数与式-第4讲:二次根式

合集下载

二次根式知识点的相关概念及对应的公式

二次根式知识点的相关概念及对应的公式

二次根式知识点的相关概念及对应的公式一、引言二次根式作为数学中的重要概念,它涉及到了数学运算、代数式简化等方面,对于学习数学的人来说是一个基础而又重要的概念。

在学习二次根式的过程中,我们需要了解相关的概念和对应的公式,并且能够灵活运用于实际问题中。

本文将会从深度和广度的角度,全面评估二次根式的相关概念及对应的公式,并给出一个有价值的文章。

二、二次根式的概念1. 二次根式的定义二次根式是形如$\sqrt{a}$(其中$a\geq 0$)的式子,其中$a$称为被开方数。

我们称$\sqrt{a}$为二次根式,通常可以将$\sqrt{a}$理解为一个数,这个数的平方等于$a$。

$\sqrt{4}$就是一个二次根式,它的值为2,因为$2^2=4$。

2. 二次根式的简化在进行数学运算时,我们经常需要对二次根式进行简化。

当被开方数$a$为某个整数的平方时,二次根式$\sqrt{a}$可以进行化简,即$\sqrt{a}=\pm\sqrt{b}$,其中$b$为$a$的正平方根。

$\sqrt{25}=5$。

3. 二次根式的运算二次根式可以进行加减乘除运算,其中需要特别注意的是,二次根式在进行加减运算时,要求根指数相同才能进行运算。

在进行乘法和除法运算时,我们可以利用二次根式的性质进行化简。

三、二次根式的公式1. 二次根式的乘法公式当两个二次根式相乘时,可以利用乘法分配律进行化简,即$(\sqrt{a}\cdot\sqrt{b}) = \sqrt{ab}$。

这个公式在化简乘法运算时非常有用。

2. 二次根式的除法公式当两个二次根式相除时,可以通过有理化的方法,将分母有理化为整数,从而进行化简。

$\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}}\cdot\frac{\sqrt{ b}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}$。

3. 二次根式的加法和减法公式二次根式的加法和减法需要根指数相同才能进行运算。

二次根式的ppt课件

二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。

二次根式及其性质课件

二次根式及其性质课件

1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;

的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法

二次根式及其运算ppt课件

二次根式及其运算ppt课件
15
【解后感悟】比较两个二次根式大小时要注意: (1)负号不能移到根号内;(2)根号外的正因数要平 方后才能从根号外移到根号内.
8.(1)(2015·嘉兴)与无理数31 最接近的是 ( C )
A.4
B.5
C.6
D.7
(2)(2015·杭州)若k< 90 <k+1(k是整数),
则k=
( D)
A.6
B.7
不等于0列式进行计算即可得解.(2)根据二次根
式的性质化简得到k,m及n的值,即可作出判断.
【答案】(1)根据题意得,2x+1≥0且x-1≠0,
解得x≥- 1 且x≠1.故选A. 2
(2) 135 3 15 , 450 15 2 ,180 6 5 ,
可得:k=3,m=2,n=5,则m<k<n.
整理得出即可. 【答案】(1)原式= 2
23
2
23
2,
32
2
2
故答案为: 2 ;
(2) 3( 2 3) 24 6 3 6 3 2 6 (3 6)
=-6. 故答案为:-6. 13
【解后感悟】(1)二次根式的加减运算,关键是掌握 二次根式的化简及同类二次根式的合并;(2)二次 根式的混合运算,正确化简二次根式是解题关键.
【归纳】通过开放式问题,归纳、疏理二次根式的性质
和运算法则. 6
类型一 平方根、算术平方根、立方根
例1 (1)(2015·黄冈)9的平方根是
() A.±3
1
B. 3
C.3
D.-3
(2)(2015·湖州)4的算术平方根是 2( )
A.±2
B.2 C.-2 D.
(3)(2015·荆门)64的立方根是

