人教版高中数学选修2-2教案全集
数学高中选修2一2教案
数学高中选修2一2教案
教学内容:一元二次方程
教学目标:
1. 掌握一元二次方程的概念和基本性质。
2. 掌握用因式分解法、配方法、公式法等解一元二次方程的方法。
3. 能够应用一元二次方程解决实际问题。
教学重点:一元二次方程的解法及应用。
教学难点:问题实际应用。
教学过程:
一、导入(5分钟)
教师引出一元二次方程的概念,让学生回顾一元一次方程的解法,引出一元二次方程。
二、讲解与示范(15分钟)
1. 讲解一元二次方程的解法:因式分解法、配方法、公式法。
2. 通过例题进行示范,让学生掌握解题方法。
三、练习与讨论(20分钟)
1. 学生个别练习,巩固解题方法。
2. 学生分组讨论解决实际问题的一元二次方程。
四、课堂小结(5分钟)
教师对一元二次方程的解法进行总结,强调应用能力的培养。
五、作业布置(5分钟)
布置相关练习题,巩固学生学习成果。
以上就是本课的教学内容,希望能够帮助学生更好地理解和掌握一元二次方程的知识。
祝学习顺利!。
高中数学 1.1.2导数的概念教案 新人教版选修2-2
§1.1.2导数的概念教学目标1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.教学过程:一.创设情景 (一)平均变化率(二)探究:计算运动员在49650≤≤t这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 二.新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度。
运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:ht o思考:当t ∆趋近于0时,平均速度v 有什么样的变化趋势? 结论:当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-.从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度,因此,运动员在2t =时的瞬时速度是13.1/m s -为了表述方便,我们用0(2)(2)lim 13.1t h t h t∆→+∆-=-∆ 表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。
2 导数的概念从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()lim lim x x f x x f x f x x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ∆=-,当0x ∆→时,0x x →,所以0000()()()limx f x f x f x x x ∆→-'=- 三.典例分析例1.(1)求函数y =3x 2在x =1处的导数.分析:先求Δf =Δy =f (1+Δx )-f (1)=6Δx +(Δx )2再求6f x x ∆=+∆∆再求0lim 6x f x∆→∆=∆ 解:法一(略)法二:222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数. 解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x f x x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆ 所以00(2)lim lim(3)3x x f f x x ∆→∆→∆'==∆-=-∆ 同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,在第6h 附近,原油温度大约以5/C h 的速率上升.注:一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四.课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线y =f (x )=x 3在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五.回顾总结1.瞬时速度、瞬时变化率的概念2.导数的概念六.布置作业。
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
人教版高中数学选修2-2归纳法学案
2.3 数学概括法1.认识数学 法原理.2.能用数学 法 明一些 的数学命 .基 梳 理假1.数学 法.{ p(n)} 是一个与自然数有关的命 会合,假如:① 明开端命(p 1 或 p 0)建立;②在p k 建立的前提下,推出 p k +1 也建立,那么能够判定,{ p( n)} 全部自然数建立.2.用数学 法 的步 : (1) 明当 n 取第一个n 0( 比如 n 0= 0 或 _n 0=1) ,命 { p(n)} 正确;(2)假 n = k(k ≥n 0,k ∈ N * ) 命 正确, 明当 n = k + 1 命 也正确, 即 p(k + 1) 真; (3)依据 (1)(2) 知,当 n ≥n 0 且 n ∈ N * , p(n)正确.想想: (1) 与正整数 n 没关的数学命 可否 用数学 法?(2)数学 法的第一步 n 0 的初始 能否必定 1?(1) 分析:不可以.数学 法是 明与正整数 n 有关的数学命 的一种方法.(2) 分析:数学 法的第一步中n 0 的初始 依据命 的详细状况来确立,不必定是1.如用数学 法 明凸 n 形的内角和 (n - 2)·180° ,其初始 n 0= 3.自 自n +21.用数学 法 明1+q + q 2+ ⋯ +q n + 1= q- q(n ∈ N * , q ≠ 1),在 n =1 等式q - 1建立 ,等式左 的式子是(C)A . 1B . 1+ qC .1+ q + q 2D . 1+q + q 2+ q 3分析:左 =1+ q + q 1+1 =1+ q + q 2.故 C.2.用数学法明1+ 2+ 3+⋯+ (2n+ 1)= (n+ 1)(2n+ 1),从“n= k”到“n=k+ 1”,左需增加的代数式是 (C)A . (2k+ 1)+ (2k+ 2)B. (2k- 1)+ (2k+1)C.(2k+ 2)+ (2k+ 3)D. (2k+ 2)+ (2k+4)分析:当 n= k ,左是共有2k+1 个自然数相加,即1+ 2+ 3+⋯+ (2k+ 1),因此当 n=k+ 1 ,左共有2k+ 3 个自然数相加,即 1+2+ 3+⋯+ (2k+ 1)+ (2k+ 2)+(2k+3).因此左需增加的代数式是(2k+ 2)+ (2k+ 3).故 C.3.用数学法明:“(n+1)( n+ 2) ·⋯·(n+n)= 2n· 1· 3·⋯· (2n- 1) ”.从“k 到 k+1”左端需增乘的代数式 (B)A . 2k+ 1B . 2(2k+ 1)2k+ 12k+ 3C.k+ 1D.k+ 1分析:当 n= k 左端的第一 (k+ 1),最后一 (k+ k).当 n= k+1 ,左端的第一 (k+ 2),最后一 (2k+2) .∴左乘以 (2k+ 1)(2k+ 2),同要除以 (k+ 1).基巩固1.一个与正整数 n 有关的命,当 n= 2 命建立,且由 n= k 命建立能够推得n= k+ 2 命也建立, (B)A .命于n>2 的自然数n 都建立B.命于全部的正偶数都建立C.命何建立与k 取没关D.以上答案都不分析:由 n= k 命建立可推出n= k+2 命也建立,又 n= 2 命建立,依据逆推关系,命于全部的正偶数都建立,故 B.2.等式 12+ 22+ 32+⋯+n2=1(5n2- 7n+ 4)(B) 2A . n 任何正整数都建立B.当 n= 1, 2, 3 建立C .当 n = 4 建立, n = 5 不建立D . 当 n =4 不建立分析: ,n = 1, 2, 3 建立, n = 4,5,⋯不建立.故 B.3.用数学 法 明某命 ,左式12+cosα + cos 3α+ ⋯ + cos(2n - 1)α(α≠k π ,k ∈Z , n ∈N * ),在n = 1 ,左 所得的代数式 (B)1A. 21B.2+ cos α1C. + cos α + cos 3α1D.2+ cos α + cos 3α + cos 5α分析:令 n = 1,左式= 1+ cosα .故 B.211121 - 1,假 n = k ,不等式建立,22>24.用数学 法 明 2 + 3 +⋯+( n + 1) n + 2 当 n = k + 1 , 推 的目 不等式是________.分析: 察不等式中分母的 化即可得 .1 11+11 1答案: 22( k +2)> -2 +3 + ⋯+( k +1) 222 k + 3能 力 提 升5. (2014 揭·阳一中高二期中)用数学 法 明“n 3+ (n + 1)3+ (n + 2)3(n ∈ N * ) 能被 9 整除”,要利用 假n = k +1的状况,只要睁开 (A)A . (k + 3)3B . (k + 2)3C .( k + 1) 3D . (k + 1)3+ (k + 2)3分析:因 从n = k 到 n = k + 1 的 渡,增加了 (k + 1)3,减少了 k 3,故利用 假 ,只要将 (k + 3)3 睁开, 明余下的9k 2+27k + 27 能被 9 整除.1+ 1 + 1+⋯+126.已知 f(n)= nn + 1n + 2n , (D)1 1A . f(n)共有 n ,当 n = 2 , f(2)= 2+3111B .f(n)共有 n + 1 ,当 n = 2 , f(2) = + +C .f(n)共有 n 2-n ,当 n = 2 , f(2)=12+ 132111D . f(n)共有 n - n + 1 ,当 n = 2 , f(2) = + +分析: 合f(n)中各 的特点可知,分子均1,分母 n , n +1,⋯, n 2 的 自然21 1 1数共有 n - n +1个,且 f(2)= ++ .2 347.