数学物理方法答案 高等教育出版社
数学物理方法(第四版)高等教育出版社第一章1
-2
(x,y)
x
(0,-1)
(3) Im(i+ z) = 4
Im[i + (x −iy)] = Im[x + i(1− y)] = 4
1− y = 4
表示y= 的直线 表示 -3的直线
y=-3
5、复平面与复数球之关系
例3 设 z =
z1 7 1 ( )=− + i z2 5 5
−1 3i 求 − , Re( z ), Im(z ) 与 zz i 1− i
−1 3i 3i(1+ i) 3 3 3 1 z= − =i − =i − i+ = − i i 1− i (1− i)(1+ i) 2 2 2 2
3 ∴Re(z) = 2
2 x 2
3、复数的三种表示: 、复数的三种表示
1). 代数式 2). 三角式
z = x + iy
z =ρ
x = ρ cosθ
y = ρ sinθ
z = ρ (cos θ + i sin θ )
3). 指数式
e = cosθ + i sin θ
iθ
欧拉公式
z = ρe
iθ
θ = Argz
4、复数的运算
A
S
•作业:P6 作业: 作业
•1(2)( )( ) ( )( )(5) )(3)( •2(1)( )( )( ) ( )( )(5)( )(4)( )(6) •3(1)( ) ( )( )(4)
§1.2
复变函数
复变函数的定义与定义域: 一、复变函数的定义与定义域: 复变函数定义: 1、复变函数定义: 复数平面上存在一个点集E, 复数平面上存在一个点集 , 对于E的每一点( 每一个 值 ) , 对于 的每一点(每一个z值 的每一点 按照一定的规律, 按照一定的规律 , 有一个或多 ω 与之相对应, 个复数值 与之相对应 , 则称 为z的函数 的函数——复变函数,z称为 复变函数, 称为 的函数 复变函数
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法课后答案 (2)
2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答
习题解答
向安平
B xiangap@ xiangap@
成都信息工程学院光电技术系 2006 年 9 月 11 日
前 言
本书供电子科学与技术专业和光信息科学与技术专业《数学物理方法》课程教学使用. 本教学参考书仅供授权读者在计算机上阅读,不能编辑、拷贝和打印.经作者授权,可取消全 部限制. 在第一版中只收录了必要的试题,以后将增补习题的数量和类型,在每章增加内容小结和解题 方法讨论.欢迎读者提供建议. 作为本书的第一版,错误和排版差错在所难免,敬请读者指正.
§ 1.1 复数与复数运算
1. 下列式子在复平面上各具有怎样的意义? (1) | x |≤ 2. (2) | z − a |=| z − b | (a 、b为复常数). (3) Rez > 1 2. (1) | x |≤ 2 解一:|z| = | x + iy| = 部. x2 + y2 ≤ 2,或 x2 + y2 ≤ 4.这是以原点为圆心而半径为2的圆及其内
z?az?bx?a12y?a22x?b12y?b22于是x?a12y?a22x?b12y?b22即2y?a2?b2b2?a22x?a1?b1a1?b1y?a2b22x?a1b12a1?b1b2?a22a2b2这是一条直线是一条过点a和点b连线的中点a1b12且与该直线垂直的直线
数 学 物 理 方 法
解二:按照模的几何意义,|z|是复数z = x + iy与原点间的距离,若此距离总是≤ 2,即表示 以原点为圆心而半径为2的圆内部. (2) |z − a| = |z − b| ( a、b为复常数). 解一:设z = x + iy, z = a1 + ia2 , b = b1 + ib2 ; ( x − a1 )2 + (y − a2 )2 , ( x − b1 )2 + (y − b2 )2 ,
数学物理方法课后答案 (1)
充分性。设任给ε > 0,存在N(ε ) > 0,使当n>N时,zn+ p − z0 < ε成立。由
xn+ p − xn ≤ (xn+ p − xn)(2 yn+ p − yn)2 = zn+ p − zn < ε
yn+ p − yn ≤ (xn+ p − xn)(2 yn+ p − yn)2 = zn+ p − zn < ε
②
将①式与②式相除,易见 c 3 = 1,即 c = 1,由此得证。
8.试利用 Re z = x ≤ x2 + y2 = z 证明 z1 + z2 ≥ z1 + z2 , z1 − z2 ≥ z1 − z2
证 将第一个不等式两边平方,则不等式右边的式子为
z1 + z 2 2 = ( z1 + z 2 )( z1 + z 2 )∗ = z1 z1∗ + z 2 z 2∗ + z1 z 2∗ + z1∗ z 2
4x ≥ 0
x≥0
3 见课上例题
4. 求在ω = 1 下,直线 Re z = c (常数)映射为什么图形?
