电解电容纹波电流计算
固态电解电容寿命计算公式
固态电解电容寿命计算公式固态电解电容的寿命计算可不是个简单的事儿,不过别担心,咱们一起来好好捋捋。
先来说说为啥要关心固态电解电容的寿命。
就拿我之前遇到的一件事来说吧,我给家里组装了一台电脑,用了没多久,电脑就频繁死机、重启。
我一开始还以为是系统出了问题,各种重装系统、更新驱动,可都没啥用。
后来找了个懂行的朋友一看,原来是主板上的固态电解电容出了毛病,寿命到了,性能不稳定。
这可把我给郁闷坏了,花了不少时间和精力去折腾。
从那以后,我就特别在意这固态电解电容的寿命问题。
要计算固态电解电容的寿命,得先搞清楚几个关键的因素。
其中最重要的就是工作温度和纹波电流。
工作温度越高,电容内部的化学变化就越剧烈,寿命也就越短;纹波电流越大,电容承受的压力也就越大,同样会缩短寿命。
一般来说,我们可以使用下面这个公式来大致计算固态电解电容的寿命:L = L0 × 2^[(T0 - T)/10] × I0^(-0.4) 。
这里的 L 就是估算的电容寿命,L0 是电容在额定温度和额定纹波电流下的标称寿命,T0 是电容的额定工作温度,T 是实际工作温度,I0 是电容的额定纹波电流。
比如说,有一个固态电解电容,它的标称寿命 L0 是 5000 小时,额定工作温度 T0 是 85℃,额定纹波电流 I0 是 1 安培。
如果它实际工作温度是 65℃,实际纹波电流是 0.8 安培,那我们来算算它的寿命。
首先,(T0 - T)/10 = (85 - 65)/10 = 2。
然后 2^[(T0 - T)/10] = 2^2 = 4 。
接着,I0^(-0.4) = 1^(-0.4) = 1 。
所以,寿命 L = 5000 × 4 × 1 = 20000 小时。
但要注意,这只是个大致的估算,实际情况可能会更复杂。
因为电容的使用环境、工作电压、制造工艺等都会对寿命产生影响。
再比如说,在一些高温高湿的环境中,电容可能会更容易受到腐蚀,从而缩短寿命。
变频器直流母线电容纹波电流计算方法(一)
变频器直流母线电容纹波电流计算方法(一) 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前”节能减排”的主力设备之一。
它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。
目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。
使用电解电容器的作用主要有以下几个:(1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差;(2)提供逆变器开关频率的输入电流;(3)减小开关频率的电流谐波进入电网;(4)吸收急停状态时所有功率开关器件关断下的电机去磁能量;(5)提供瞬时峰值功率;(6)保护逆变器免受电网瞬时峰值冲击。
电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。
这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。
然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。
直流母线电容纹波电流的计算纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。
纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。
当工作温度小于额定温度时,额定纹波电流可以加大。
但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。
因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。
但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。
本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。
电解电容寿命推算资料
