,该地的球坐标为3π5π,,.R433π5π答案: R,4,3ρ=1,3.在柱坐标系中,求满足0≤θ<2π,的动点 M (ρ,θ,z)围0≤z≤ 2成的几何体的体积.解:根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π, 0≤z≤2 的动点 M (ρ,θ,z)的轨迹如图所示,是以直线 Oz 为轴、轴截面为正方形的圆柱,圆柱的底面半径 r=1,h=2,人教版高中数学选修4-4 同步辅导所以 V=Sh=π r2h= 2π.。
高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4(2021学年)
2017-2018学年高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章坐标系四柱坐标系与球坐标系简介教学案新人教A版选修4-4的全部内容。
四柱坐标系与球坐标系简介错误!1.柱坐标系(1)定义:建立空间直角坐标系Oxyz。
设P是空间任意一点,它在Oxy平面上的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q在平面Oxy上的极坐标,这时点P的位置可用有序数组(ρ,θ,z)(z∈R)表示,这样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,z∈R。
(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为错误!2.球坐标系(1)定义:建立空间直角坐标系Oxyz,设P是空间任意一点,连接OP,记|OP|=r,OP与Oz轴正向所夹的角为φ,设P在Oxy平面上的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ。
这样点P的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与有序数组(r,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r,φ,θ)叫做点P的球坐标,记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为错误!错误!柱坐标与直角坐标的互相转化[例1](1)设点A的直角坐标为(1,错误!,5),求它的柱坐标.(2)已知点P的柱坐标为错误!,求它的直角坐标.[思路点拨]直接利用公式求解.[解](1)由变换公式错误!即ρ2=12+(3)2=4,∴ρ=2.tan θ=错误!=错误!,又x>0,y>0,点A在第一象限.∴θ=错误!,∴点A的柱坐标为错误!。
1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)
1.空间直角坐标系Oxyz中,下列柱坐标
对应的点在平面yOz内的是( )
【解析】选A.由点P的柱坐标(ρ,θ,z),当θ= 时,点P
在平面yOz内,故选A.
2
2.已知空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐
<2π,0≤z≤2的动点M(ρ,θ,
z)的轨迹是以直线Oz为轴,轴截面 为正方形的圆柱,如图所示,圆柱的
底面半径r=1,h=2,≨V=Sh=πr2h=
2π(体积单位).
≨PN⊥直线Oy.
答案:3
6
三、解答题(共40分) 10.(12分)在球坐标系中,方程r=1表示空间中的什么曲 面?方程φ = 表示空间中的什么曲面?
4
【解析】方程r=1表示球心在原点且半径为1的球面;
方程φ= 表示顶点在原点,半顶角为 的上半个圆锥面,中
4 4
心轴为z轴.
11.(14分)已知球坐标系Oxyz中, M(6, , ),N(6, 2 , ),
ቤተ መጻሕፍቲ ባይዱ
,r∈[0,+≦), 4
二、填空题(每小题8分,共24分)
7.若点M的柱坐标为(2, 2 ,-2),则点M的直角坐标为_____.
3
【解析】设M的直角坐标为(x,y,z),
答案:(-1, 3 ,-2)
8.设点P的直角坐标为 (1, 3,2 3) ,则它的球坐标为_______. 【解析】设点P的球坐标为(r,φ,θ),其中r≥0,
【解析】
6.球坐标系中,满足θ =
P(r,φ ,θ )的轨迹为( (A)点 (C)半平面
,r∈[0,+∞), φ ∈[0,π ]的动点 4
2019版三维方案数学同步人教A版选修4-4 第一讲 四 柱坐标系与球坐标系简介
束
四
柱坐标系与球坐标系简介
首 页
上一页
下一页
末 页
结
束
1.柱坐标系 (1)定义:建立空间直角坐标系 Oxyz.设 P 是空间任意一 点,它在 Oxy 平面上的射影为 Q,用 (ρ, θ)(ρ≥0,0≤ θ< 2π) 表示点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序 数组 (ρ,θ,z) (z∈ R)表示,这样,我们建立了空间的点与 有序数组(ρ, θ, z)之间的一种对应关系,把建立上述对应关 系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点 P 的柱 坐标,记作 P(ρ,θ,z) ,其中
即 ρ2= 12+( 3)2= 4,∴ ρ= 2. y tan θ= = 3,又 x> 0, y> 0. x
π π ∴ θ= ,∴点 A 的柱坐标为2, , 5. 3 3
首 页
上一页
下一页
末 页
结
束
x= ρcos θ, (2)由变换公式y= ρsin θ, z= z π π 得 x= 4cos = 2, y= 4sin = 2 3, z= 8. 3 3 ∴点 P 的直角坐标为(2,2 3, 8).
