初一数学找规律题及答案知识分享
七年级找规律经典题汇总带
×n1.n2
-n+1
.(
)
2
2n-1
3.302 4.121
5.49
6.152n+5 7.360
(n-2)nBiblioteka 19.3n+1 10
.
2n+211.181 12.欢
8.4
欢13
.3n+114.
88
15.20 16.4n-4 17.2n
(n+1)
18.65
19.37 20
表一:
表二:
表三:
..
20、如 所示的
..
案是由正六
..
形密 而成,黑
..
色正六 形周..
..
..
..
..
第一 有六
个白色正六 形, 第n有个白色正六 形.
21、把3的正三角形各 三均分,切割获取①, 中含有1个 是1的正六 形;把4
的正三角形各 四均分,切割获取②, 中含有3个 是1的正六 形;把5的正三角形
14.先 察
1
1
2
1
=(1
1)
(1
1)=1-1=2
2
3
1
2
2
3
3
3
1
2
2
1
3
1
=(1 1)
(1 1) (1
1)=1-1=3
1
3
4
1
2
2
3
3
4
4
4
再 算
1
1
1
1
的 .
1
2
2
3
3
4
(word版)七年级数学找规律练习题和答案
找律1.用黑白两种色的正六形地按如下所示的律拼成假设干个案:第(4)个案中有黑色地4;那么第(n)个案中有白色地。
..⋯⋯2.我国著名数学家庚曾:“数形合百般好,隔裂分家万事非。
〞如,在一个1的正方形版上,依次上面1,1,1,⋯,1的矩第3题2482n形彩色片〔n大于1的整数〕。
你用“数形合〞的思想,依数形化的律,算11112482n=。
3.有一列数:第一个数x=1,第二个数x=3,第三个数开始依次x,x,⋯,x ;从第二个数开始,每个数是它相1234n 两个数和的一半。
〔如:x2=x1x3〕2(1 )求第三、第四、第五个数,并写出算程;(2)根据〔1〕的果,推x8=;(3 )探索一列数的律,猜测第k个数xk=.〔k是大于2的整数〕4.将一方形的折,如所示可得到一条折痕〔中虚〕折三次后,可以得到7条折痕,那么折四次可以得到痕._.折,折每次折痕与上次的折痕保持平行,条折痕.如果折n次,可以得到条折5.察下面一列有律的数1,2,3,4,5,6,,根据个律可知第n个数是〔n是正整数〕38152435486.古希腊数学家把数1,3,6,10,15,21,⋯⋯,叫做三角形数,它有一定的律性,第24个三角形数与第22个三角形数的差。
按照一定序排列的一列数叫数列,一般用a1,a2,a3,⋯,an表示一个数列,可{an}.有数列{an}足一个关系式:a=an-n a,a,a的,然后行猜测n n的代数n+121234式表示〕8.察下面一列数:-1,2,-3,4,-5,6,-7,...,将列-12-34数排成以下形式10行从左第9个数是.-56-7-9按照上述律排下去,那么第10-1112-1314-1516......第8题1察以下等式9-1=816-4=1225-9=1636-16=20 ⋯⋯⋯⋯些等式反映自然数的某种律,n(n≥1)表示自然数,用关于n的等式表示个律.10.如是阳光广告公司某种商品的商案,中阴影局部色。
七年级找规律经典题汇总带答案
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+规律发现专题训练……1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
七年级(上)数学【找规律】经典题汇总带答案
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
七年级数学找规律经典题型
七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。
解析:首先观察这个数列,发现相邻两个数的差值都是2。
第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。
所以可以得出第n个数为2n 1。
例2:观察数列2,4,8,16,32,…,求第n个数。
解析:这个数列中,后一个数都是前一个数的2倍。
第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。
所以第n个数为2^n。
2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。
解析:观察这组数字,发现数字是1和 1交替出现。
当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。
可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。
二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。
解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。
所以搭n个三角形需要2n+1根火柴棒。
例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。
七年级找规律经典题汇总带答案
七年级找规律经典题汇总带答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级找规律经典题汇总带答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级找规律经典题汇总带答案的全部内容。
一、数字排列规律题1、观察下列各算式: 1+3=4=,1+3+5=9=,1+3+5+7=16=… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n—1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:2223241+2+3+…+99+100+99+…+3+2+1=____.3、规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖 块。
初一找规律经典题型(含部分问题详解)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n 位的数也有一n =3 n =4 n =5 ……种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
初一数学上册找规律题型及真题练习题(含答案解析)
初一数学上册找规律题型及真题练习题(含答案解析)【找规律题目的类型】★设计类(1)用图形反映规律★数字类(1)与数阵有关的问题(2)等差型数列规律(3)等比型数列规律(4)含平方型数列规律(5)其它数列规律列举(6)循环型数列★计算类(1)根据已知等式探究规律(2)探究算式的计算规律★图形类(1)与视图、展开图有关的问题(2)几何图形变化规律题真题演练一、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?答案:(1)1004的平方(2)n+1的平方二、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __答案:23 30。
数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。
三、请填出下面横线上的数字。
1 123 5 8 ____ 21答案:13。
数列后面一个数是前面相邻两个数的和。
四、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?答案:34 。
考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。
每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。
五、有一串数字 3 6 10 15 21___ 第6个是什么数?答案:28。
