有机电解合成发展及应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有机电解合成发展及应用

摘要:本文回顾了有机电解合成工业的发展历程,综述了我国有机电解合成工业的现状,阐述了有机电解合成的研究领域和基本工艺。以一些实例介绍了有机电解合成技术的优点、工业应用中存在的问题和解决措施。讨论了有机电解合成工业的前景。

关键词:有机电解合成发展研究领域前景

1.有机电解合成发展概述

1.1有机电解合成在世界范围内的发展过程

有机电解合成是一门涉及电化学、有机化学及化学工程的交叉学科,被称为“古老的方法,崭新的技术”。

电化学反应用于有机合成已有100多年的历史。虽然有机电解合成的研究早在19 世纪初就已经开始, 但是限于理论和工艺复杂性及有机催化合成迅速发展带来的竞争, 有机电解合成在很长一段时间进展缓慢, 只是作为有机化学家们在实验室中制备有机化合物的一种常用方法, 并未在工业化上迈出步伐。

19 世纪初期, 雷诺尔德(Rheino ld) 和欧曼(Erman) 发现电是一种强有力的氧化剂和还原剂, 那时他们就已经用醇稀溶液进行过电解反应的研究。1934 年, 法拉第首先使用电化学法进行了有机物的合成和降解反应研究, 发现在醋酸盐水溶液中电解时, 阴极上会析出CO2, 并生成烃类化合物。后来, 柯尔贝(Ko lbe) 在法拉第工作的基础上, 创立了有机解合成(又称有机电化学合成、有机电合成) 的基本理论。

进入60 年代以来,微电子学的发展以及光学技术和量子力学理论的引入,给古老的电化学注入了新的活力,有机电解合成工业取得了本世纪的最重大的突破。1961 年美国化学家贝泽(M.Baizer)研究成功电解丙烯睛制己二睛的方法:2CH2 = CHCN + 2H2O + 2e—→NC(CH2)4CN + 2OH—

由于己二睛是制造尼龙-66 的中间体,因而这一反应倍受重视。1965 年美国的Monsanto Co建成了1.2 万t/ a 规模的己二睛电合成工厂,此法目前年产量已超过20 万t/ a 。与此同时,美国的NalcoChemical Co实现了用Grignard试剂与铅阳极反应制备了四乙基铅:

4C2H6MgCl + Pb →Pb (C2H6) 4 + 4MgCl + + 4e—

从而实现了四乙基铅大规模的工业化生产。这两个有机电解合成工业的巨大成功具有跨时代的意义,标志着有机电化学以其崭新姿态和无法估量的潜力登上新学科的地位。从此,有机电化学的研究如雨后春笋,蓬勃兴旺,开始了自己全新的发展时期。

由于有机电解合成具有污染少(甚至无污染)、产物收率和纯度高、工艺流程较短、反应条件温和等优点, 近20年来, 世界工业先进国家有机电解合成的发展非常迅速, 目前已有上百种有机化工产品通过电化学合成实现了工业化生产或者进入了中试阶段。近年来每年发表的有关有机电化学合成方面的研究论文几百篇, 有关的专利发明每年平均有50~70 项之多,这些数字表明有机电解合成工业已引起人们的足够重视, 并在高科技领域内崭露头角。

1.2我国有机电解合成技术开发和应用现状

我国的电化学有机合成在有机化工和石油化工中的应用起步较晚,但是随着科学技术的世界性交流和发展,以及石油化工向深加工方向的发展,电化学有机

合成的应用范围将越来越大。

50年代我国就开始采用氧化剂与有机物反应,然后电解再生氧化剂的间接电解合成工艺,并用于生产硝酸,糖精和维生素K等许多产品。但有机物在电极上直接反应的直接电解合成工艺,直到近年才在我国兴起,具有代表性的工业化实例有:河北宣化化工厂电解还原草酸生产乙醛酸,上海天原化工厂电解还原偶合丙烯腈生产乙二腈,杭州第一制药厂电解氧化呋喃生产2,5-二甲氧基二氢呋喃等等。目前我国已有许多长期从事有机电解合成技术开发的单位,取得了一些成果。

1.3 有机电解合成应用领域

有机电解合成的涉及面及应用领域很广,并且还在开拓越来越广的新领域。有机电解合成在有机合成中的应用产生了现代有机电解合成工业。目前有据可查的已有近百种有机电解合成产品实现了工业化、商品化,有机电解合成在有机合成中的地位已经得到了确认。为适应这个资源与能源有限、环境要求高的时代,人们对作为生产高附加值的精细化学品中间体的“清洁”制造技术寄以很大的希望。

从工业的角度看,有机电解合成在合成精细化学品方面与传统有机合成法相比,具有以下优缺点:(1)优点:本质上是一种无公害的过程;能合成一些有机化学反应不能实现的一些反应;通常是在常温常压下进行的反应;原来多步合成有可能大幅度地缩减步骤;在很多场合反应具有选择性和特异性;能容易地从外部控制反应路径或阶段;根据原料和生成物的氧化还原电位的测定,可以定量地评价相对的反应性能。(2)缺点:必须有别的装置和设备;规模效应小;电合成产物往往难以分离;电能的成本是产品的重要因素;反应的支配因素多。

2.有机电解合成分类及研究内容

2.1 有机电解合成的分类

有机电合成分类方法比较复杂, 通常有两种分类方法:

(1) 按电极表面发生的有机反应类别, 可将有机电合成反应分为两大类: 阳极氧化过程和阴极还原过程。阳极氧化过程包括电化学环氧化反应、电化学卤化反应、苯环及苯环上侧链基团的阳极氧化反应、杂环化合物的阳极氧化反应、含氮硫化物的阳极氧化反应等。阴极还原过程包括阴极二聚和交联反应、有机卤化物的电还原、羰基化合物的电还原反应、硝基化合物的电还原反应、腈基化合物的电还原反应等。

(2) 按合成方法分类, 可将有机电合成分为两大类: 直接有机电合成反应和间接有机电合成反应。直接有机电合成反应直接在电极表面完成, 间接有机电合成氧化(或还原) 反应采用传统化学方法进行, 但氧化剂(或还原剂) 反应后以电化学方法再生以后循环使用。间接电合成法可按两种方式操作: 槽内式和槽外式。槽内式间接电合成是在同一装置中进行化学合成反应和电解反应, 因此这一装置既是反应器也是电解槽。槽外式间接电合成法是在电解槽中进行媒质的电解, 电解好的媒质从电解槽转移到反应器中, 在此处进行有机物化学合成反应。

2.2 有机电合成研究内容

(1)电极过程动力学

电极过程动力学包括扩散动力学和电化学步骤动力学。扩散动力学和非均相化学反应中的扩散动力学没有明显区别, 包括对流、扩散、电迁移等现象。而电化学步骤动力学真正体现了电极过程核心内容, 它包括了化学反应和电子传递过程。研究电极过程, 首先要研究整个有机电极反应的基本历程, 并弄清各步骤

相关文档
最新文档