新人教初中数学中考复习数的开方与二次根式【精品】

新人教初中数学中考复习数的开方与二次根式【精品】

知 识
1.判断正误:
[答案] (1)× (2)× (3)× (4)×


(1)36 的平方根是 6; ( )
(5)× (6)×
高 频
(2)±9 的平方根是±3; ( )

向 (3) 4=±2; ( )


(4)0.01 是 0.1 的平方根; ( )
[解析](1)36 的平方根是±6,故错误; (2)-9 没有平方根,故错误; (3) 4=2,故错误; (4)0.1 是 0.01 的算术平方根,故错误;
(1)
1 ������
=
������
������ ·
������
=
������ ������
;
(2)
1 ������ -
������ =(
������ -
������+ ������ ������)( ������+
������
=
)
������ + ������-������
������ .
基 础

A.x≥4

B.x>4
4-x>0,解得 x<4,故选 D.

C.x≤4
D.x<4




基 础
考向三 二次根式的化简与计算
知 识
9.[2019·常德]下列运算正确的是 ( D )


A. 3 + 4= 7
B. 12=3 2
高 频
C. (-2)2=-2




D.
164 =
21 3
基 础

2019年宜宾中考总复习精练第1章数与式第4讲二次根式(含答案)

2019年宜宾中考总复习精练第1章数与式第4讲二次根式(含答案)

第四讲 二次根式1.(2019潍坊中考)若代数式x -2x -1有意义,则实数x 的取值范围是( B )A .x ≥1B .x ≥2C .x >1D .x >22.(2019淮安中考) 下列式子为最简二次根式的是( A ) A. 5 B.12 C.a 2D.1a3.(2019十堰中考)下列运算正确的是( C ) A.2+3= 6 B .22×32=6 2 C.8÷2=2 D .32-2=3 4.计算48-913的结果是( B ) A .- 3 B. 3 C .-113 3 D.11335.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C ) A .9 B .±3 C .3 D. 5 6.若x -1+(y +2)2=0,则(x +y)2 018等于( B )A .-1B .1C .32 018 D .-32 0187.(2019徐州中考改编)使x -6有意义的x 的最小整数是__6__.8.计算:(1)(2019长春中考)2×3=;(2)(2019衡阳中考)8-2=.9.已知x 1=3+2,x 2=3-2,则x 21+x 22=__10__.10.已知a(a -3)<0,则|a -3|+a 2=. 11.若20n 是整数,则正整数n 的最小值为__5__.12.将2,3,6按下列方式排列,若规定(m ,n)表示第m 排从左向右第n 个数,则(5,4)与(15,7)表示的两数之积是.13.(2019滨州中考改编)计算: 33+(3-3)0-|-12|-2-1-cos60°.解:原式=3+1-23-12-12=- 3.14.设a =19-1,且a 在两个相邻的整数之间,则这两个整数是( C )A.1和2 B.2和3 C.3和4 D.4和515.若反比例函数y=a-2 018x的图象与正比例函数y=(a-2 016)x的图象没有公共点,则化简(a-2 018)2+(a-2 016)2的结果为( C )A.-2 B.2a-4 034C.2 D.4 03416.将一组数3,6,3,23,15,…,310,按下面的方式进行排列:3,6,3,23,15,32,21,26,33…若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( C )A.(5,2) B.(5,5) C.(6,2) D.(6,5)17.已知a,b为有理数,m,n分别表示5-7的整数部分和小数部分,且amn+bn2=1,则 2a+b=__2.5__.18.