用数学 法 明当235n -1是 31的倍数 ,当n = 1n ∈ N + , 1+ 2+ 2+2 +⋯+2原式 1+ 2+ 22+ 23+ 24,从 k → k + 1 需增加的 是25k+ 25k +1+25k +2+25k +3+ 25 k +4.8.用数学 法 明等式2n -1=2 n*)的 程以下:1+2+ 2 +⋯+2- 1(n ∈ N ①当 n = 1 ,左 =20= 1,右 = 21- 1= 1,等式建立.*) ,等式建立,即2k -1k②假 n = k(k ≥1,且 k ∈ N1+2+ 2 +⋯+ 2=2 -1.k +12k - 1k1-2k + 1当 n = k + 1 , 1+2+ 2 + ⋯ + 2+2 == 2 - 1,因此当 n = k +1 ,等式也建立.*由①②知, 随意n ∈ N ,等式建立.9. 明不等式 1+1 + 1 +⋯+ 1<2 n(n ∈N * ).23n明: (1)当 n = 1 ,左 = 1,右 = 2.左 <右 ,不等式建立.(2)假 当 n =k(k ≥1且 k ∈N * ) ,不等式建立.即 1+ 1 + 1 +⋯ + 1< 2 k.23k当 n = k + 1 ,左=1+1+1+⋯+1+1 <2 k +1 =2 k k + 1+ 1 <23kk + 1k +1k + 1( k ) 2+( k + 1) 2+1k + 1= 2(k + 1)= 2 k + 1.k + 1∴当 n = k + 1 ,不等式建立.由 (1)(2) 可知,原不等式 随意n ∈ N * 都建立.10.在数列 { a n } 中, a 1= 1, a n + 1=2a n(n ∈ N * ).2+ a n(1) 求: a 2, a 3, a 4 的 ;(2)由此猜想数列 { a n } 的通 公式 a n ; (3)用数学 法加以 明.(1)分析:由 a 1= 1, a n +1= 2a n,可得 a 2, a 3, a 4 分 是 2, 2,2.2+ a n3 4 5(2)分析:由此能够猜想数列{ a n } 的通 公式 a n =2.n + 12(3) 明:①当 n = 1 , a 1= = 1,猜想建立.②假定当 n= k(k≥1, k∈ N* )时,猜想建立,即 a = 2 ,k k+ 12则当 n= k+ 1 时, a k+1=2a k2×k+12 2+ a k= 2=k+ 2.2+k+1这说明当 n= k+1 时,猜想也建立.由①②可知,猜想对全部的n∈ N*都建立.。
高中数学 教案定积分及其应用学案 新人教A版选修2-2 学案
某某省某某市肥城市第三中学高中数学教案定积分及其应用学案新人教A版选修2-2yy记作f(x)dx 。
即f(x)dx =)(1lim i ni n f n ab ξ∑=∞→-。
其中)(x f 称为被积函数,dx x f )(称为被积式,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为 积分上限和积分下限。
2定积分的几何意义:①若0)(≥x f ,则积分⎰badxx f )(表示如图所示的曲边梯形的面积,即S dx x f ba=⎰)(②若0)(≤x f ,则积分⎰ba dx x f )(表示如图所示的曲边梯形面积的负值,即S dx x f ba-=⎰)(③一般情况下,定积分⎰b adxx f )(表示介于x 轴、曲线()f x及b x a x ==,之间的曲边梯形面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴上方的面积等于该区间上的积分值的相反数, 3定积分的性质。
(1)⎰badx x kf )(=k ⎰ba dxx f )(。
(2)[]dx x fx f ba)()(21±⎰=。
(3)dx x f ba⎰)(= 。
4微积分基本定理:一般地,若f(x)为在][b a ,上的连续函数,且有)()(x f x F =',那么⎰=badx x f )(,这个结论叫做微积分基本定理,又叫牛顿—莱布尼兹公式,可记作⎰=badx x f )(= 。
常见求定积分的公式新知得到知识1n B.1n C.1n D.3lim n n →∞由落体的速,则落体从到0t t =所走路程为B.gtC.2012gtD.2014gt答案: 234-125+2l 4n四.精讲点拨: 例1:计算下列定积分:(1)dx x ⎰402sin π(2)。
dx x e x⎰⎪⎭⎫ ⎝⎛+2121(3)dx x ⎰-2123答案:(1)418-π(2)21e 4+ln2-21e 2 (3)21例2利用定积分求图形的面积:求由抛物线,12-=x y 直线x=2,y=0围成的图形的面积。
湖北省荆州市沙市第五中学人教版高中数学教案 选修2-2 1-5-3定积分的概念
学科: 数学学段:高二年级课题:§1.5.3定积分的概念教学目标:1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;3.理解掌握定积分的几何意义.教学重点: 定积分的概念、用定义求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程:教学过程与设计:详细过程一.创设情景 复习:1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:分割→近似代替(以直代曲)→求和→取极限(逼近)2.对这四个步骤再以分析、理解、归纳,找出共同点. 二.新课讲授 1.定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b ax n-D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式: 11()()nnn i i ii b aS f x f n x x ==-=D =邋 如果x D 无限接近于0(亦即n ??)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx=ò,其中-ò积分号,b -积分上限,a -积分下限,()f x -被积函数,x -积分变量,[,]a b -积分区间,()f x dx -被积式。
说明:(1)定积分()ba f x dx ò是一个常数,即nS 无限趋近的常数S (n ??时)记为()baf x dxò,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x x -Î;③求和:1()ni i b af n x =-å;④取极限:()1()l i m nb i n a ib af x dx f nx =-=åò (3)曲边图形面积:()ba S f x dx=ò;变速运动路程21()t tS v t dt =ò;变力做功()baW F r dr =ò2.定积分的几何意义从几何上看,如果在区间[],a b 上函数()f x 连续且恒有()0f x ³,那么定积分()ba f x dxò表示由直线,(),0x a x b a b y ==?和曲线()y f x =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分()ba f x dx ò的几何意义。
高中数学选修2-2教案
高中数学选修2-2教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2选修2-2教案第一章 导数及其应用§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--3⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度v在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:41.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3.则平均变化率为=∆∆=∆∆x fx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆xf1212)()(x x x f x f --表示什么?直线AB三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,5∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
最新人教版高中数学选修2-2第一章《定积分的概念》示范教案