3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。
其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。
六、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A )A.1 B.2 C.3 D.4七、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为___个.答案:33八、观察排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个答案:602、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称)答案:圆九、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.答案:10000。
初一找规律经典题带答案
……一、数字排列1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
初一找规律经典题型(含部分答案)
精心整理图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:n 个n 位的例:4=6n -2例1(1(2例2共有(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n 位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
例1.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。
妙题赏析:规律类的中考试题,无论在素材的选取、文字的表述、题型的设计等方面都别具一格,令人耳目一新,其目的是继续考察学生的创新意识与实践能力,在往年“数字类”、“计算类”、“图形类”的基础上,今年又推陈出新,增加了“设计类”与“动态类”两种新题型,现将历年来中考规律类中考试题分析如下:1、设计类【例1】(2005年大连市中考题)在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。
(1)请你利用这个几何图形求的值为。
(2)请你利用图b,再设计一个能求的值的几何图形。
【例2】(2005年河北省中考题)观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。
七年级找规律经典题汇总带答案
七年级上数学专题训练之找规律一、数字排列规律题1、观察下列各算式:1+3=4= 22,1+3+5=9=32,1+3+5+7=16=42 , 按此规律(1)试猜想: 1+3+5+7+, +2005+2007的值?(2)推广: 1+3+5+7+9+ , +( 2n-1)+ (2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、,, 聪明的你猜猜第 100 个()二、几何图形变化规律题1、观察下列球的排列规律( 其中●是实心球,○是空心球) :●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○● ,, 从第 1 个球起到第 2004 个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第 2008个图形是(填图形名称) . 三、数、式计算规律题1、已知下列等式:① 1 3=12;② 1 3+23=32;③ 1 3+23+33=62;④ 1 3+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4 , 1+2+3+2+1=9 ,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,,根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+, +99+100+99+,+3+2+1=____.3、已知: 2222,3 2 3,4424, 552 5,233 3 415 15524 243 8 8, ,若10 b 10 2 b 符合前面式子的规律,则 a ba a规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:有黑色地砖 4 块;那么第 ( n ) 个图案中有白色地砖块。
(完整版)七年级找规律经典题汇总带答案
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
七年级上册找规律数学题
七年级上册找规律数学题一、数字规律题。
1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。
- 所以第n个数是n^2。
2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。
- 所以第n个数是( - 1)^n + 1n。
3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。
- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。
4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。
5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。
二、图形规律题。
6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。
7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。
最新七年级找规律经典题汇总带答案
一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
初中数学找规律题及其标准答案
初中数学找规律题及其答案————————————————————————————————作者:————————————————————————————————日期:整式的加减——专题训练与提升1、根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有个点.2、找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.3、如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子枚.4、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.5、观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.6、如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是,第n个“广”字中的棋子个数是.7、如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°,下图2是二环四边形,可得S=∠A1+∠A2+…+∠A7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S= 度.(用含n的代数式表示最后结果)8、观察下列图形(每幅图中最小的三角形都是全等的),请写出第n个图中最小的三角形的个数有个.9、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an= .