z
μ ν 解:在ω = 1 的映射下, 与 满足什么方程? z
右半平面(包括 y 轴)
由c = Re z = Re 1 w
= Re 1 μ + iν
=
μ μ2 +ν 2
∴c(μ 2 +ν 2 ) = μ
25(x2 − 6x + 9) + 25 y2 = 625 −150x + 9x2
16x2 + 25 y2 = (20)2 ,点集为椭圆: ( x )2 + ( y )2 = 1 54
数学物理方法习题解答完整
数学物理方法习题解答一、复变函数局部习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,那么上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,那么()f z ∴ 在原点上满足C -R 条件。
但33332200()(0)()lim lim ()()z z f z f x y i x y zx y x iy →→--++=++。
令y 沿y kx =趋于0,那么依赖于k ,()f z ∴在原点不可导。
4、假设复变函数()z f 在区域D 上解析并满足以下条件之一,证明其在区域D 上必为常数。
〔1〕()z f 在区域D 上为实函数; 〔2〕()*z f 在区域D 上解析; 〔3〕()Re z f 在区域D 上是常数。
证明:〔1〕令()(,)(,)f z u x y iv x y =+。
由于()z f 在区域D 上为实函数,所以在区域D 上(,)0v x y =。
数学物理方法课后习题答案
数学物理方法课后习题答案数学物理方法课后习题答案数学物理方法是一门综合性的学科,它将数学和物理相结合,为解决物理问题提供了强有力的工具和方法。
在学习这门课程时,习题是不可或缺的一部分,通过解答习题可以加深对知识点的理解和运用,提高解决实际问题的能力。
下面将针对数学物理方法课后习题给出一些答案和解析。
1. 假设有一根长度为L的均匀细杆,质量为M,细杆的一端固定在原点O,另一端可以自由运动。
求细杆的转动惯量和转动轴上的质心位置。
解析:首先,根据细杆的定义,我们可以将细杆看作是一根连续分布的质点链。
设细杆的质心位置为x,将细杆分为两段,一段长为x,质量为m1,另一段长为L-x,质量为m2。
由于细杆是均匀的,所以m1/m2=(L-x)/x。
根据转动惯量的定义,细杆的转动惯量为I=∫r^2dm,其中r为质点到转动轴的距离,dm为质点的质量微元。
对于细杆的转动惯量,可以将细杆看作是一根连续分布的质点链,所以I=∫r^2dm=∫x^2dm1+∫(L-x)^2dm2。
根据质心的定义,细杆的质心位置为x=(m1*x+m2*(L-x))/(m1+m2)。
将m1/m2=(L-x)/x代入,化简得到x=L/2,即细杆的质心位置在中点。
2. 一个质量为m的质点沿着x轴运动,其位置关于时间的函数为x(t)=Acos(ωt+φ),其中A、ω和φ为常数。
求质点的速度和加速度关于时间的函数。
解析:根据题目中给出的位置函数,可以求出质点的速度和加速度。
首先,速度的定义为v(t)=dx(t)/dt。
对位置函数求导,得到v(t)=-Aωsin(ωt+φ)。
然后,加速度的定义为a(t)=dv(t)/dt。
对速度函数求导,得到a(t)=-Aω^2cos(ωt+φ)。
所以,质点的速度关于时间的函数为v(t)=-Aωsin(ωt+φ),加速度关于时间的函数为a(t)=-Aω^2cos(ωt+φ)。
3. 一个质点受到一个外力F=mg和一个阻力F=-kv的作用,其中m为质量,g为重力加速度,k为阻力系数。
数学物理方法习题解答(完整版)44767
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =Q ,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=Q 。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。
数学物理方法(第四版)高等教育出版社第一章2
③等温网为: 等温网为:
u( x, y) = x − y = c1 v( x, y) = 2 xy = c2
2 2
u是电场线,v电势线的话,表示两块无限大均匀带电平面 电场线, 电势线的话 电势线的话, 所产生的静电场。两板的截口位于Ox轴和 轴和Oy轴 所产生的静电场。两板的截口位于 轴和 轴。
2 2 2
二 维 拉 普 拉 斯 (Laplace)方程 )
则称H 为在区域B上的调和函数 则称 (x,y)为在区域 上的调和函数 u、v为调和函数 、 为调和函数
∂ 2u ∂ 2u ∂ 2v ∂ 2v + 2 =0 + 2 =0 2 2 ∂x ∂y ∂x ∂y
证明: 证明:
∂u ∂v Q = ∂x ∂y ∂u ∂v =− ∂y ∂x
∂v ⇒ = 2y ∂x
∂u ∂v = − = −2 y ∂y ∂x
∂v = 2x ∂y
全微分方程: 1)全微分方程:
(用该方法时尽力凑 出全微分形式) 出全微分形式)
2)不定积分方法: 不定积分方法:
∂v = 2 y 对x积分,将y视为 积分, 视为 将 积分 ∂x 常数, 常数,则
(此方法 f ' ( y)易求解) 易求解)
= d (2 xy )
v( x, y ) = ∫ dv = ∫ d (2 xy )
= 2xy + C
∂v = 2 x + f '( y ) = 2 x f ' ( y ) = 0 ∂y
f ( y ) = C v( x, y ) = 2 xy + C
3) 曲线积分法: 曲线积分法: 方程知。 ①由Cauchy—Riemann方程知。 方程知
高等数学第四册第三版数学物理方法答案(完整版)
e = iLn(1+i)
i ln
=e
2 −(π +2kπ ) 4
= (cos ln
2 + i sin ln
π
2)e 4 e2kπ
k = 0, ±1, ±2,⋅⋅⋅
Ln(1+ i) = ln(1+ i) + i2kπ = ln 2 + i π + i2kπ = ln 2 + i(π + 2kπ )
4
4
2
2
, z =1
则
i
π
π
∫ ∫ ∫ −i
则 , u ( x, y) = ex (x cos y − y sin y) v ( x, y) = ex ( y cos y + x sin y)
; ∂u = ex (x cos y − y sin y) + ex cos y
∂x
∂v = ex cos y − y sin yex + x cos yex ∂y
z1 + z2 + z3 = 0
试 证 明 是 一 个 内 接 于 单 位 z1 = z2 = z3 =1;
z1, z2 , z3
圆 z =1的正三角形的顶点。
1
证明: z1 + z2 + z3 = 0; ∴ z1 = − z2 − z3; z2 = − z3 − z1;z3 = − z1 − z2;
v = 1 +c =1
u =1
2
6
c=1 2
所以 。 f ( z) = x2 − y2 + xy + i(2xy + y2 − x2 + 1) 2 22