1.5.3 定积分的概念教材分析《定积分的概念》从曲边梯形的面积及变速直线运动的共同特征概括出定积分的概念,它是学生学习定积分的基础,为学习定积分的应用作好铺垫.因此这节课有承前启后的作用,是本章的重点内容之一.本节课的重点是:理解并掌握定积分的概念、定积分的几何意义.理解定积分的概念是难点.主要是这种“以曲代直”“逼近”的思想方法在学生的头脑中并没有与之相联系的认知结构,只有将头脑中原有的认知结构加以改组和顺应,在几节课内达到深刻理解这种思想方法是难点所在.课时分配 1课时.教学目标 知识与技能目标通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;借助于几何直观的基本思想,理解定积分的概念.过程与方法目标培养学生的逻辑思维能力和创新意识. 情感、态度与价值观激发学生主动探索学习的精神.重点难点重点:定积分的概念、定积分的几何意义. 难点:定积分概念的理解.教学过程引入新课提出问题:回忆前面曲边梯形的面积、变速运动的路程等问题的解决方法与步骤. 活动成果:分割→近似代替→求和→取极限活动设计:将以下问题及其解决步骤通过多媒体投影到屏幕上.物体做变速直线运动,速度函数为v =v(t),求它在a ≤t ≤b 内的位移s.步骤如下: (1)分割:用分点a =t 0<t 1<t 2<…<t n =b 将时间区间[a ,b]等分成n 个小区间[t i -1,t i ](i =1,2,…,n),其中第i 个时间区间的长度为Δt =t i -t i -1,物体在此时间段内经过的路程为Δs i .(2)近似代替:当Δt 很小时,在[t i -1,t i ]上任取一点ξi ,以v(ξi )来代替[t i -1,t i ]上各时刻的速度,则Δs i ≈v(ξi )·Δt i .(3)求和:s =1nii S=∆∑≈∑i =1nv(ξi )Δt. (4)取极限:Δt →0时,上式右端的和式作为s 近似值的误差会趋于0,因此s =0lim t ∆→∑i =1nv(ξi )Δt.探究新知提出问题1:请同学们对求曲边梯形的面积和变速运动的路程两个实例的四个步骤对比分析,找出共同点.活动设计:先让学生独立思考,再分小组讨论、交流.活动成果:1.二者都通过四个步骤——分割、近似代替、求和、取极限来解决问题; 2.解决这两个问题的思想方法是相同的,都采用了“逼近”的思想. 总结:类似的问题都可以通过这种方法来解决,而且最终结果都可以归结为这种类型的和式的极限.提出问题2:你能不能类似地将在区间[a ,b]上连续的问题函数f(x)的最终结果归结为这种类型的和式的极限.活动设计:学生先独立思考,必要时允许学生合作、讨论、交流.学情预测:开始学生的回答可能不全面、不准确,但在教师的不断补充、纠正下,会趋于完善.活动成果:师生共同概括出定积分的概念:一般地,设函数f(x)在区间[a ,b]上连续,用分点 a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b将区间[a ,b]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n),作和式:∑i =1n f(ξi )Δx =∑i =1nb -an f(ξi ),当n →∞时,上述和式无限接近某个常数,那么称该常数为函数f(x)在区间[a ,b]上的定积分.记为⎠⎛a bf(x)dx ,即⎠⎛abf(x)dx =lim n →∞∑ni =1b -anf(ξi ), 其中f(x)称为被积函数,x 叫做积分变量,[a ,b]叫做积分区间,b 叫做积分上限,a 叫做积分下限,f(x)dx 叫做被积式.教师补充以下几点:(1)定积分⎠⎛a b f(x)dx 是一个常数;(2)定积分⎠⎛ab f(x)dx 是一种特定形式的和式∑i =1nb -a n f(ξi )的极限,即⎠⎛a bf(x)dx 表示当n →∞时,和式∑i =1n b -a n f(ξi )所趋向的定值;(3)对区间[a ,b]的分割是任意的,只要保证每一小区间的长度都趋向于0就可以了;(4)考虑到定义的一般性,ξi 是第i 个小区间上任意取定的点,但在解决实际问题或计算定积分时,可以把ξi 都取为每个小区间的左端点(或都取为右端点),以便得出结果.设计意图通过上述操作、思考问题使学生建立起对定积分的初步、直观的认识,并训练和培养学生的抽象概括能力.提出问题3:你能说说定积分的几何意义吗?活动设计:学生独立解决,必要时,教师指导、提示.学情预测:如果学生回答此问题有困难,可提示学生回顾求曲边梯形面积的例子.活动成果:结合课本本节图1.57总结定积分⎠⎛ab f(x)dx(f(x)≥0)的几何意义:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.提出问题4:思考课本本节的探究问题. 活动设计:学生独立思考,并给出答案.活动成果:通过对定积分几何意义的理解,学生不难考虑到如何用定积分表示位于x 轴上方的两条曲线y =f 1(x),y =f 2(x)与直线x =a ,x =b 围成的平面图形面积.由于图中用虚线给出了辅助线,学生易得到阴影部分的面积为S =⎠⎛a b f 1(x)dx -⎠⎛ab f 2(x)dx.教师引导学生根据定积分的定义,可以得出定积分的如下性质: 性质1:⎠⎛a b kf(x)dx =k ⎠⎛ab f(x)dx(k 为常数);性质2:⎠⎛a b [f 1(x)±f 2(x)]dx =⎠⎛a b f 1(x)dx±⎠⎛abf 2(x)dx ;性质3:⎠⎛ab f(x)dx =⎠⎛ac f(x)dx +⎠⎛cb f(x)dx(其中a<c<b).提出问题5:性质1等式两边的两个定积分上、下限和被积函数分别是什么? 活动设计:以提问的形式让学生直接作答.提出问题6:你能从定积分的几何意义解释性质3吗? 活动设计:学生思考、交流、探索解决问题. 学情预测:若学生解决问题有困难,教师可辅助学生用图象的方法帮助学生从几何直观上感知性质3的成立.活动成果:教师指出性质3为定积分对积分区间的可加性,它对把区间[a ,b]分成有限个(两个以上)小区间的情形也成立.给出以上3个性质,便于我们计算定积分.理解新知1.用定义求定积分的一般方法是:①分割:n 等分区间[a ,b];②近似代替:取点ξi ∈[x i -1,x i ];③求和:∑i =1nb -an f(ξi );④取极限:⎠⎛ab f(x)dx =lim n →∞∑i =1n b -an f(ξi ).2.一般情况下,定积分∫b a f(x)dx 的几何意义是介于x 轴、函数f(x)的图形以及直线x =a ,x =b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.即∫b a f(x)dx =x 轴上方面积-x 轴下方的面积.运用新知例1利用定积分的定义,计算定积分∫10x 3dx 的值. 解:令f(x)=x 3. (1)分割在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间[i -1n ,in](i =1,2,…,n),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =i n (i =1,2,…,n),则∫10x 3dx ≈S n =∑i =1n (i n )3·1n =1n 4∑i =1n i 3=1n 4·n 2(n +1)24=14(1+1n)2.(3)取极限∫10x 3dx =lim n →∞S n=lim n →∞ 14(1+1n )2=14. 例2根据定积分的几何意义推出下列定积分的值.(1)∫10xdx ;(2)∫R 0R 2-x 2dx.思路分析:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分∫b a f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.(1)中的定积分的值即为由直线x =0,x =1,y =0和y =x 所围成的图形的面积;(2)中的定积分的值为由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形的面积.解:(1)由图象可知,由直线x =0,x =1,y =0和y =x 所围成的图形为一个直角三角形,两条直角边边长均为1,则面积为12×1×1=12,所以∫10xdx =12. (2)由图象可知,由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形面积即为圆x 2+y 2=R 2面积的14,则面积为14πR 2,所以∫R 0R 2-x 2dx =14πR 2. 变练演编例 计算定积分∫20x 3dx 的值,并从几何上解释这个值表示什么?解:计算定积分∫20x 3dx 的值: (1)分割在区间[0,2]上等间隔地插入n -1个点,将区间[0,2]等分成n 个小区间[2(i -1)n ,2in ](i =1,2,…,n),每个小区间的长度为Δx =2i n -2(i -1)n =2n.(2)近似代替、求和取ξi =2in(i =1,2,…,n),则∫20x 3dx ≈S n =∑i =1n(2i n )3·2n =16n 4∑i =1n i 3=16n 4·n 2(n +1)24=4(1+1n)2. (3)取极限∫20x 3dx =lim n →∞S n =lim n →∞4(1+1n )2=4. 由定积分的几何意义,可知这个值表示由直线y =0,x =0,x =2和曲线y =x 3所围成的图形的面积.活动设计:学生在理解例1和例2的基础上,独立完成此例练习. 设计意图设置本题意在让学生进一步理解定积分的定义和其几何意义,训练学生思维的灵活性. 达标检测1. lim n →∞ 1n[cos πn +cos 2πn +…+cos (n -1)πn +cos nπn ]写成定积分的形式,可记为( )A .∫π0cosxdx B.1π∫π0cosxdxC .∫10cosxdx D .∫π0cosx xdx2.用定积分表示由曲线y =x 3和直线y =x 所围成的图形面积. 3.当f(x)≥0时,定积分∫b a f(x)dx 的几何意义是__________; 当f(x)≤0时,定积分∫b a f(x)dx 的几何意义是__________.4.根据定积分的几何意义,求∫2-24-x 2dx 的值. 答案:1.B 2.∫10(x -x 3)dx.3.由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积 由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积的相反数4.2π. 课堂小结1.知识收获:(1)定积分的概念;(2)定义法求简单的定积分;(3)定积分的几何意义. 2.方法收获:联想、归纳、总结的思想方法. 3.思维收获:从特殊到一般. 布置作业习题1.5A 组3、4题. 补充练习 基础练习1.将和式的极限lim n →∞ 1α+2α+…+n αn α+1(α>0)表示成定积分为( ) A .∫101xdx B .∫10x αdx C .∫101x αdx D .∫10(x n)αdx 2.将和式lim n →∞(1n +1+1n +2+…+12n )表示为定积分__________.3.