频率1201k 10k 100k 频率因子1 1.32 1.45 1.5频率1201k 10-30k 30-100k 频率因子0.50.80.91Specificatiion Series:GE GE2VM220W20OTWV(Vo)工作电压Cap(uF)容量Dia(Φ)直径Length(L) 高度Rated Temp(To)额定工作温度Life(Lo)额定寿命时间Rated Ripple(Io)额定纹波电流(100kHz)L-F ripple current 低频纹波电流(100Hz) H-F ripple current高频纹波电流(35kHz )Actual Ripple(Ix)实际纹波电流(100kHz)Ambient Temp(Tx)环境温度△To 允许中心温升△Tx实际中心温升L X (hrs)使用时间(小时)L X (year)使用时间(年)3502212.52010512000350175.5281.54508558.330534 3.49SUIT TYPE : SNAP-INSpecificatiion Series:LS LS 450WV-180uF 25X35WV(Vo)工作电压Cap(uF)容量Dia(Φ)直径Length(L) 高度Rated Temp(To)额定工作温度Life(Lo)额定寿命时间Rated Ripple(Io)额定纹波电流(120Hz)L-F ripple current 低频纹波电流(100Hz)H-F ripple current 高频纹波电流(34kHz )Actual Ripple(Ix)实际纹波电流(120Hz)Ambient Temp(Tx)环境温度△To 允许中心温升△Tx 实际中心温升Vo额定电压Vx实际工作电压L X (hrs)使用时间(小时)L X (year)使用时间(年)45018025358530001701.78951034113066.410445039442434 4.84W.V 1201K 10K 100K160~2501 1.32 1.45 1.5315~4501 1.3 1.411.43Actual ripple current and ripple current need to use the product catalog provided by the frequency coefficient into the same frequency, the conversion formula is as followsRD2010-0416-01△Tx=△To×(Ix/Io)∧2技術中心 Benson 制定Frequency correction factor for ripple current (Hz)※To calculate the △TX from the actual r.m.s. ripple of the capacitor. refer to the table below.※已知实际纹波电流时,请用下面的公式计算出△TxWhen "Ix" is known, use the following equation to estimate △Tx即:当已知实际纹波电流"Ix"时, △TX 可用下面计算公式Where :Io =rated r.m.s. ripple GA 系列LS 系列实际纹波电流和额定纹波电流需使用产品目录提供的频率系数转换成相同频率,转换公式如下Life Estimation Formula for the CapacitorsLx = Lo × 2(To-Tx)/10 × 2(△To-△Tx)/5复合频率计算I 复合=sqrt 【(If1/kf1)^2 + (If2/kf2)^2 + … + (Ifn/kfn)^2 】If1—f1频率条件下的纹波电流;If2—f2频率条件下的纹波电流;Ifn —fn 频率条件下的纹波电流;kf1—f1频率的频率校正因子;kf2—f2频率的频率校正因子;kfn —fn 频率的频率校正因子。
电解电容器中的纹波电流和额定纹波电流
电解电容器中的纹波电流和额定纹波电流电解电容器在使用过程。
加在电解电容器两端的电压随时间波动变化,忽高忽低,电容器就产生充放电,有电荷流动,形成电流,电解电容器上这个高低不停变化的电压,其随时间变化的曲线类似在平静的池塘面投下一块石子,石子在水面激起的一圈圈链漪有波峰也有波谷。
于是人们形象的把电解电容器两端的这种电压称纹波电压,由纹波电压所加在电容器上,电容器就进行充放电,由此在电容器中形成的电流就形象的称之为纹波电流。
电解电容器中的纹波电流I和其两端的纹波电压V及容量C,其上的电量Q有下面的关系:∵C=Q/V=( dQ/dt)/(dV/dt) dQ/dt=I∴I=C*(dV/dt)电解电容器在使用过程中有一个重要参数:电解电容器的额定纹波电流,该参数不同的厂家有不同的值,就是同一厂家同一规格不同系列的产品,其额定的纹波电流也不一定相同。
它是由电解电容器制造商给出的。
电解电容器中的纹波电流和其额定纹波电流是两个不同的概念。