若y=x-4+4-x2-2,则(x+y)y=__14__.19.计算:(2-3)2 017(2+3)2 018-2|-32|-(-2)0.解:原式=[(2-3)(2+3)]2 017(2+3)-2×32-1=(2+3)-3-1=2+3-3-1=1.20.解方程:x+2x-1+x-2x-1=x-1.解:方程两边同时平方,得2x+2x2-(2x-1)2=x2-2x+1,变形,得2x+2x2-4x+4=x2-2x+1,2x+2(x-2)2=x2-2x+1,2x+2|x-2|=x2-2x+1,∵x-1≥0,即x≥1.∴①当1≤x<2时,原方程化简为:2x+2(2-x)=x2-2x+1,即x2-2x-3=0,解得x1=-1,x2=3(都不符合题意,舍去),②当x≥2时,原方程化简为:2x+2(x-2)=x2-2x+1,即x2-6x+5=0,解得x1=1,x2=5(x=1不符合题意,舍去),综上,原方程的解为x=5.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A.AC=EFB.BC=DFC.AB=DED.∠B=∠E2.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5D .方差是0.013.如图,OA 在x 轴上,OB 在y 轴上,OA =4,OB =3,点C 在边OA 上,AC =1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数y =kx(k≠0)的图象经过圆心P ,则k 的值是( )A.54-B.53-C.52-D.﹣24.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是( ) A .(3,5)B .(3,-5)C .(-3,-5)D .(-3,5)5.下列计算正确的是( ) A .224a a a += B .()2326a a =C .()23533a aa -=-gD .623422a a a ÷=6.国家统计局统计资料显示,2018年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为( )元.(用四舍五入法保留3个有效数字) A .831355.510⨯B .133.1410⨯C .123.1410⨯D .123.1310⨯7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.某同学做了四道题:①3m+4n=7mn ;②(﹣2a 2)3=﹣8a 6;③6x 6÷2x 2=3x 3;④y 3•xy 2=xy 5,其中正确的题号是( ) A .②④B .①③C .①②D .③④9.如图,平面上有两个全等的正八边形ABCDEFGH 、A′B′C′D′E′F′G′H′,若点B 与点B′重合,点H 与点H′重合,则∠ABA′的度数为( )A.15°B.30°C.45°D.60°10.如图,ABCDEF 为⊙O 的内接正六边形,AB =m ,则图中阴影部分的面积是( )A .6πm 2B m 2C .3π⎛- ⎝⎭m 2D .6π⎛- ⎝⎭m 211.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EFB.AB=2DEC.△ADF 和△ADE 的面积相等D.△ADE 和△FDE 的面积相等12.下列计算正确的是( ) A .(a 2b )2=a 2b 2 B .a 6÷a 2=a 3C .(3xy 2)2=6x 2y 4D .(﹣m )7÷(﹣m )2=﹣m 5二、填空题13.如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于___(结果保留π)14.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是_____度.15.分解因式:ab4-4ab3+4ab2=______________。