(用含n的代数式表示)所剪次数三角形个数10、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为(用含n的代数式表示).11、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.12、根据下列图形的排列规律,第2008个图形是福娃(填写福娃名称即可).13、用火柴棒按照如图所示的方式摆图形,则第n个图形中,所需火柴棒的根数是.14、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.15、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子把.16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有n (n≥2个圆点时,图案的圆点数为S n .按此规律推断S n 关于n 的关系式为:S n = .17、如图是由火柴棒搭成的几何图案,则第n 个图案中有 根火柴棒.(用含n的代数式表示)18、观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.19、观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为.表一:表二:表三:20、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n层有个白色正六边形.21、把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有个边长是1的正六边形.0 1 2 3 ....1 3 5 7 ....2 5 8 11 ....3 7 11 15 ....... ... ... ... ....1114a1 3722、观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2008个图形是(填名称).23、下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,按照图示的规律摆下去,则第n幅图中有个菱形.24、如图,观察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有个.25、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)27、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发现三角形的排列规律,请写出第七行有个三角形.28、如图,用3根小木棒可以摆出第(1)个正三角形,加上2根木棒可以摆出第(2)个正三角形,再加上2根木棒可以摆出第(3)个正三角形…这样继续摆下去,当摆出第(n)个正三角形时,共用了木棒根.29、观察下列图形,根据变化规律推测第100个与第个图形位置相同.30、如图,用火柴棒按以下方式搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n条小鱼需要根火柴棒.(用含n的代数式表示)整式的加减——专题训练与提升参考答案1.n2-n+1 2.(2n-1)3.302 4.121 5.49 6.152n+5 7.360(n-2)8.4n-19.3n+1 10.2n+2 11.181 12.欢欢13.3n+1 14.88 15.20 16.4n-4 17.2n(n+1)18.65 19.37 20.6n 21.15 22.正方形23.(2n-1)24.136 26.3n+1 27.64 28.2n+1 29.1或4 30.6n+2。
七年级找规律经典题汇总带答案
一、数字排列规律题之吉白夕凡创作1、时间:二O二一年七月二十九日2、不雅察下列各算式: 1+3=4=,1+3+5=9=,1+3+5+7=16=… 按此规律(1)试猜测:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字. 1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()二、几何图形变更规律题1、不雅察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、不雅察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).…… 三、数、式计算规律题1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 .2、不雅察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…按照你所发明的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、 规律发明专题训练 1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖块. 2.我国著名数学家华罗庚曾说过:“数形结合各式好,隔裂分炊万事非.”如图,在一个边长为1的正方形纸版上,依次贴上面积为,,,…,的矩形黑色纸片(n 为大于1的整数).请你用“数形结合”的思想,依数形变更的规律,计算=.4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕坚持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_条折痕 .如果对折n次,可以得到条折痕 .5. 不雅察下面一列有规律的数, 按照这个规律可知第n个数是(n是正整数)8.不雅察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式......12-1110-52第8题==1-===1-=再计算的值.21.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为25.不雅察下列图形的组成规律,按照此规律,第8个图形中有个圆.26、按照下列5个图形及相应点的个数的变更规律,试猜测第n个图中有个点.27、找规律.下列图中有大小不合的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n幅图中共有个.1、如图,用同样大小的黑色棋子按图所示的方法摆图案,依照这样的规律摆下去,第100个图案需棋子枚.4、不雅察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有个.5、不雅察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.6、如图①,图②,图③,图④,…,是用围棋棋子依照某种规律摆成的一行“广”字,依照这种规律,第5个“广”字中的棋子个数是,第n 个“广”字中的棋子个数是.9、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的办法剪成四个更小的正三角形,…如此继续下去,结果如下表.则an=.(用含n 的代数式暗示)10、用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为(用含n 的代数式暗示).13、用火柴棒依照如图所示的方法摆图形,则第n 个图形中,所需火柴棒的根数是.14、下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.次数角形个数15、一张长方形桌子需配6把椅子,按如图方法将桌子拼在一起,那么8张桌子需配椅子把.16、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包含顶点)上有n (n≥2个圆点时,图案的圆点数为Sn .按此规律推断Sn 关于n 的关系式为:Sn=.17、如图是由火柴棒搭成的几何图案,则第n 个图案中有根火柴棒.(用含n 的代数式暗示)19、不雅察表一,寻找规律.