电解电容器的额定纹波电流的确定,主要是根据该规格电解电容器的用途及使用条件及工作时间(俗称寿命)来和电容器自身的材料性能由电解电容制造商来确定的。
在确定某一规格电解电容器的额定纹波电流需要考虑的因素有以下几点。
1、电解电容器的寿命,它是电解电容器制造商对用户的承诺,简单点讲就是电容器在一定使用条件所能有效工作的时间,也是用户进行电解电容选型的重要观注点之一,这个一般各制造商在其产品手册上都会给出。
2、电解电容的等效串联电阻ESR,ESR大小决定了纹波电流在电解电容器中的发热量的大小。
理论上讲纹波电流在电解电容器中产生的热量(单位时间里):Q-I2*ESR这里I是纹波电流的有效值。
ESR是电容器的等效串联电阻。
3、电解电容在上限温度时,电解电容内部的压力。
当工作时,电解电容工作时所处的环境温度比较高。
由于电解电容器自身的损耗发热,其内部的温度比处的环境温度要高,一般的湿式电解电容器的液态电解液都会产汽化,产生一定的蒸汽压,该蒸汽压和被封在电解电容器内部的空气所产生的压力构成了电解电容内部的总压力,各种分压的大小遵从道尔顿分压定理。
电解电容纹波电流计算
电解电容纹波电流计算电解电容器是一种将电荷存储在电解介质中的被极化的电容器。
在工业和电子设备中,电解电容器广泛应用于滤波、耦合和能量存储等电路中,以平稳和稳定电流的波动。
电解电容器的纹波电流取决于电源的电压纹波和电解电容器的参数。
首先,我们需要了解电源的电压纹波的性质和电解电容器的参数。
电源电压的纹波通常用纹波系数来表示,纹波系数是指电压纹波电压与电源直流电压之比。
对于交流电源,纹波系数通常在1%到10%之间。
电解电容器的参数主要有电容值和额定电压两个重要指标。
电解电容器的电容值决定了其存储电荷的能力,通常以微法(μF)为单位。
额定电压是指电解电容器可承受的最大电压,通常以伏特(V)为单位。
在实际计算中,我们可以通过以下公式来计算电解电容器的纹波电流:Ir=Vr/(2*f*C)其中,Ir表示电解电容器的纹波电流,Vr表示电源电压的纹波电压,f表示电源的工作频率,C表示电解电容器的电容值。
从公式可以看出,电解电容器的纹波电流与电源电压的纹波电压呈线性关系,而与电源的工作频率和电解电容器的电容值呈反比关系。
假设一个电解电容器的电容值为1000μF,额定电压为16V,在一个交流电源频率为50Hz的情况下,如果电源的纹波系数为5%,我们可以通过上述公式来计算纹波电流。
首先,我们需要计算电源电压的纹波电压Vr。
假设电源的直流电压为12V,纹波系数为5%,那么Vr=12V*0.05=0.6V。
将Vr=0.6V,f=50Hz,C=1000μF代入公式中,可以得到:Ir=0.6V/(2*50Hz*1000μF)=0.6V/(2*50*0.001F)=0.6V/0.1A=6A因此,这个电解电容器的纹波电流为6A。
需要注意的是,纹波电流是很重要的电容器参数,尤其对于一些对纹波电流要求较高的电子设备,如音频放大器等。
过高的纹波电流会导致电解电容器温度升高、损耗增加,甚至可能导致电容器破裂。
因此,在设计电子电路时应合理选择电容器参数,同时注意电源电压的纹波系数。
电解电容纹波的测试,计算及判定_ 应用报告
一、前言:铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。
在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。
所以在实际使用中,电解电容Ripple Current有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。
二、标准测试:1、一次侧Bulk Cap.纹波电流说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。
(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current)一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。
图(1)2、二次侧Filter Cap.纹波电流说明:二次侧Filer Cap.纹波电流通常由高频电流构成。
R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。
3、温度机种名称: 机种编号: 机种类别: 电路拓扑:输出规格:编写单位:应用类别:材料应用受控日期:201 年 月 日应用编号:AR500XbcEedDFf P应用描述: 电解电容纹波电流的测试,计算及判定Temperature Meas. = Cap. Case 实测值.-----------此处指电容壳温。