二次根式ppt课件

二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。

二次根式知识点

二次根式知识点

二次根式知识点一、二次根式的定义二次根式是指具有形式√a的数,其中a为非负实数。

在二次根式中,根号下的数a叫做被开方数。

二、二次根式的性质1. 二次根式的值始终为非负实数,即√a ≥ 0。

2. 二次根式的积仍然是一个二次根式,即√a · √b = √(a·b)。

3. 二次根式的商仍然是一个二次根式,即√a ÷ √b = √(a÷b),其中b≠ 0。

4. 二次根式的乘方仍然是一个二次根式,即(√a)^n = √(a^n),其中n为正整数。

5. 二次根式可以与整数运算,即√a + √b = √a + √b。

6. 同类项相加,即a·√b + c·√b = (a+c)·√b。

三、二次根式的化简1. 将二次根式改写成带有平方数因子的形式,如√(a ·b) = √a · √b。

2. 合并同类项,如√a + √a = 2√a。

3. 分解被开方数的因数,如√(a·a·b) = a√b。

4. 有理化分母,如分母有根号,可以将其乘以一个形如√b/√b的式子,使分母变为有理数。

四、二次根式的运算1. 二次根式的加法:将二次根式看作是整体进行运算,合并同类项,如√a + √b = √a + √b。

2. 二次根式的减法:使用减法的性质,将减法改写为加法,如√a -√b = √a + (-√b)。

3. 二次根式的乘法:使用分配律进行展开,合并同类项,如(√a +√b)·(√c + √d)。

4. 二次根式的除法:利用有理化分母将除法转化为乘法,然后进行乘法运算。

五、二次根式的应用1. 二次根式在几何中的应用:例如计算正方形的对角线长度,三角形中的边长等。

2. 二次根式在物理中的应用:例如求解速度、加速度等问题。

3. 二次根式在方程中的应用:例如求解二次方程的根。

六、常见的二次根式1. 2的二次根式约等于1.414,常用符号表示为√2。

初中数学二次根式知识点总结PPT

初中数学二次根式知识点总结PPT
二次根式应用
面积公式中的二次根式
在求解一些几何图形的面积时,如正 方形、矩形、三角形等,可能会涉及 到二次根式的计算。
体积公式中的二次根式
在求解一些几何图形的体积时,如长 方体、正方体、圆柱体等,也可能会 涉及到二次根式的计算。
Part
05
拓展:复数和虚数单位i的引 入
复数的定义和基本运算规则
易错难点剖析及应对策略
易错点一
忽视二次根式中被开方数的取值 范围。应对策略:在解题时,要 时刻注意被开方数的取值范围,
确保其非负。
易错点二
混淆二次根式的性质。应对策略: 正确理解并区分二次根式的性质, 如$sqrt{a^2}$和$(sqrt{a})^2$的 区别。
易错点三
运算顺序出错。应对策略:遵循先 乘除后加减的运算顺序,同时注意 括号的使用。
运算规则与注意事项
加减运算
先将二次根式化为最简形 式,再合并同类二次根式 。
乘除运算
根据二次根式的乘法法则 和除法法则进行计算。
注意事项
在运算过程中,要保证被 开方数是非负数,同时要 注意运算顺序和符号问题 。
Part
02
二次根式的化简与求值
化简方法与技巧
STEP 01
因式分解法
STEP 02
二次根式的性质
$sqrt{a^2} = |a|$,即正数的平方根是其本身,负数的平方根是其相反数,0的平方根是 0。
二次根式的运算法则
包括加法、减法、乘法和除法。其中,乘法法则为$sqrt{a} times sqrt{b} = sqrt{ab}$( $a geq 0, b geq 0$),除法法则为$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0, b > 0$)。

初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式

初中数学 数与式 知识点 考点 思维导图 实数及其运算 整式 分式 二次根式
分母为0;分式值为0的条件是分子等于0,但分母不等于0
分式的加减法/ 异分母的分式相加减,先通分,变成同分母的分
4、参数法∶当已经条件形如工-上=三,所要求值的代数式
是一个含x,y,z,a,b,c,而又不易化简的分式
时,通常设 艺-为=三*(k就是我们所说的参数),
分式
\式,然后相加减,b即 4d± 二b=dad ,bbdc_ adb±dbc
运算顺序
作商法 =1ea=b(a>0,b>0)
<1ea<b
(4) (ab)c=a(bc); n(5)a(b+c)=ab+ac
分级∶加减是一级运算,乘除是二级运算,乘方和开方是三级运算.
三级运算的顺序是三、二、一、(如果有括号,先算括号内的;如
果没有括号,在同一级运算中,要从左至右进行运算,无论何种
运算,都要注意先定符号后运算.)
学习误区
合并同类项
系数相加,所得的结果作为合并后的系数,字母和字母的指数 _不变叫做合并同类项.
整式的加减 就是合并同类项,遇到括号,一般先去掉括号,去 括号的方法是∶+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c.
知能提升
整式有关概念
总并华结 梳知理识
整式 幂的运算法则 的运算 整式的乘法
中A,B,M/都是整式,特别要注意整式M的值不等于零.
2、分式的分子、分母与分式本身的符号,改变其中的任何
两个,分式的值不变如--=-为=号,再如一ba
知能提升
分式的概念
并总华结
知识
梳理
式子表述 告A部告告(u20,如为整式)
基本性质
同分母的分式相加减,分母不变,把分子相加减,
即号±8a±o,
3、分式有意义的条件是分母不为0;分式无意义的条件是