曲线y =x 2,y =1所围成的图形的面积可用定积分表示为__________.拓展练习4.用定积分定义求∫10|x 2-4|dx 的值. 答案:1.B 2.∫101x +1dx 3.∫1-1(1-x 2)dx 4.233. 设计说明通过两个实例让学生自己总结出定积分的概念,这符合思维认识发展的一般规律,也符合数学发展的一般规律,同时激发学生进一步学习的浓厚兴趣,学生也从中学到了联想、猜测的归纳、总结的思想方法.例题的设置,主要是为了强化本节课的重点,通过学生自己亲自尝试、体验,才能深刻理解“分割、近似代替、求和、取极限”的微积分思想方法.本节的设计既符合教学论中的巩固性原则,也符合素质教育理论中面向全体的基本要求.备课资料备选例题:利用定义计算定积分∫10(2x -x 2)dx ,并从几何上解释这个值表示什么?思路分析:利用定积分性质1、2,可将∫10(2x -x 2)dx 转化为2∫10xdx -∫10x 2dx ,利用定积分的定义分别求出∫10xdx ,∫10x 2dx ,就能得到定积分∫10(2x -x 2)dx 的值.解:∫10(2x -x 2)dx =∫102xdx -∫10x 2dx =2∫10xdx -∫10x 2dx ,用定义求∫10xdx 的值.(1)分割在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间 [i -1n ,i n ](i =1,2,…,n),每个小区间的长度为Δx =i n -i -1n =1n . (2)近似代替、求和取ξi =i n (i =1,2,…,n),则∫10xdx ≈S n =∑i =1n i n ·1n =1n 2·n (n +1)2=n +12n.(3)取极限∫10xdx =lim n →∞S n =lim n →∞n +12n =12. 同理可求得∫10x 2dx =13,所以∫10(2x -x 2)dx =2×12-13=23. 由定积分的几何意义,可知这个值表示由直线y =2x ,x =1和曲线y =x 2所围成的图形的面积.(设计者:孙娜)。
人教A版高中数学选修2-2 2.1.2《两点分布和超几何分布》教案
?两点分布和超几何分布?教学设计鄞州区姜山中学蒋自佳一、教学内容解析本课题来自人教A版选修2-3第二章?随机变量及其分布?2.1?离散型随机变量及其分布列?第二课时,主要内容是学习两点分布和超几何分布模型。
两点分布是随机变量只有0和1两种结果的分布列,是最简单的分布列,也是之后学习二项分布的根底,起着承上启下的作用。
超几何分布是由有限个物体中抽出n个物体,成功抽出指定种类的物件的次数〔不归还〕。
两点分布和超几何分布列是离散型随机变量分布列两种重要模型,这局部内容以实际情境为主,需要学生具备一定建模才能,建立适宜的分布列,表达数学来源于生活并效劳于生活,促使学生在学习理论中形成和开展数学应用意识。
二、教学目的设置根据教材分析和课标要求,确定如下教学目的:1、知识与技能:掌握两点分布和超几何分布根本概念,能解决与两点分布和超几何分布相关概率问题。
2、过程与方法:学生已具有一定的分析解决抽象问题才能,通过设立详细问题情境,老师启发引导,归纳总结两点分布和超几何分布问题概念和解决规律,培养学生总结探究才能。
3、情感、态度与价值观:通过师生共同参与详细问题的分析,总结探究解决问题的方法,在循序渐进过程中对问题分析和逐步深化,激发学生学习兴趣。
根据上述目的,教学需要上力求表达六大核心素养:数学抽象,逻辑推理,数学建模,数学运算,直观想象和数据分析。
三、学生学情分析1、认知根底:学生在必修3中已经学习了有关概率统计的根底知识,利用选修2-3第一章计数原理与排列组合知识可以解决古典概型的概率,在选修2-3第二章第一课时学习了随机变量、离散型随机变量的概念,分布列概念和性质,可以解决简单的分布列问题,但学生对随机变量,离散型随机变量概念理解不够深化,求分布列过程还不纯熟。
2、才能储藏:学生可以利用已有的概率统计知识解决一些简单问题,思维活泼,初步具备自主分析和探究才能,但考虑不够严谨,容易遗漏,处理抽象问题才能还有待进步。
版高中数学人教B版选修22教案:2试题课综合法以及分析学习计划法正式版
习题课综合法和剖析法明目标、知要点加深对综合法、剖析法的理解,应用两种方法证明数学识题.1.综合法综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真切判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因导果的证明方法.综合法的证明步骤用符号表示是:P0(已知)?P1?P2??P n(结论) 2.剖析法剖析法是指从需证的问题出发,剖析出使这个问题成立的充足条件,使问题转变为判断那些条件能否具备,其特色能够描绘为“执果索因”,即从未知看需知,逐渐聚拢已知.剖析法的书写形式一般为“因为,为了证明,只需证明,即,所以,只需证明,因为成立,所以,结论成立”.剖析法的证明步骤用符号表示是:P0(已知)??P n-2?P n -1?P n(结论)剖析法属逻辑方法范围,它的谨慎表此刻剖析过程步步可逆.题型一选择适合的方法证明不等式2例1 设a,b,c为随意三角形三边长, I=a+b+c,S=ab+bc+ca,试证:3S≤I<4S.22222证明I=(a+b+c)=a+b+c+2ab+2bc+2caa2+b2+c2+2S.欲证3S≤I2<4S,即证ab+bc+ca≤a2+b2+c2<2ab+2bc+2ca.先证明ab+bc+ca≤a2+b2+c2,只需证2a2+2b2+2c2≥2ab+2bc+2ca,即(a-b)2+(a-c)2+(b-c)2≥0,明显成立;再证明a2+b2+c2<2ab+2bc+2ca,只需证a2-ab-ac+b2-ab-bc+c2-bc-ca<0,即a(a-b-c)+b(b-a-c)+c(c-b-a)<0,只需证a<b+c,且b<c+a,且c<b+a,因为a 、b 、c 为三角形的三边长,2上述三式明显成立,故有 3S ≤I<4S. 反省与感悟 此题要证明的结论要先进行转变,能够使用剖析法.对于连续不等式的证明, 能够分段来证,使证明过程层次清楚. 证明不等式所依靠的主假如不等式的基天性质和已知 的重要不等式,此中常用的有以下几个:2(1)a ≥0(a ∈R ).222≥2ab ,(a +b 222≥a +b 2(2)(a -b)≥0(a 、b ∈R ),其变形有a +b 2)≥ab ,a +b 2 .(3)若a ,b ∈(0,+∞),则a +b≥ab ,特别地b +a ≥2.2a b(4)a 2+b 2+c 2≥ab +bc +ca(a ,b ,c ∈R ).追踪训练1 已知a ,b 是正数,且a +b =1,求证:1+1≥4.a b证明方法一∵a ,b 是正数且a +b =1,∴a +b ≥2ab ,∴ab ≤1,∴1+1=a +b =1≥4.2ababab 方法二 ∵a ,b 是正数,∴a +b ≥2ab>0,1+ 1≥21a bab >0,(a +b)(1+1)≥4.ab又a +b =1,∴1+1≥4.ab方法三11a +ba +bbaba += a +=1+++1≥2+2·=4.当且仅当a =b 时,取“=”号.ab b abab题型二 选择适合的方法证明等式例2已知△ABC 的三个内角A ,B ,C 成等差数列,对应的三边为a ,b ,c ,求证:1+a +b1 = 3b +c a +b +c.证明要证原式,只需证 a +b +c +a +b +c =3,a +b b +cc +a2+a 2+ab=1,即证 =1,即只需证bc +c2a +b b +c ab +b +ac +bc而由题意知A +C =2B ,π2 2 2∴B =3,∴b =a +c -ac ,bc +c 2+a 2+abbc +c 2+a 2+ab∴ab +b 2+ac +bc =ab +a 2+c 2-ac +ac +bc22+ab bc+c+a=ab+a2+c2+bc=1,∴原等式成立,即1+1=3a+b b+c a+b+c.反省与感悟综合法推理清楚,易于书写,剖析法从结论下手易于找寻解题思路.在实质证明命题时,常把剖析法与综合法联合起来使用,称为剖析综合法,其构造特色是:依据条件的构造特色去转变结论,获取中间结论Q;依据结论的构造特色去转变条件,获取中间结论P;若由P可推出Q,即可得证.追踪训练2设实数a,b,c成等比数列,非零实数x,y分别为a与b,b与c的等差中项,a c试证:x+y=2.证明由已知条件得b2=ac,①2x=a+b,2y=b+c.②a c要证+=2,只需证ay+cx=2xy,只需证2ay+2cx=4xy.由①②得2ay+2cx=a(b+c)+c(a+b)=ab+2ac+bc,4xy=(a+b)(b+c)=ab+b2+ac+bc=ab+2ac+bc,所以2ay+2cx=4xy.命题得证.题型三立体几何中地点关系的证明例3如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:CD⊥AE;证明:PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,PA⊥底面ABCD,CD?底面ABCD,PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,而AE?平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA,∵E是PC的中点,∴AE⊥PC.由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD?平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB,又AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,又AB∩AE=A,综上得PD⊥平面ABE.反省与感悟综合法证明线面之间的垂直关系是高考考察的要点,利用垂直的判断定理和性质定理能够进行线线、线面以及面面之间垂直关系的转变.此外,利用一些常有的结论还经常能够将线面间的垂直与平前进行转变.比方:两条平行线中一条垂直于平面α,则此外一条也垂直于平面α;垂直于同一条直线的两个平面相互平行等.追踪训练3如图,正方形ABCD和四边形ACEF所在的平面相互垂直,EF∥AC,AB=2,CE=EF=1.求证:AF∥平面BDE;求证:CF⊥平面BDE.证明(1)如图,设AC与BD交于点G.因为EF∥AG,且EF=1,1AG=2AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG?平面BDE,AF?平面BDE,所以AF∥平面BDE.(2)连结FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.[呈要点、现规律]1.综合法的特色是:从已知看可知,逐渐推出未知.2.剖析法的特色是:从未知看需知,逐渐聚拢已知.3.剖析法和综合法各有优弊端.剖析法思虑起来比较自然,简单找寻到解题的思路和方法,弊端是思路逆行,表达较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思虑.实际证题时经常两法兼用,先用剖析法探究证明门路,而后再用综合法表达出来.学习不是一时半刻的事情,需要平常累积,需要平常的好学苦练。