三、計算公式 :1、一次侧Bulk Cap.纹波计算:R/C Stress(Ripple Current Stress) = ()()TFHifFLowf222/1/+R/C Stress:纹波电流计算压力值,F1=低频时的纹波系数(120Hz),T= 纹波温度系数,F2=高频时的纹波系数(>10KHz);2、二次侧Filter Cap.纹波计算:R/C Stress(Ripple Current Stress) = ()TF Hif2/F2 =高频时的纹波系数(>10KHz),T = 纹波温度系数;R/C Stress:纹波电流计算压力值。
铝电解电容的漏电流、纹波和寿命
图 漏电流的时间特性
图 漏电流的温度特性
图 漏电流的正向电压特性
如上图漏电流的时间特性所示,在施加正向电压的最初数分钟的时间内会出现一个很大的漏电流(称为 涌入电流 inrush current 。电容器如长期未施加电压后这一现象就更明显)。随着工作时间的延续,此漏电 流将衰减到一个很小的“稳定状态”值。漏电流的温度特性见中间一图所示,一般地随着温度的升高漏电 流将会变得越来越大。漏电流的温度特性见右边一图所示,一般地随着温度的升高漏电流将会变得越来越 大。 Aluminum Electrolytic Capacitors
3 、 自寿命( Shelf Life )及负载寿命 (Load Life)
3.1 自寿命( Shelf Life )
当电解电容在不充电状态下长期放置之后,漏电流及 ESR 将会逐渐增大,而容量会逐渐衰减。然而常 温条件下普通电容两年左右的存储以及低漏电流电容约半年的存存储都不会令这些参数有太大的恶化。故 一般情况下这些特性都不会在实际应用中带来麻烦。
这些计算方法将得到额定电压 UR 及 20 ° C 条件时的漏电量数值。对于其它温度和电压条件下则应 该进行一些乘积运算,具体情况当根据规格数提供的方法进行折算。例如 DIN 41 240 and DIN 41 332 规定 对其它温度条件的换算作了如下乘积运算: 温度 ( ° C) 乘积因子 (典 0 . 5 型值) 1 4 5 6 10 12 . 5
2.1 纹波定义及其与寿命关系:
纹波电流在这里指的是流经电容器的交流电流的 RMS 值,其在电容电压上的表现为脉动或纹波电压。 电容器最大允许纹波电流受环境温度、电容器表面温度(及散热面积)、损耗角度(或 ESR )以及交流 频率参数的限制。温度是电解电容器件寿命的决定性因素,因此由纹波产生的热损耗将成为电容寿命的一 个关键参考因数。
电解电容纹波电流与频率
电解电容纹波电流与频率电解电容纹波电流与频率1. 引言电解电容器是一种常见的电子元件,用于存储电荷和平滑直流电源中的纹波电压。
在实际应用中,了解电解电容纹波电流与频率之间的关系对优化电路设计和避免电解电容器过载起着重要作用。
本文将探讨电解电容纹波电流与频率之间的关系,并提供一些个人观点和理解。
2. 电解电容器的工作原理电解电容器是由两个电极和介质电解质组成的。
当电解质中通过电流时,电极会发生电化学反应,形成电化学界面,从而使电容器具备存储电荷的能力。
在直流电路中,电解电容器可以平滑纹波电压,通过吸收纹波电流并在需要时释放。
但是,电解电容器也存在一定的限制,包括容量、电压和频率等方面。
3. 电解电容纹波电流的定义与计算电解电容纹波电流是指电容器上产生的交流电流,通常由交流电源中的纹波电压引起。
纹波电流是由电容器对纹波电压变化的响应造成的,其幅度取决于电容器的性能和频率。
计算纹波电流的方法包括根据电容器的容量值和纹波电压的频率进行计算,或者通过实验测量获得。
4. 纹波电流与频率之间的关系纹波电流与频率之间存在着一定的关系。
当频率增加时,纹波电流的幅度往往会增加,因为电容器需要更快地对纹波电压变化做出响应。
而对于相同幅度的纹波电压,频率越低,纹波电流越小。
这是因为频率较低时,电容器有更多的时间来响应纹波电压的变化,从而限制了纹波电流的大小。
5. 影响纹波电流的因素除了频率之外,纹波电流还受到其他因素的影响。
首先是电容器的容量值。
较大的容量值可以存储更多的电荷,从而降低纹波电流的大小。
其次是电解电容器的串联等效电阻。
电解电容器具有一定的等效电阻,会导致纹波电流的增加。
电解电容器的工作温度和负载电流也会对纹波电流产生影响。
6. 个人观点和理解在我看来,电解电容纹波电流与频率之间的关系是一种动态平衡。
在不同频率下,纹波电流的幅度会发生变化,这取决于电容器对纹波电压变化的响应速度。
对于高频率的纹波电压,电容器需要更快地对其进行响应,因此纹波电流的幅度较大。