二次根式的概念和性质PPT课件

二次根式的概念和性质PPT课件

.
2
2、 a 表示什么? 表示非负数a的算术平方根
试一试 :说出下列各式的意义;
16, 81, 0, 1, 0.04; 49
观察: 上面几个式子中,被开方数的特点? 被开方数是非负数 即:a0
.
3
1.二次根式的概念
a (a ≥ 0 )表 示 非 负 数 a 的 算 术 平 方 根 ,
形 如 a (a ≥ 0 )的 式 子 叫 做 二 次 根 式 。
解:(1) (3- p)2 =|3- p|
∵ 3- p< 0
∴ (3- p)2 = p- 3 (2) x2-2x+1=(x-1)2=|x-1|
当x=- 3 时,x-1<0
∴ x2-2x+1=1-x=1+3
∴当x=- 3 时. , x2- 2x+1=1+ 3 20
初中阶段的三个非负数:
a (a≥0)
它必须具备如下特点: 1、 根 指 数 为 2; 2、 被 开 方 数 必 须 是 非 负 数 。
想 一 想 : 10 、 -5 、 3 8 5 3 、 (-2)2 a (a< 0﹚ 、 a 2+ 0 . 1 、 - a ( a < 0 ﹚ 是 不 是 二 次 根 式 ?
.
4
s
定义: 像 a2 2500 , , b 3 这样表示的算术 平方根,且根号内含有字母的代数式叫做二 次根式。
|a |
≥0
a2
a + b = 0 ? a 0,b = 0
a + | b |= 0 ? a 0, b = 0
a 2 + | b |= 0 ? a 0, b = 0
......
.
21

二次根式ppt课件

二次根式ppt课件

通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如

2017年数的开方及二次根式

2017年数的开方及二次根式

第4课时┃数的开方及二次根式 第4课时┃数的开方及二次根式
例3 [2013· 济宁]计算:
(2- 3)
2012
·(2+ 3)
2012
2013
3 -2- -(- 2)0. 2
2013
解:(2- 3)
·(2+ 3)
3 012·(2+ 3)- 3-1 =1.
第4课时┃数的开方及二次根式
探究四 二次根式的大小比较
命题角度: 1. 二次根式的大小比较方法;
2. 利用计算器进行二次根式的大小比较.
例5

[2013· 德州] 比较大小: -3

7 与-2 15.
先比较 3
7与 2 15的大小.
第4课时┃数的开方及二次根式
解: ∵-3 7=- 32×7=- 63, -2 15=- 22× 15=- 60, 且 63>60, ∴ 63> 60,∴ 3 7> 2 15, 即- 3 7<- 2 15.
(2)若几个非负数的和等于零,则这几个数都为零.
第4课时┃数的开方及二次根式
回 归 教 材
二次根式化简中的整体思想 教材母题 已知x= 3+1,y= 3 -1,求下列各式的值:
(1)x2+2xy+y2;(2)x2-y2.

因为x= 3+1,y= 3-1,所以x+y=2 3 ,
x-y=2.则(1)x2+2xy+y2=(x+y)2=(2 3)2=12; (2)x2-y2=(x+y)(x-y)=4 3 .
a-4 a+ 2 = × a(a+2)2 a-4 1 = . a(a+2) 当a= 2-1时, 1 1 原式= = =1. ( 2-1)( 2-1+2) ( 2-1)( 2+1)
第4课时┃数的开方及二次根式

初中数学二次根式PPT课件图文

初中数学二次根式PPT课件图文
【解析】选C.若二次根式 有意义,则2x+6≥0, 解得x≥-3,在数轴上时从表示-3的点向右画,且用实心 圆点.
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).