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.2 1.2.1 基本初等函数的导数公式
在求导过程中出现指数或系数的运算失误.
跟 踪 训 练
解析:(1)y′=(x12)′=12x11;
1 4 -4 -5 (2)y′=x4′=(x )′=-4x =- 5; x
栏 目 链 接
3 3 2 3 (3)y′= x ′=(x )′= x- = . 5 5 5 5 2 5 x
3
5
跟 踪 训 练
栏 目 链 接
答案:D
自 测 自 评
2.曲线 y=-x3+3x2 在点(1,2)处的切线方程为( A.y=3x-1 C.y=3x+5 B.y=-3x+5 D.y=2x
)
栏 目 链 接
答案:A
自 测 自 评
3.下列结论中正确的个数为( )
1 2 ①y=ln 2,则 y′=0;②y= 2,则 y′|x=3=- ; x 27 1 ③y=2 ,则 y′=2 ln 2;④y=log2x,则 y′= . xln 2
栏 目 链 接
跟 踪 训 练
1 3. 若曲线 y=x- 在点 2 围成的三角形的面积为 18,则 a=( A.64 B.32
处的切线与两坐标轴 ) D.8
栏 目 链 接
C.16
分析:本试题主要考查求导法则、导数的几何意义、切线的 求法和三角形的面积公式,考查考生的计算能力.
跟 踪 训 练
解析: y′= 是 y- = , ∴k = ,切线方程
cos x y′=______
-sin x y′=______
栏 目 链 接
y′=______ axln a y′=______ ex
1 y′=______ xln a
1 y′=______ x
自 测 自 评
1.下列各式正确的是( 1 A.(logax)′=x C.(3x)′=3x
369.高中数学教案选修2-2《2.3 数学归纳法(1)》
教学目标:1.理解数学归纳法的概念,掌握数学归纳法的证明步骤.2.通过数学归纳法的学习,体会用不完全归纳法发现规律,用数学归纳法证明规律的途径.掌握从特殊到一般是应用的一种主要思想方法.教学重点:掌握数学归纳法的原理及证明问题的方法.教学难点:能用数学归纳法证明一些简单的数学命题.教学过程:一、预习1.问题:很多同学小时候都玩过这样的游戏,(教具摆设)就是一种码放砖头的游戏,码放时保证任意相邻的两块砖头,若前一块砖头倒下,则一定导致后一块砖头也倒下,这样只要推倒第一块砖头就会导致全部砖头都倒下(这种游戏称为多米诺骨牌游戏).思考 这个游戏中,能使所有多米诺骨牌全部倒下的条件是什么?只要满足以下两个条件,所有的多米诺骨牌都能倒下:(1)__________________________________________________;(2)__________________________________________________.思考 你认为条件(2)的作用是什么?思考 如果条件(1)不要,能不能保证全部的骨牌都倒下?2.我们知道对于数列{a n },已知a 1=1,且11n n na a a +=+(n =1,2,3…)通过对n =1,2,3,4,前4项的归纳,我们可以猜想出其通项公式为1n a n=,但归纳推理得出的猜想不一定成立,必须通过严格的证明.要证明这个猜想,同学们自然就会从n =5开始一个个往下验证,当n 较小时可以逐个验证,但当n 较大时,逐个验证起来会很麻烦,特别是证明n 取所有正整数时,逐个验证是不可能的.能不能寻求一种方法,通过有限个步骤的推理,证明n取所有正整数都成立.思考?你认为证明数学的通项公式是1nan=,这个猜想与上述多米诺骨牌游戏有相似性吗?你能类比多米诺骨牌游戏解决这个问题吗?多米诺骨牌游戏原理通项公式1nan=的证明方法(1)第一块骨牌倒下.(1)当n=时,猜想成立(2)若第k块倒下时,则相邻的第k+1块也倒下.(2)若当n=时,猜想成立,即,则当n=时,猜想也成立,即.根据(1)和(2),可知不论有多少块骨牌,都能全部倒下.根据(1)和(2),可知对任意的正整数n,猜想都成立.证明:(1).(2)假设,3.小结.数学归纳法的定义:一般地,证明一个与正整数有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0时命题成立.(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数都成立.上述证明方法叫做数学归纳法.用框图表示为:注 这两个步骤缺一不可,只完成步骤(1)而缺少步骤(2),就做出判断可能得出不正确的结论,因为单靠步骤(1),无法递推下去,即n 取n 0以后的数时命题是否正确,我们无法判定.同样,只有步骤(2)而缺少步骤(1),也可能得出不正确的结论,缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)也就没有意义了.二、课堂训练例1 证明等差数列通项公式a n =a 1+(n -1)d .例2 用数学归纳法证明:1+3+5+…+(2n -1)=2n .例3 用数学归纳法证明 12+22+32+…+n 2=(1)(21)6n n n ++(n ∈N *). 练习:用数学归纳法证明:-1+3-5+…+(-1)n (2n -1)=(-1)n n .三、巩固练习 1.用数学归纳法证明:“()2211111n n a a a a a n a +N ++-++++=≠∈-,” 在验证n =1成立时,左边计算所得的结果是 .2.已知:111()1231f n n n n ⋅⋅⋅=++++++,则(1)f k +等于 . 3.用数学归纳法证明:1×2+2×3+3×4+…+n (n +1)=1(1)(2)3n n n ++. 4.用数学归纳法证明:2222121(1)1234(1)(1)2n n n n n --+-+-++-=-. 四、小结重点:两个步骤、一个结论;注意:奠基基础不可少,归纳假设要用到,结论写明莫忘掉.五、作业课本P94第1,2,3题.〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.。
数学人教版高中二年级选修2 《数学归纳法》教学设计
《数学归纳法》教学设计人民教育出版社A版教科书数学选修2-2第二章第三节【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。
2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。
教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。
【教学目标】1、知识与技能:(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。
(2)会用数学归纳法证明简单的与正整数有关的命题。
2、过程与方法:努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,积极参与,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。
3、情感、态度与价值观:通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。
【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。
【教学难点】(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。
(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。
【教学方法】运用类比启发探究的数学方法进行教学;【教学手段】借助多媒体播放人的多米诺骨牌视频;学生动手参与多米诺骨牌游戏等生活素材辅助课堂教学;【教学程序】第一阶段:回顾复习,课前准备复习1:类比推理及其一般步骤1、类比推理是由特殊到特殊的推理。
2、类比推理一般步骤:(1)观察、比较(2)联想、类推(3)猜想新结论复习2:归纳推理归纳推理是由部分到整体、由个别到一般的推理.(回顾复习类比推理和归纳推理目的是为数学归纳法推理的奠定基础。
最新人教版高中数学选修2-2第二章《合情推理与演绎推理》示范教案1