结
束
柱坐标与直角坐标的互相转化
[例 1] (1)设点 A 的直角坐标为(1, 3,5),求它的柱坐标.
π 的柱坐标为4, ,8,求它的直角坐标. 3
(2)已知点 P
[思路点拨]
直接利用变换公式求解.
首 页
上一页
下一页
末 页
结
束
[ 解]
x= ρcos θ, 2 2 2 y = ρ sin θ ,得 ρ = x + y , (1)由变换公式 z= z,
第一讲 坐标系 知识归纳 课件(人教A选修4-4)
返回
[例 2]
x′=2x, y′=2y
在同一平面直角坐标系中,经过伸缩变换 后, 曲线 C 变为曲线(x′-5)2+(y′+6)2=1,
求曲线 C 的方程,并判断其形状.
[解]
x′=2x, 将 y′=2y
代入(x′-5)2+(y′+6)2=1 中,
得(2x-5)2+(2y+6)2=1. 52 1 2 化简,得(x- ) +(y+3) = . 2 4 5 1 该曲线是以( ,-3)为圆心,半径为 的圆. 2 2
返回
在给定的平面上的极坐标系下,有一个二元方程F(ρ,
θ)=0 如果曲线C是由极坐标(ρ,θ)满足方程的所有点组成的, 则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程. 由于平面上点的极坐标的表示形式不唯一,因此曲线 的极坐标方程和直角坐标方程也有不同之处,一条曲线上 的点的极坐标有多组表示形式,有些表示形式可能不满足
返回
[解]
如图:令 A(ρ,θ),
θ △ABC 内,设∠B=θ,∠A= , 2 又|BC|=10,|AB|=ρ. 10 由正弦定理,得 = θ, 3θ sinπ- sin2 2 化简,得 A 点轨迹的极坐标方程为 ρ=10+20cos θ. ρ
返回
互化的前提依旧是把直角坐标系的原点作为极点,x 轴 的正半轴作为极轴并在两种坐标系下取相同的单位长度. 互化公式为 x=ρcos θ,y=ρsin θ y ρ2=x2+y2,tan θ=xx≠0
方程为ρcos θ-2ρsin θ+7=0,则圆心到直线的距离为
________.
[解析] 将 ρ=2cos θ 化为 ρ2=2ρcos θ,即有
x2+y2-2x=0,亦即(x-1)2+y2=1. 将 ρcos θ-2ρsin θ+7=0 化为 x-2y+7=0, |1+7| 8 5 故圆心到直线的距离 d= 2 = . 5 1 +-22
高中新课程数学(新课标人教A版)选修4-4《1.2.1极坐标系的的概念》导学案
1.2.1极坐标系的的概念学习目标1.能在极坐标系中用极坐标刻画点的位置.2.体会在极坐标系和平面直角坐标系中刻画点的位置的区别.学习过程一、学前准备情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的平面示意图,假设某同学在教学楼处。
(1)他向东偏60°方向走120M 后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢? 问题2:如何刻画这些点的位置? 二、新课导学◆探究新知(预习教材P 8~P 10,找出疑惑之处)1、如右图,在平面内取一个 O ,叫做 ; 自极点O 引一条射线Ox ,叫做 ;再选定一个 ,一个 (通常取 )及其 (通常取 方向),这样就建立了一个 。
2、设M 是平面内一点,极点O 与M 的距离||OM 叫做点M 的 ,记为 ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的 ,记为 。
有序数对 叫做点M 的 ,记作 。
3、思考:直角坐标系与极坐标系有何异同? ___________________________________________. ◆应用示例例题1:(1)写出图中A ,B ,C ,D ,E ,F ,G 各点的极坐标)20,0(πθρ<≤>.(2):思考下列问题,给出解答。
①平面上一点的极坐标是否唯一?②若不唯一,那有多少种表示方法?③坐标不唯一是由谁引起的?④不同的极坐标是否可以写出统一表达式? ⑤本题点G 的极坐标统一表达式。
答:◆反馈练习小结:在平面直角坐标系中,一个点对应 个坐标表示,一个直角坐标对应 个点。
极坐标系里的点的极坐标有 种表示,但每个极坐标只能对应 个点。
三、总结提升1.已知5,3M π⎛⎫⎪⎝⎭,下列所给出的能表示该点的坐标的是A .⎪⎭⎫⎝⎛-3,5π B .⎪⎭⎫ ⎝⎛34,5π C .⎪⎭⎫ ⎝⎛-32,5π D .55,3π⎛⎫- ⎪⎝⎭ 2、在极坐标系中,与(ρ,θ)关于极轴对称的点是( )A 、),(θρB 、),(θρ-C 、),(πθρ+D 、),(θπρ-(3,0)(6,2)(3,)245(5,)(3,)(4,)365(6,)3A B C D E F G ππππππ。
新课标人教A版高中数学选修4-4知识点
高中数学选修44坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x 轴或横坐标轴,竖直的数轴叫做y 轴或纵坐标轴,x 轴或y 轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x ,y )之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P 1(x 1,y 1),P 2(x 2,y 2),线段P 1P 2的中点为P2.微信公众号:学设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R ),若点M 的极坐标是M (ρ,θ),则点M 的极坐标也可写成M (ρ,θ+2k π),(k ∈Z ).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ).(1)极坐标化直角坐标=ρcos θ,=ρsin θW.(2)直角坐标化极坐标2=x 2+y 2,θ=yx(x ≠0).