电解电容寿命计算方法
电解电容寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。
Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗 : XC=1/(2πfC) 【Ω】感抗 : XL=2πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】纹波电流: IR=√(βA△T/ESR) 【mArms】功率 : P=I2ESR 【W】谐振频率 : fo=1/(2π√LC) 【Hz】。
铝电解电容器的寿命
铝电解电容器的寿命1、忽略纹波电流时的寿命推算一般而言,铝电解电容器的寿命与周围的环境温度有很大的关系,其寿命可以由以下公式计算。
其中,L:温度T时的寿命L0:温度T0时的寿命与温度比较,降压使用对电容器的寿命影响很小,可忽略不计。
2、考虑纹波电流时寿命的推算叠加纹波电流,由于内部等效串连电阻(ESR)引起发热,从而影响电容器的使用寿命,产生的热量可由下式计算P=I2R (2)I:纹波电流(Arms)R:等效串联电阻(Ω)由于发热引起的温升其中,△T: 电容器中心的温升(℃)I: 纹波电流 (Arms)R: ESR (Ω)A: 电容器的表面积(cm2)H: 散热系数( 1.5~2.0x10-3W/cm2x℃)上面公式(3)显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比,与电容器的表面积成反比,因此,纹波电流的大小决定着产生热量的大小,且影响其使用寿命,电容器的类型以及使用条件影响着△T值的大小,般情况下,△T<5℃。
下图表示纹波电流引起的温升的测量处测试结果:(1).考虑到环境温度和纹波电流时的寿命公式其中,Ld:直流工作电压下的使用寿命(K=2,纹波电流允许的范围内)(K=4,超过纹波电流范围时)T0:最高使用温度T :工作温度△T:中心温升(2)电容器工作在额定的纹波电流和上限温度时,电容器的寿命可通过转化(4)式得到,如下:其中,Lr:工作在额定纹波电流和最高工作温度下的寿命(h)△T0:最高工作温度下的电容器中心容许温升。
(3)考虑纹波电流,环境温度时可由(5)式得到下式:其中,I0:最高工作温度下的额定纹波电流(Arms)I:叠加的纹波电流(Arms)由于直接测量电容器的内部温升存在着困难,下表列出了表面温度和内部核心温度的换算关系。
图表1寿命的推算公式,原则上适用于周围环境温度为+40℃到最高工作温度范围内,但由于封口材料的老化等因素,实际的推算寿命时间一般最大为15年。
电解电容寿命计算
计算条件: 物料名称:4300-BN1071-A010 保证寿命:105℃5000hrs 额定纹波电流:650mArms/ 105℃,120Hz 使用温度:55 ℃ 实际纹波电流: 600mArms/ 100Hz 周围补正系数: 120Hz 100Hz…0.7
1.纹波发热的计算: 频率修正: 650mArms/120Hz X 0.7 = 455mArms/ 100Hz 发热计算: (600/455)2 x 5 = 8.695
寿命计算(2000小时)
计算条件: 物料名称:4300-BN1071-A000 保证寿命:105℃2000hrs 额定纹波电流:650mArms/ 105℃,120Hz 使用温度:55 ℃ 实际纹波电流: 600mArms/ 100Hz 周围补正系数: 120Hz 100Hz…0.7
1.纹波发热的计算: 频率修正: 650mArms/120Hz X 0.7 = 455mArms/ 100Hz 发热计算: (600/455)2 x 5 = 8.695
使用时间
每天观看时间
2.寿命计算
时间(年)
33 16.5 11 8.3 6.6
Lx Lo 2
To Tx 10
2
ΔT 5 8.695 5
4小时 8小时 12小时 16小时 20小时
5000 2 48000
105 55 10
2
24小时
5.5
注: 55 ℃为电视机使用环境为恶劣条件下的评估值,由此计算在恶劣条件下连续 使用的时间约为48000小时,即5.5年 。若电视机平均每天工作12小时,则使 年限为11年。
使用时间
每天观看时间
2.寿命计算
时间(年)
电解电容器中的纹波电流和额定纹波电流
电解电容器中的纹波电流和额定纹波电流电解电容器中的纹波电流和额定纹波电流电解电容器在使用过程。
加在电解电容器两端的电压随时间波动变化,忽高忽低,电容器就产生充放电,有电荷流动,形成电流,电解电容器上这个高低不停变化的电压,其随时间变化的曲线类似在平静的池塘面投下一块石子,石子在水面激起的一圈圈链漪有波峰也有波谷。