第二章推理与证明本章概览教材分析本章的内容属于数学思维方法的范畴,把过去渗透在具体数学内容中的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用它们,以此培养学生言之有理、论证有据的习惯.本章将结合生活实例和学生已学过的数学实例,介绍两种基本的推理——合情推理与演绎推理;两类证明方法——直接证明和间接证明;学习数学归纳法的基本原理和步骤.课标要求(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比进行推理,体会合情推理在数学中的应用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理;③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程与特点;②了解间接证明的一种基本方法——反证法;了解反证法的思考过程与特点.(3)了解数学归纳法的原理,能用数学归纳法证明一些简单命题.教学建议1.教学中应尽量从学生已学过的数学实例和生活中的实例出发,从中挖掘、提炼出合情推理与演绎推理的含义和推理方法,帮助学生了解合情推理与演绎推理的含义,为学生示范如何规范地应用这两种推理解决问题.2.通过实例引导学生分析综合法、分析法和反证法的思考过程与特点,并归纳出操作流程框图,使他们在以后的学习生活中,能自觉地有意识地运用这些方法进行数学证明,养成言之有理、论证有据的好习惯.3.数学归纳法是一种特殊的直接证明的方法,第一部分主要内容是借助具体实例归纳出数学归纳法的基本原理、步骤;第二部分的重点是用数学归纳法证明一些简单的命题,通过对数学命题的证明巩固对数学归纳法原理的认识.课时分配本章约需9课时,具体分配如下:2.1合情推理与演绎推理2.1.1合情推理整体设计教材分析合情推理所蕴含的数学思想贯穿于高中数学的整个知识体系,但是作为一节内容出现在高中数学教材中尚属首次.合情推理是新课标教材的亮点之一,本节内容对合情推理的一般方法进行了必要的归纳和总结,同时也对后继知识的学习起到了引领的作用.教材的设计是对“观察发现、归纳类比、抽象概括、演绎证明”等数学思维方法的总结与归纳,使已学过的数学知识和思想方法系统化、明晰化.教材紧密地结合了已学过的数学实例和生活实例,避免了空泛地讲数学思想、方法;以变分散为集中,变隐性为显性的方式学习合情推理,是知识、方法、思维和情感的融合与促进,让学生在学知识的同时充分体会数学的发展过程.课时分配2课时.第1课时内容为归纳推理;第2课时内容为类比推理.第1课时教学目标1.知识与技能目标结合生活实例了解推理的含义;掌握归纳推理的结构和特点,能够进行简单的归纳推理;体会归纳推理在数学发现中的作用.2.过程与方法目标通过探索、研究、归纳、总结等方式,使归纳推理全方位地呈现在学生面前,让学生了解数学不单是现成结论的体系,结论的发现也是数学的重要内容,从而形成对数学较为完整的认识;培养学生发散思维能力,充分挖掘学生的创新思维能力.3.情感、态度与价值观通过学习本节课,培养学生实事求是、力戒浮夸的思维习惯,深化学生对数学意义的理解,激发学生的学习兴趣;认识数学的科学价值、应用价值和文化价值;通过探究学习培养学生互助合作的学习习惯,形成良好的思维方式和锲而不舍的钻研精神.重点难点重点:掌握归纳推理的特点和推理过程,体会归纳推理在科学发现中的作用.难点:归纳推理的应用;如何培养学生发现问题、解决问题的能力.教学过程引入新课某市为了解本市的高中生数学学习状态,对四所学校做了一个问卷调查,其中有两方面问题的统计数据如下:根据这四所学校的情况,你能推测全市高中生对数学的印象吗?活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.学情预测:学生可能会说出很多不同的答案.教师提问:你的推测一定正确吗?活动结果:有的学生可能会说“正确”;有的学生可能会说“不正确”;有的学生可能会说“不确定”.教师:推测不一定正确.设计意图自然合理地提出问题,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,为课堂结尾“数学是生动活泼的,发现问题是数学学习的一个重要目的”埋下伏笔.探究新知生活中我们经常会遇到这样的情形:看见柳树发芽,冰雪融化,……看见花凋谢了,树叶黄了,……看见乌云密布,燕子低飞,……引导学生做一些简单的推理:1.由铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n边形内角和为(n-2)·180°.提出问题:像上面这样的思维方式就是推理,请问你认为什么是推理?活动设计:学生先自由发言,教师逐步引导学生发现推理的结论是通过猜想得到的.学情预测:学生开始的回答可能不全面、不准确,但在其他同学的不断补充、纠正下,会趋于完善.活动结果:推理的概念:根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式就叫推理.注意:一个完整的推理是由前提和结论两部分构成的.设计意图从大量的生活实例出发,让学生充分体会推理的含义和推理的构成,使推理概念的形成更自然、更生动,并训练和培养学生的抽象概括和表达能力.看下面两个推理:1.金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀.由此猜想:金属受热后体积膨胀.2.1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25,……由此猜想:1+3+…+(2n-1)=n2.提出问题:这两个推理在思维方式上有什么共同特点?活动设计:学生先独立思考,然后分小组讨论.活动结果:共同特点:部分推出整体,个别推出一般.归纳推理的概念:根据一类事物的部分对象具有某种性质,推出该类事物的全部对象都具有这种性质的推理,或由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体,由个别到一般的推理.设计意图引导学生观察两个推理的前提与结论,根据前提与结论的关系由学生作出进一步分类并尝试命名.提出问题:你在生活中遇到过归纳推理吗?(学生自由发言)活动设计:学生分小组讨论:将学生划分为两大部分,一部分学生讨论生活中运用归纳推理的例子,另一部分学生讨论学习中使用归纳推理的例子.学情预测:学生会举出大量的归纳推理的实例,也可能举出这样的例子:“地球上有生命,火星具有一些与地球类似的特征,猜想:火星上也有生命.”设计意图通过学生所举的例子,教师可以了解学生对归纳推理的理解程度,通过正反实例明确概念的内涵和外延,加深对关键词、重点词的理解,及时更正学生在认识理解中产生的偏差,巩固归纳推理的定义.理解新知教师举例:介绍歌德巴赫猜想.观察下列等式:3+7=10,3+17=20,13+17=30.你们能从中发现什么规律?学情预测:学生的回答可能很杂,甚至会五花八门.如果换一种写法呢?10=3+7,20=3+17,30=13+17.活动设计:学生先独立思考,然后学生分小组讨论.教师适时介入全班引导:提醒学生注意各等式左边的数是什么数?各等式右边是几个数?均是什么数?这反映了一个什么样的规律?活动结果:偶数=奇质数+奇质数.提出问题:这个规律对于其他偶数是否成立?可以先从几个较小的偶数开始,具体验证一下.活动设计:学生独立思考,独立举例.教师:全班学生交流研究成果.共同得到,第一个等于两个奇质数之和的偶数是6,即6=3+3.其他结果略.教师:根据上述过程,哥德巴赫大胆地猜想:“任何一个不小于6的偶数都等于两个奇质数之和”.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.但我国著名数学家陈景润、王元、潘承洞等均分别取得了很好的结果,做出了巨大的贡献.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…,1 000=29+971,1 002=139+863,等等.有人对3.3×108以内且大过6的偶数一一进行验算,哥德巴赫猜想都成立,但依然没有严格的数学证明.因此,我们仍然不能说:“哥德巴赫猜想”成立,即这个规律对于其他偶数是否成立还不得而知.(教师还可以介绍其他学科中运用归纳推理得到的重要发现)提出问题:请同学们根据前面所列举的归纳推理的例子,总结归纳推理的作用.活动设计:全班学生先在老师的带领下共同回顾前面所列举的归纳推理的例子,然后独立思考,小组讨论后汇报结果.活动结果:归纳推理的作用:1.发现新事实;2.提供研究方向.设计意图通过学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用.在学生独立思考时教师不做任何提示,培养学生探究能力和合作精神.介绍费马猜想:已知221+1,222+1,223+1,224+1都是质数,运用归纳推理你能得出什么样的结论?教师:22n +1(n ∈N )都是质数,这就是著名的费马猜想.半个世纪后欧拉发现:225+1=4 294 967 297=641×6 700 417.这说明了什么?教师:费马猜想是不成立的.后来人们又发现226+1,227+1,228+1都是合数,又能得到什么样的结论?教师:任何形如22n +1(n ∈N ,n ≥6)的数都是合数.设计意图教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程,同时说明归纳推理的结论不一定正确,有待进一步证明.活动结果:归纳推理的一般步骤:1.通过观察个别情况发现某些相同性质;2.从已知的相同性质中推出一个表述明确的一般性命题;(即猜想)3.检验猜想.运用新知例题 已知数列{a n }的首项a 1=1,且有a n +1=a n a n +1,试归纳出数列的通项公式. 思路分析:数列的通项公式表示的是数列{a n }的第n 项与序号之间的对应关系.为此,我们先根据已知的递推公式,算出数列的前几项.解:当n =1时,a 1=1;当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为a n =1n. 点评:掌握归纳推理的一般步骤,进一步感受归纳推理的作用.我们通过归纳得到了关于数列的通项公式的一个猜想,虽然猜想是否正确还有待严格证明,但这个猜想可以为我们的研究提供一种方向.巩固练习设n 是自然数,则18(n 2-1)[1-(-1)n ]的值( ) A .