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合方程f (ρ,θ)=0的点都在曲线C 上,那么方程f(ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:微信公众号:学圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)圆心在点(r ,0)ρ=2r cos_θ(-π2≤θ<π2)圆心在点(r ,π2)ρ=2r sin_θ(0≤θ<π)圆心在点(r ,π)ρ=-2r cos_θ(π2≤θ<3π2)圆心在点(r ,3π2)ρ=-2r sin_θ(-π<θ≤0)(2)一般情形:设圆心C (ρ0,θ0),半径为r ,M (ρ,θ)为圆上任意一点,则|CM |=r ,∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即)cos(2002022θθρρρρ--+=r 3.直线的极坐标方程00△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).微信公众号:学四柱坐标系与球坐标系简介(了解)1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示.这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )x =ρcos θy =ρsin θz =z2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ,这样点P 的位置就可以用有序数组(r ,φ,θ)表示,这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ),叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间x=r sin φcos θy =r sin φsin θz =r cos φ.微信公众号:学第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数微信公众号:学其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b>0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.微信公众号:学(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线lt 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.微信公众号:学(2)半径为r 的圆所产生摆线的参数方程为φ是参数).微信公众号:学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四 柱坐标系与球坐标系简介
庖丁巧解牛
知识·巧学
一、柱坐标系
定义:如图1-4-1,建立空间直角坐标系O-xyz ,设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点Q 在平面Oxy 上的极坐标.这时点P 的位置可用有序数组(ρ,θ,z)(z∈R )表示.这样,就建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P 的柱坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,-∞<z<+∞.
图1-4-1
空间点P 的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为⎪⎩
⎪⎨⎧===.,sin ,cos z z y x θρθρ
要点提示 柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的一部分建立起来的.
二、球坐标系
定义:如图1-4-2,建立空间直角坐标系O-xyz ,设P 是空间任意一点,连结OP ,记|OP|=r,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点P 的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与有序数组(r,φ,θ)之间就建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系或空间极坐标系,有序数组(r,φ,θ)叫做点P 的球坐标,记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π.
空间点P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为
⎪⎩
⎪⎨⎧===.cos ,sin sin ,cos sin ϕθϕθϕr z r y r x
图1-4-2
要点提示 在测量实践中,球坐标中的角θ称为被测点P(r,φ,θ)的方位角,90°-φ称为高低角.
三、坐标系的建立
1.当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系;
2.有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如正三棱锥﹑正四棱锥﹑正六棱锥等),则可以利用图形的对称性建立空间坐标系来解题;
3.有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间坐标系.
深化升华当描述点的位置只用长度来形容不够时,要考虑用角度来表示;如果用一个角度不够,就用两个角度来表示,来分别建立适当的空间坐标系.
问题·探究
问题1 分析在柱坐标系,球坐标系和空间直角坐标系中刻画空间中点的位置的方法,探讨有何异同?
探究:它们都是三维的坐标,球坐标与柱坐标都是在空间直角坐标基础上建立的.
在直角坐标中,需要三个长度:(x,y,z),而在球坐标与柱坐标中,既需要长度,也需要角度.它们是从长度、方向来描述一个点的位置,需要(ρ,θ,z)或者(r,φ,θ).
空间直角坐标:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z 轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一地确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标.(如图1-4-3所示)
图1-4-3
坐标为(x,y,z)的点M通常记为M(x,y,z).这样,通过空间直角坐标系,就建立了空间的点M 和有序数组(x,y,z)之间的一一对应关系.