于是人们形象的把电解电容器两端的这种电压称纹波电压,由纹波电压所加在电容器上,电容器就进行充放电,由此在电容器中形成的电流就形象的称之为纹波电流。
电解电容器中的纹波电流I和其两端的纹波电压V及容量C,其上的电量Q有下面的关系:∵ C=Q/V=( dQ/dt)/(dV/dt) dQ/dt=I∴I=C*(dV/dt)电解电容器在使用过程中有一个重要参数:电解电容器的额定纹波电流,该参数不同的厂家有不同的值,就是同一厂家同一规格不同系列的产品,其额定的纹波电流也不一定相同。
它是由电解电容器制造商给出的。
电解电容器中的纹波电流和其额定纹波电流是两个不同的概念。
电解电容器的额定纹波电流的确定,主要是根据该规格电解电容器的用途及使用条件及工作时间(俗称寿命)来和电容器自身的材料性能由电解电容制造商来确定的。
在确定某一规格电解电容器的额定纹波电流需要考虑的因素有以下几点。
1、电解电容器的寿命,它是电解电容器制造商对用户的承诺,简单点讲就是电容器在一定使用条件所能有效工作的时间,也是用户进行电解电容选型的重要观注点之一,这个一般各制造商在其产品手册上都会给出。
2、电解电容的等效串联电阻ESR,ESR大小决定了纹波电流在电解电容器中的发热量的大小。
理论上讲纹波电流在电解电容器中产生的热量(单位时间里):Q-I2*ESR这里I是纹波电流的有效值。
ESR是电容器的等效串联电阻。
3、电解电容在上限温度时,电解电容内部的压力。
当工作时,电解电容工作时所处的环境温度比较高。
由于电解电容器自身的损耗发热,其内部的温度比处的环境温度要高,一般的湿式电解电容器的液态电解液都会产汽化,产生一定的蒸汽压,该蒸汽压和被封在电解电容器内部的空气所产生的压力构成了电解电容内部的总压力,各种分压的大小遵从道尔顿分压定理。
变频器中直流母线电容的纹波电流计算
变频器中直流母线电容的纹波电流计算1 引言各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。
它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。
目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。
使用电解电容器的作用主要有以下几个[1]:(1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差;(2)提供逆变器开关频率的输入电流;(3)减小开关频率的电流谐波进入电网;(4)吸收急停状态时所有功率开关器件关断下的电机去磁能量;(5)提供瞬时峰值功率;(6)保护逆变器免受电网瞬时峰值冲击。
电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。
这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。
然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。
2 直流母线电容纹波电流的计算纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。
纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。
当工作温度小于额定温度时,额定纹波电流可以加大。
但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。
因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。
但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到[2],一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。
本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。
电解电容的纹波电流的计算
电解电容的纹波电流的计算电容器的纹波电流计算是通过电解电容器的纹波电流公式来进行的。
根据电解电容器的特性和工作原理,我们可以将电解电容的纹波电流分为两个部分来计算:直流成分和交流成分。
首先,我们来计算电容器的直流成分。
在电解电容器的工作过程中,当流入电容器时,电解电容器会储存电荷,并将电流平滑化。
这使得电极上的电压保持稳定,称为电解电容器的直流成分。