表二,表三辨别是从表一中选取的一部分,则a+b 的值为.表一:表二: 表三:20、如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有个白色正六边形.1 2 3 (1)3 5 7 (2)5 8 11 (3)7 11 15 ... .. .. .. .. (11)14a 11 1317 b21、把边长为3的正三角形各边三等分,联系得到图①,图中含有1个边长是1的正六边形;把边长为4的正三角形各边四等分,联系得到图②,图中含有3个边长是1的正六边形;把边长为5的正三角形各边五等分,联系得到图③,图中含有6个边长是1的正六边形;…依此规律,把边长为7的正三角形各边七等分,并按同样的办法联系,得到的图形中含有个边长是1的正六边形.22、不雅察下列图形的排列规律(其中☆,□,●辨别暗示五角星、正方形、圆)●□☆●●□☆●□☆●●□☆●…若第一个图形是圆,则第2008个图形是(填名称).23、下列图中有大小不合的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,依照图示的规律摆下去,则第n幅图中有个菱形.24、如图,不雅察下列图案,它们都是由边长为1cm的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有个.25、用同样大小的黑色棋子按图所示的方法摆图形,依照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式暗示)27、如图所示是一副“三角形图”,第一行有一个三角形,第二行有2个三角形,第三行有4个三角形,第四行有8个三角形,…,你是否发明三角形的排列规律,请写出第七行有个三角形.28、如图,用3根小木棒可以摆出第(1)个正三角形,加上2根木棒可以摆出第(2)个正三角形,再加上2根木棒可以摆出第(3)个正三角形…这样继续摆下去,当摆出第(n)个正三角形时,共用了木棒根.29、不雅察下列图形,按照变更规律推测第100个与第个图形位置相同.30、如图,用火柴棒按以下方法搭小鱼,搭1条小鱼用8根火柴棒,搭2条小鱼用14根,…,则搭n条小鱼需要根火柴棒.(用含n的代数式暗示)参考答案(一):一、1、(1)(2)2、23 30.数列中每两个相邻数字间的差辨别是1,2,3,4,5,6,7.3、13.这一数列后面一个数是前面相邻两个数的和.4、34 .考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个.每个括号的第一个数辨别是1,2,3,……因此第100个数必定是34.二、 1、602 2、圆三、1、2、100003、109.规律发明专题训练答案1.4n+22.13.(1)5;7;9 (2)15 (3)2n-14.15;?5.n/n(n+2)12.(1)12+2a;12+3a;12+a(n-1)(2)a=2;5413.7;11;n/(n+1)+114.n/(n+1)21.9900 22.C23.(2)16;26;17824(1)13;16;(2)3n+1;(3)不克不及,3n+1=2009 3n=2008 因为2008不是3的倍数.25.n×n 26.? 27.(2n-1)/n×n1.n2-n+12.(2n-1)3.3024.1215.496.152n+57.360(n-2)8.4n-19.3n+110.2n+211.18112.欢欢13.3n+114.8815.2016.4n-417.2n(n+1)18.6519.3720.6n21.1522.正方形23.(2n-1)24.13626.3n+127.6428.2n+129.1或430.6n+2时间:二O二一年七月二十九日时间:二O二一年七月二十九日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳—猜想——找规律
具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.
一、数字排列规律题
1、观察下列各算式:
1+3=4=22,1+3+5=9=32,1+3+5+7=16=42
按此规律
(1)试猜想:1+3+5+7+…+2005+2007的值?
(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?
2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __
3、请填出下面横线上的数字。
1 1
2
3 5 8 ____ 21
4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、
5、4、5、
6、……聪明的你猜猜第100个数是什么?
5、有一串数字3 6 10 15 21 ___ 第6个是什么数?
6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().
A.1 B.2 C.3 D.4
7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.
二、几何图形变化规律题
1、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……
从第1个球起到第2004个球止,共有实心球个.
2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).
三、数、式计算规律题
1、已知下列等式:
①13=12;
②13+23=32;
③13+23+33=62;
④13+23+33+43=102;
由此规律知,第⑤个等式是.
2、观察下面的几个算式:
1+2+1=4,
1+2+3+2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果:
1+2+3+…+99+100+99+…+3+2+1=____.
3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12
1
+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式
()21032131
21⨯⨯-⨯⨯=
⨯ ()32143231
32⨯⨯-⨯⨯=⨯
()4325433
1
43⨯⨯-⨯⨯=⨯
将这三个等式的两边相加,可以得到1×2+2×3+3×4=205433
1=⨯⨯⨯ 读完这段材料,请你思考后回答:
⑴=⨯++⨯+⨯1011003221Λ
⑵()()=++++⨯⨯+⨯⨯21432321n n n Λ ⑶()()=++++⨯⨯+⨯⨯21432321n n n Λ 4、,
,,,已知:245
52455154415448338333223222222⨯=+⨯=+⨯=+⨯=+
=
+⨯=+b a a
b
a b 则符合前面式子的规律,,若…21010 参考答案:
一、1、(1)1004的平方(2)n+1的平方
2、23 30。
数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。
3、13。
这一数列后面一个数是前面相邻两个数的和。
4、34 。
考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。
每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。
5、28。
3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。
其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。
6、A
7、33 二、 1、602 2、圆
三、1、2
3
3
3
3
3
1554321=++++ 2、10000
3、 ⑴343400 或10210110031⨯⨯⨯ ⑵()()2131++n n n ⑶()()()3214
1
+++n n n n 4、109.