一定是零 B .不一定是整数C .一定是偶数D .是整数但不一定是偶数答案:C变练演编设f(n)=n 2+n +11,n ∈N ,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现? 思路分析:分别计算f(1)、f(2)、f(3)、f(4)、f(5)的具体数值,进行观察,发现这组数据的局部特征,从而对整体作出推断.解:当n =1时,f(1)=12+1+11=13;当n =2时,f(2)=22+2+11=17;当n =3时,f(3)=32+3+11=23;当n =4时,f(4)=42+4+11=31;当n =5时,f(5)=52+5+11=41.观察可得,f(1)、f(2)、f(3)、f(4)、f(5)都是质数,由此猜想,任何f(n)=n 2+n +11,n ∈N 都是质数.变式1:设f(n)=n 2+n ,n ∈N ,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现? 变式2:设f(n)=n 2+n +11,n ∈N ,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?变式3:设f(n)=n 2+n ,n ∈N ,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?提出问题:归纳推理所得的结论有时是正确的,但有时也是错误的,那么我们为什么还要进行归纳推理呢?活动设计:学生自己进行计算研究,将所有发现的结果一一列举,并由学生相互之间予以评价.活动成果:变式1:f(n)(n ∈N )都是偶数;变式2:f(n +1)-f(n)=2(n +1)(n ∈N )都是偶数;变式3:f(n +1)-f(n)=2(n +1)(n ∈N )都是偶数.达标检测1.根据下面给出的数塔猜测123 456×9+7等于( )A .1 111 110 1×9+2=11B .1 111 111 12×9+3=111C .1 111 112 123×9+4=1 111D .1 111 113 1 234×9+5=11 1112.在数列{a n }中,a 1=1,且a n =12(a n -1+1a n -1)(n ≥2),试归纳出这个数列的通项公式. 3.观察下面的“三角阵”,试找出相邻两行数间的关系.11 11 2 11 3 3 11 4 6 4 1……1 10 45 …… 45 10 1答案:1.B2.数列的通项公式a n =1(n ∈N ).3.相邻两行数间的关系是每一行首尾的数都是1,其他的数等于上一行中与之相邻的两个数的和.课堂小结1.知识收获:了解了归纳推理的含义;2.方法收获:掌握了归纳推理的方法和步骤;3.思维收获:归纳推理是进行猜测发现结论、探索和提供思路的常用的思维方法. 布置作业1.课本习题2.1 A 组 1题、3题.2.实习作业:登陆网站,选择两个猜想探究来源.补充练习基础练习1.观察下列数列的特点1,2,2,3,3,3,4,4,4,4,…,第100项是( )A .10B .13C .14D .1002.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},…的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为( )A .nB .n +1C .2nD .2n -13.由710>58,911>810,1328>921,…,若a>b>0,m>0,则b +m a +m 与b a之间的大小关系为( ) A .相等 B .前者大C .后者大D .不确定4.1,13,17,115,131,…的一个通项公式a n =__________. 5.f(x)=12x +2,通过计算f(0)+f(1),f(-1)+f(2)的值,猜想f(-n)+f(n +1)=__________.答案:1.C 2.C 3.B 4.a n =12n-1(n ∈N *) 5.22 拓展练习6.观察以下各等式:sin 230°+cos 260°+sin30°·cos60°=34; sin 240°+cos 270°+sin40°·cos70°=34; sin 215°+cos 245°+sin15°·cos45°=34. 分析上述各式的共同特点,写出能反映一般规律的等式,并对等式的正确性加以证明. 解:反映一般规律的等式是sin 2θ+cos 2(θ+30°)+sinθ·cos(θ+30°)=34. 证明:sin 2θ+cos 2(θ+30°)+sinθ·cos (θ+30°)=sin 2θ+(cosθcos30°-sinθsin30°)2+sinθ(cosθcos30°-sinθsin30°)=sin 2θ+(32cosθ-12sinθ)2+sinθ(32cosθ-12sinθ) =sin 2θ+34cos 2θ+14sin 2θ-32cosθsinθ+32cosθsinθ-12sin 2θ =34(sin 2θ+cos 2θ)=34. 设计说明以问题驱动为指导,通过不断提出问题,研究问题,解决问题,使学生获得知识,完成教学.给学生创建一个开放、有活力、有个性的数学学习环境.感受数学美和发现规律的喜悦,激励学生更积极地去寻找规律、认识规律.同时让学生感受到只要做个有心人,发现规律并非难事.以学生熟悉的例子为载体,引导他们提炼、概括、归纳推理的含义和归纳推理的方法,自然合理地提出问题,让学生体会“数学来源于生活”.创造和谐积极的学习气氛.让学生通过直观感知、观察分析、归纳类比,形成由浅入深、由易到难、由特殊到一般的思维飞跃,并借助例题具体说明在数学发现的过程中应该如何应用归纳推理.备课资料哥德巴赫(1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格;曾在英国牛津大学学习;原学法学,但由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣.1725年到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和.如6=3+3,12=5+7等等.哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者为“二重哥德巴赫猜想”,后者为“三重哥德巴赫猜想”):(1)每个不小于6的偶数都可以表示为两个奇质数之和;(2)每个不小于9的奇数都可以表示为三个奇质数之和.连欧拉这样首屈一指的数学家都不能证明其正确性,这个猜想便引起了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…….有人对3.3×108以内且大于6的偶数一一进行验算,哥德巴赫猜想都成立.但还没有严格的数学证明.目前“最佳”的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数.但目前没有任何人对哥德巴赫猜想作出过实质性的贡献.所有的证明都存在问题.一件事物之所以引起人们的兴趣,因为我们关心它,假如一个问题的解决丝毫不能引起人类的兴趣,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值.哥德巴赫猜想是数的一种表现次序,人们持久地喜欢它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力,使我们难以跨越一些问题并无法欣赏.一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感.哥德巴赫猜想实际是说,任何一个大于3的自然数n ,都有一个x ,使得n +x 与n -x 都是质数,因为,(n +x)+(n -x)=2n.这是一种质数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为质数这种似乎杂乱无章的东西被人们用自然数n 对称地串联起来,正如牧童一声口哨就把满山遍野乱跑的羊群唤在一起一样,它使人心旷神怡,又像生物基因DNA ,呈双螺旋结构绕自然数n转动,人们从玄虚的质数看到了纯朴而又充满青春的一面.对称不仅是视觉上的美学概念,它还意味着对象的统一.人类的精神威信建立在科学对迷信和无知的胜利之上,人类的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解,肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑.哥德巴赫猜想的哲学意义正是如此.(设计者:赵海彬)。
人教版高中数学选修2-2教案全集
人教版高中数学选修2-2教案全集第一章 导数及其应用§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212思考:观察函数f (x )的图象 平均变化率=∆∆xf1212)()(x x x f x f --直线AB三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
人教版高中数学(选修2-2)全册教案
目录目录 (I)第一章导数及其应用 (1)§1.1.1变化率问题 (1)导数与导函数的概念 (4)§1.1.2导数的概念 (6)§1.1.3导数的几何意义 (9)§1.2.1几个常用函数的导数 (13)§1.2.2基本初等函数的导数公式及导数的运算法则 (16)§1.2.2复合函数的求导法则 (20)§1.3.1函数的单调性与导数(2课时) (23)§1.3.2函数的极值与导数(2课时) (28)§1.3.3函数的最大(小)值与导数(2课时) (32)§1.4生活中的优化问题举例(2课时) (35)§1.5.3定积分的概念 (39)第二章推理与证明 (43)合情推理 (43)类比推理 (46)演绎推理 (49)推理案例赏识 (51)直接证明--综合法与分析法 (53)间接证明--反证法 (55)数学归纳法 (57)第3章数系的扩充与复数的引入 (68)§3.1数系的扩充和复数的概念 (68)§3.1.1数系的扩充和复数的概念 (68)§3.1.2复数的几何意义 (71)§3.2复数代数形式的四则运算 (74)§3.2.1复数代数形式的加减运算及几何意义 (74)§3.2.2复数代数形式的乘除运算 (78)第一章 导数及其应用§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