电容器的直流成分可以通过以下公式计算:I_dc = C × dV/dc其中,I_dc表示电容器的直流成分,C为电容器的电容量,dV/dc表示电容器的电压变化率。
接下来,我们计算电容器的交流成分。
在电容器的工作过程中,由于不可逆化学反应,纹波电流会引起电容器内部的电荷和电流变化。
这种变化是基于电容器的电容特性和电极电解质之间的扩散过程。
电容器的交流成分可以通过以下公式计算:I_ac = I_m × sin(2πft + φ)其中,I_ac表示电容器的交流成分,I_m表示最大纹波电流,f为交流信号的频率,t表示时间,φ表示相位差。
综上所述,电解电容的纹波电流可以表示为直流成分和交流成分之和:I_rms = √(I_dc^2 + I_ac^2)其中,I_rms表示电容器的纹波电流的有效值。
需要注意的是,计算纹波电流时,频率f的选择要根据所使用的电解电容器和实际应用而定。
对于不同的电容器,其纹波电流的公式和计算方法可能会有所不同。
总结起来,计算电解电容的纹波电流需要分别计算直流成分和交流成分,并将两者相加得到最终的纹波电流。
这个过程需要考虑电容器的电容特性、电极电解质之间的扩散过程以及交流信号的频率等因素。
此外,实际应用中还需要根据具体情况选择合适的电容器和计算方法。
电解电容寿命计算公式
寿命计算公式:1.不考虑纹波时:L=L 0×2(T0-T)/10L:温度T时电容寿命;L 0:温度T 0时电容寿命。
T 0:最高工作温度;T:实际工作温度。
2.考虑纹波时L=L D ×2(T0-T)/10×K [1-(I/I0)*(I/I0)]×ΔT/10L:温度T时的考虑纹波电流的电容寿命;L D:最高工作温度T 0时额定纹波内的电容寿命;T:实际工作温度;T 0:最高工作温度;ΔT:电容中心温升;I:电路实际施加纹波电流;I 0:最高工作温度下允许施加的最大纹波电流;K:施加纹波电流寿命常数(施加纹波在额定纹波电流内K取2,超过额定纹波电流K取4)。
其中:ΔT=I 2×ESR/(A×H)ESR:电容等效串联阻抗;A:电容表面积(侧面积+底面积,不考虑胶盖所在面);A=2πrL+πr 2;H:散热系数。
φd(mm)4~5 6.3810131618H×10-3W/cm 2φd(mm)222530354050~100H×10-3W/cm 2 2.18 2.16 2.13 2.1 2.052铝电解电容器寿命计算公式1.961.88 1.84 1.75 1.66 1.58 1.49绿宝石电子有限公司以RC10/505*11(105℃2000小时产品,105℃100KHz最大允许纹波为0.124A,20℃100KHz测试ESR标准值1.3Ω)为例:假设实际工作温度为85℃,电路中实际纹波电流值为0.162A1.不考虑纹波时:(T0-T)/10=(105-85)/10=2L=2000×22=8000(h)2.考虑纹波时:H取2.18/1000=0.00218电容表面积A=2×3.14×0.25×1.1+3.14×0.25×0.25=1.727+0.19625=1.92325(c㎡)电容中心温升ΔT=(0.162×0.162×1.3)/(0.00218×1.92325)=8.14(℃)I取0.162,I0取0.124,因为I>I0,故K取4;)2]×ΔT/10=-0.57535[1-(I/I温度T时的考虑纹波电流的电容寿命:L=2000×22×4-0.57535=3604(h)绿宝石电子有限公司。
电解电容高频 纹波电压计算 esr
电解电容在电子电路中扮演着重要的角色,特别是在高频电路中。
而在高频电路中,纹波电压的计算和等效串联电阻(ESR)的影响更是至关重要。
本文将从电解电容的基本原理和高频特性入手,深入探讨纹波电压的计算和ESR的影响。
1. 电解电容的基本原理电解电容是一种利用电解质作为电介质的电容器。
在直流电路中,电解电容可以作为滤波器,存储和释放电荷。
而在交流电路中,由于电解质的极化特性和电容内阻的影响,电解电容的高频特性变得尤为重要。
2. 高频电路中的纹波电压在高频电路中,纹波电压是指电容器所承受的交流电压的变化幅度。
对于稳压电源和滤波电路而言,纹波电压的大小直接影响着电路的稳定性和可靠性。
准确计算纹波电压成为了高频电路设计中的关键一环。
3. 纹波电压的计算要计算纹波电压,首先需要考虑电路中的负载情况、工作频率和电解电容的参数。
这包括电解电容的容值、等效串联电阻和额定工作电压。
通过分析电路中的纹波电流和电容的充放电过程,可以得出纹波电压的计算公式,并进一步确定合适的电解电容型号。
4. ESR的影响等效串联电阻(ESR)是电解电容中一个重要的参数,它由电解质的电导率和电容器内部结构所决定。