沪科版七年级数学试卷
一、填空题: 1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度可记为__________米.
2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.
3、比较大小:23
-
_____-7
8. 4﹑若关于x 的方程a-x=3的解是4,则a=
5、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每 个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、
6、9,请你列算式:_______________________.
6 已知︱a-2︱+(b+3)2
=0,则ab 的值等于
7、一粒废旧电池大约会污染60万升的水。
我校共1200名学生,若每个学生都丢弃一粒废旧的电池,则
共污染 升水。
若每杯鲜奶250毫升,则我校学生污染的水相当于 杯的鲜奶。
8、“千佳百货”举办的促销活动,全场商品一律打八折销售。
赵老师花了1000元买了台“福星牌”平衡
式热水器,那么该商品的原售价为_______元。
9 已知a ,b 互为相反数,c ,d 互为倒数,x 等于4的二次方,则式子(a+b-cd)x 的值是 10 写出一个二元一次方程组,使它的解为X=1,Y=-2
二、选择题:
1、有下面的算式:①(-1)2003=-2003;②1-(-1)=1;③-21+31= -61;④)2
1
(21-÷= -1; ⑤2×(-3)2=36;⑥-3÷(-
2
1
)×2= -3,其中正确算式的个数是 A 、1个 B 、2个 C 、3个 D 、4个 2、下列说法,正确的是
A 、若|x |=x ,则x 一定是正数
B 、如果两个数的和为零,那么这两个数一定是一正一负
C 、-a
2
表示一个负数 D 、两个有理数的差不一定小于被减数
3、你的一本语文书大约有多薄?
A 、13毫米
B 、14厘米
C 、50分米
D 、1米 4、下列各式,成立的是
A 、a -b+c=a -(b -c)
B 、3a -a = 3
C 、8a –4b = 4ab
D 、-2(a -b)= -2a+b 5 5、甲数的2倍比乙数小1,设甲数为X ,则乙数为( )
A. 2X-1
B. 2X+1 C .2(X-1) D.2(X+1) 6 若︱a ︱=3,︱b ︱=2,且a<b,则a+b 的值等于( )
A 1 或 5
B 1 或 -5
C -1 或 -5
D -1 或 5
7、银行存入30000元人民币,存期一年,年利率为1.98%,到期应交纳所获利息的20%的利息税,那么到期取款并交利息税后,可取回( )
A 、30594
B 、30475.8元
C 、30475.2元
D 、30198元 三、解答题:
1、化简:- 7ab + ( -8ac) - ( -5ab) + 10ac -12ab
2、先化简,再求值:4x 3 - [ -x 2 + 3( x 3 -3
1
x 2 )],其中x= -3
3、解方程:x +7= 10 - 4( x + 0.5)
4、解方程: )7(3
1
8
1)15(12
1--=+x x
5、解方程组 : 2x —3y=8 7x -5y=-5 6.一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间吗,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒。
根据以上数据,你能否求出火车的长度?若能,火车的长度是多少?若不能,请说明理由。
7.甲乙两船分别从A,B 两个港口同时出发相向而行,甲船顺水,乙船逆水,两船在静水中的速度都是a 千米/小时,水流速度是b 千米/小时。
已知甲船航行3小时到达途中的C 处休息半小时后,乙船也正好到达C 处。
(1)甲船比乙船每小时多航行多少千米?(2)求A,B 两个港口之间的距离。
(3)如果,a=50,b=10,甲、乙两船从C 处各自继续航行,那么,甲、乙两船到达A,B 两港口的时间分别是多少?
8、如图,按一定的规律用火柴棒搭图形:
① ② ③
(1)按图示的规律填表:
图形标号 ① ② ③ …… ⑩ 火柴棒数
……
(2)搭第n 个图形需要________________________根火柴棒。