宁夏银川贺兰县第四中学高中数学 数学归纳法教案1 新人教版选修2-2
宁夏银川贺兰县第四中学2013-2014学年高中数学数学归纳法教案1 新人教版选修2-2二、教学重点:掌握数学归纳法的原理及证明问题的方法。
难点:能用数学归纳法证明一些简单的数学命题。
三、教学过程:【创设情境】1.华罗庚的“摸球实验”。
2.“多米诺骨牌实验”。
问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法?数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。
(1)(递推奠基):当n取第一个值n0结论正确;(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)证明当n=k+1时结论也正确。
(归纳证明)由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
【例题评析】例1:以知数列{an}的公差为d,求证:宁夏银川贺兰县第四中学2013-2014学年高中数学数学归纳法教案1 新人教版选修2-2说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。
②数学归纳法证明的基本形式;(1)(递推奠基):当n取第一个值n0结论正确;(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)证明当n=k+1时结论也正确。
(归纳证明)由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
EX: 1.判断下列推证是否正确。
P88 2,32. 用数学归纳法证明2+⨯++⨯nnn+⨯n1+3()1()1103=427+例2:用数学归纳法证明11111231n n n ++⋅⋅⋅≥+++(n ∈N,n ≥2)说明:注意从n=k 到n=k+1时,添加项的变化。
EX:1.用数学归纳法证明:111111111234212122n n n n n -+-++-=+++-++(1)当n=1时,左边有_____项,右边有_____项;(2)当n=k 时,左边有_____项,右边有_____项;(3)当n=k+1时,左边有_____项,右边有_____项;(4)等式的左右两边,由n=k 到n=k+1时有什么不同?变题: 用数学归纳法证明21111222n ++⋅⋅⋅< (n ∈N+)例3:设f(n)=1+11123n ++⋅⋅⋅,求证n+f(1)+f(2)+…f(n-1)=nf(n) (n ∈N,n ≥2) 说明:注意分析f(k)和f(k+1)的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学选修2-2教案全集第一章 导数及其应用§1.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆xf1212)()(x x x f x f --直线AB三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
解:2020)(x x x y -∆+=∆,所以xx x x x y ∆-∆+=∆∆220)(x x xx x x x x ∆+=∆-∆+∆+=020202022所以2x y =在0x x =附近的平均变化率为x x ∆+02四.课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 .2.物体按照s (t )=3t 2+t +4的规律作直线运动,求在4s 附近的平均变化率. 3.过曲线y =f (x )=x 3上两点P (1,1)和Q (1+Δx ,1+Δy )作曲线的割线,求出当Δx =0.1时割线的斜率.五.回顾总结1.平均变化率的概念2.函数在某点处附近的平均变化率 六.教后反思:§1.1.2导数的概念教学目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; 3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念. 教学过程: 一.创设情景 (一)平均变化率(二)探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 253t∆+所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.二.新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度。
运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?结论:当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-.从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度,因此,运动员在2t =时的瞬时速度是13.1/m s - 为了表述方便,我们用0(2)(2)lim13.1t h t h t∆→+∆-=-∆表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。
2 导数的概念ht o从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlimx x f x x f x fx x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()limx f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-三.典例分析例1.(1)求函数y =3x 2在x =1处的导数.分析:先求Δf =Δy =f (1+Δx )-f (1)=6Δx +(Δx )2再求6f x x∆=+∆∆再求0lim 6x f x ∆→∆=∆解:法一 定义法(略)法二:222211113313(1)|limlim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)limlim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆ 例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x fx x+∆-∆=∆∆22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆所以00(2)limlim(3)3x x ff x x ∆→∆→∆'==∆-=-∆同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,在第6h 附近,原油温度大约以5/C h 的速率上升.注:一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四.课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线y =f (x )=x 3在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义. 五.回顾总结1.瞬时速度、瞬时变化率的概念 2.导数的概念 六.教后反思:§1.1.3导数的几何意义教学目标:1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一.创设情景(一)平均变化率、割线的斜率 (二)瞬时速度、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数()f x'的几何意义是什么呢?二.新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n nP x f x n=沿着曲线()f x趋近于点00(,())P x f x时,割线nPP的变化趋势是什么?我们发现,当点nP沿着曲线无限接近点P即Δx→0时,割线nPP趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.问题:⑴割线nPP的斜率nk与切线PT的斜率k有什么关系?⑵切线PT的斜率k为多少?容易知道,割线nPP的斜率是0()()nnnf x f xkx x-=-,当点nP沿着曲线无限接近点P时,nk无限趋近于切线PT的斜率k,即00()()lim()xf x x f xk f xx∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念: ①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在x x=处的导数.图3.1-2(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程. (二)导函数:由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ',即: 0()()()limx f x x f x f x y x∆→+∆-''==∆注:在不致发生混淆时,导函数也简称导数.(三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。