在高频电路中,ESR会对纹波电压的大小和稳定性产生直接影响。
因为ESR会导致电容器在高频下产生损耗,从而使得纹波电压增大并且引起温升。
5. 个人观点和理解在高频电路设计中,准确理解电解电容的高频特性、纹波电压的计算和ESR的影响至关重要。
只有在深入理解电解电容的工作原理和高频特性的基础上,才能有效地设计和优化高频电路,确保其稳定性和可靠性。
总结回顾通过本文的探讨,我们深入了解了电解电容在高频电路中的重要性,以及纹波电压的计算和ESR的影响。
在实际应用中,我们需要综合考虑电路的工作频率、负载情况和电解电容的参数,准确计算纹波电压并选择合适的电解电容型号。
也需要重视ESR对纹波电压稳定性的影响,避免出现不必要的问题。
在实际工程中,我深切体会到了电解电容在高频电路中的重要性。
电解电容 ripple current
leodragon 称号:连长 电源币:250 FIY! I think the answer is: when you test AC circuit, use AC coupling, when you test DC circuit, use DC coupling. It\'s only my viewpoint. For your reference.
回复第 9 帖 第 10 帖 2003-09-10 22:58:54
jacki_wang 称号:团长 电源币:1062 电流放大器调零了吗 电流放大器需要消磁及调零,否则测试结果不准.
回复第 10 帖 第 11 帖 2003-09-11 08:28:44
leodragon 称号:连长 电源币:250 我用的电流枪可直接测电流! 我用的是泰克的 TCP202,可直接测电流!
回复第 15 帖 第 16 帖 2005-06-02 22:35:53
jacki_wang 称号:团长 电源币:1062 估计你的电流枪有问题了,你要是有条件可以换一个对比一下看是示波器的 问题还是电流枪的问题. 是不是你换了之后没有消磁?
回复第 16 帖 第 17 帖
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
回复第 25 帖 第 26 帖 2003-09-09 08:26:28
leodragon 称号:连长 电源币:250 Thank you very much! thank you! you answer give me many useful imformation,thanks! test data is as follow: 在路电流有效值:200mA;工作频率:42KHZ;工作温度:54C,在 DATABOOK 中查到温 度系数:2.1(>65C),频率系数 40K 时为 1.5,按你告诉的公式计算出的结果 为:630mA,而供应商所提供的 databook 上的 ripple current 为:67mA(105C,120HZ),但是这颗电容早以成功应用与线路中,并无任何问题,你 的公式是否有误,我认为应是:databook 中的 ripple current*频率系数*温度系 数,这样计算出来的结果与实际相符,希望我们共同讨论这个问题!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容纹波电流计算
铝电解电容的在实际应用中的一个重要参数是纹波电流,此电流关系到电解电容的带载温升,在电容寿命计算时候,在不测量电解电容中心点温度的情况下,可以通过此纹波电流来估计电容的设计寿命,铝电解电容常被用在整流模块后以平稳电压。
控制某一纹波电压所需的电容容值为:
负载功率(单位 W )
P:
注意:这是应用所需要的最小电容容值。
此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。
必须知道主线及负载侧的纹波电流数据。
可以首先计算出电容的充电时间。
是电网电流的频率。
f main
电容的放电时间则为:
充电电流的峰值为
是纹波电压( U max – U min)
dU
则充电电流有效值:
接下来计算放电电流峰值和有效值。
最后计算得出:整流模块后纹波电流:
纹波电流的换算方法可以这样:
假定电流在不同频率下的发热功耗相同,则有:
If12xESR f1= If22xESR f2
从而:If2=( ESR f1/ ESR f2)1/2x If1
这里的 (ESR f1/ ESR f2)1/2就是频率系数.
如果已知If1的大小,又因为ESR f1,ESR f2可以测试出来,因此If2的值就能计算出来.。