如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点,则x=y=z=0等.
几种三维坐标互相不同,互相有联系,互相能够转化,它们都是刻画空间一点的位置,只是描述的角度不同.
典题·热题
例1如图1-4-4,请你说出点M的球坐标.
图1-4-4
思路分析:抓住球坐标定义.
解:连结OM,记|OM|=R,OM与Oz轴正向所夹的角为θ,设M在Oxy平面上的射影为Q,Ox 轴按逆时针方向旋转到OQ时所转过的最小正角为φ.这样点M的位置就可以用有序数组(R,θ,φ)表示.
答案:M(R,θ,φ).
误区警示字母与平时表示不一样,容易出错.
例2经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2 384千米,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P 的坐标.
思路分析:在赤道平面上,选取地球球心为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立平面极坐标系,在此基础上,取以O 为端点且经过北极的射线Oz (垂直于赤道平面)为另一条极轴,如图1-4-5建立一个球坐标系.
图1-4-5
解:在赤道平面上,选取地球球心为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立球坐标系.由已知航天器位于经度为80°,可知θ=80°,由航天器位于纬度75°,可知φ=90°-75°=15°,由航天器离地面2 384千米,地球半径为6 371千米,可知r=2 384+6 371=8 755千米.
∴点P 的球坐标为(8 755,15°,80°).
深化升华 在球坐标系中,它的三度与前面所学的球的一些基本知识是有着密切的联系的.
(1)经线与经度:地球球面上从北极到南极的半个大圆叫做经线,规定经过英国格林威治天文台旧址的经线为0°经线.一个地方的经度是指经过当地经线的所在半平面和0°经线所在半平面之间的夹角的度数,以0°经线为基准,向东度量的为东经,向西度量的为西经.如东经30°,西经60°等.(2)纬线与纬度:与地轴(通过北极和南极的直线)垂直的平面截地球球面所得的圆叫做纬线,其中大圆叫做赤道.一个地方的纬度是指当地与球心的连线和地球赤道平面之间所成的角的度数,赤道为0°纬线;以赤道为基准,向北度量为北纬,向南度量为南纬.如北纬25°,南纬23.5°等.
例3已知长方体ABCD-A 1B 1C 1D 1的边长为AB=14,AD=6,AA 1=10,以这个长方体的顶点A 为坐标原点,以射线AB 、AD 、AA 1分别为Ox 、Oy 、Oz 轴的正半轴,建立空间直角坐标系,求长方体顶点C 1的空间直角坐标,球坐标,柱坐标.
解:如图1-4-6,此题是考查空间直角坐标,球坐标,柱坐标的概念,要能借此区分三个坐标,找到它们的相同和不同点.
图1-4-6
C 1点的(x,y,z)分别对应着C
D 、BC 、CC 1,C 1点的(ρ,θ,z)分别对应着CA 、∠DAC、CC 1,C 1点的(r,φ,θ)分别对应着AC 1、∠A 1AC 1、∠BAC.
∴C 1点的空间直角坐标为(14,6,10),C 1点的柱坐标为(232,arctan
73,10),C 1点的球坐标为(332
10cos ,332ar ,arctan 73).
深化升华 另外,点B 的空间直角坐标为(14,0,0),柱坐标为(14,0,0),球坐标为(14,2
π,0);点A 1的空间直角坐标为(0,0,10),柱坐标为(0,0,10),球坐标为(10,0,0). 例4设地球的半径为R ,在球坐标系中,点A 的坐标为(R,45°,70°),点B 的坐标为(R,45°,160°),求A 、B 两点的球面距离.
思路分析:要求A 、B 两点间球面距离,要把它放到△AOB 中去分析,只要求得∠AOB 的度数和AB 的长度,就可求球面距离.
解:如图1-4-7,OB=R ,由点A 、B 的球坐标可知∠BOO′=45°,∠AOO′=45°,这两个点都在北纬90°-45°=45°圈上,设纬度圈的圆心为O′,地球中心为O ,则∠xOQ=70°,∠xOH=160°,
图1-4-7
∴∠AO′B=160°-70°=90°. ∵OB=R,O′B=O′A=22
R,
∴AB=R.连结AO 、AB,则AO=BO=AB=R.
∴∠AOB=60°,
B=61
·2πR=3π
R.
答:A 、B 两点间的球面距离为3π
R.
深化升华 要先将球坐标中的三度所表示的量在图形中找到.。