《二次根式的概念》课件

《二次根式的概念》课件
2023-2026
ONE
KEEP VIEW
《二次根式的概念》 ppt课件
REPORTING
CATALOGUE
目 录
• 二次根式的定义 • 二次根式的简化 • 二次根式的运算 • 二次根式的应用 • 总结与回顾
PART 01
二次根式的定义
平方根的定义
总结词
理解平方根是二次根式的基础
详细描述
平方根的定义是,对于非负实数a,若某数的平方等于a,则这个数称为a的平方 根。例如,4的平方根是±2,因为2^2=4和(-2)^2=4。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否 可以提取平方因子或进行因式分解,以消去根号。如果 无法直接提取平方因子或进行因式分解,可以尝试使用 配方法,将表达式转化为完全平方形式,从而消去根号 。接下来观察各项是否为同类项,如果是,则合并同类 项。最后化简各项的系数和根指数,使二次根式达到最 简形式。通过综合运用这些方法,可以逐步化简二次根 式,使其达到最简形式。
PART 04
二次根式的应用
二次根式在几何学中的应用
二次根式在勾股定理中的 应用
勾股定理是几何学中的重要定理,而二次根 式是解决勾股定理问题的重要工具。通过使 用二次根式,我们可以计算直角三角形的斜 边长度。
二次根式在面积和周长计 算中的应用
在几何学中,许多形状(如矩形、圆形、椭 圆形等)的面积和周长可以通过使用二次根
PART 02
二次根式的简化
根号的简化
总结词
根号的简化主要是通过因式分解、配方法等手段,将根号内的表达式化简为最简二次根式。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否可以提取平方因子或进行因式分解,以消去根号。如果无 法直接提取平方因子或进行因式分解,可以尝试使用配方法,将表达式转化为完全平方形式,从而消去根号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、应用ab a b =⋅时,注意a 、b 都非负,否则不成立,如(6)(5)(6)(5)-⋅-≠-⋅-2、应用a abb=(0a ≥,0b >),注意a 非负,b 必须大于0否则不成立. 3、解分母有理化题目时,要从特殊到一般,理清解题的规律:11n n n n =+-++,再利用这个公式解题.4、在计算二次根式时,要注意结果要求最简形式,被开方数中不含能开得尽方的因数或因式.例如8=22.5、分母有理化时,要注意类似于+a b 或者a b -这样的式子,原理是平方差公式22()()a b a b a b +-=-;6、要注意2()(0)a a a =≥和2a a =的区别.【方法技巧】 第四节 二次根式【知识梳理】7、把根号下的数放入根号下时步骤为①判断整体符号,②变成平方塞到根号下面,③检查整体符号和原来是否一致,④判断根号下是否符合非负数的条件.【考点突破】考点一:二次根式的基本概念例1、如果有意义,那么x的取值范围是()A.x>2B.x≥2C.x≤2D.x<2变式1、若代数式有意义,则x的取值范围是()A.x>1B.x≥1C.x≠1D.x≤1例2、下列二次根式中,最简二次根式是()A.B.C.D.变式1、下列二次根式中,是最简二次根式的是()A.B.C.D.例3、化简的结果为()A.2+B.2﹣C.﹣2+D.﹣2﹣变式1、由于=﹣1,=﹣,=﹣,…,则(+ ++…+)(+1)=()A.2007B.2008C.2009D.2010例3、如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.5变式1、下列各式中与是同类二次根式的是()A.B.C.D.例4、下列计算正确的是()A.+=B.﹣=C.×=6D.=4变式1、下列各式中,运算正确的是()A.B.C.D.考点二:二次根式的基本运算例1、.变式1、计算:.变式2、计算:(1)4+﹣+4(2)6﹣2﹣3.(3)(4)(5)﹣4+(6)(﹣)+(﹣)(+)(7)化简,结果正确的是()A.1B.C.D.例2、(1)已知a+b=﹣3,ab=1,求的值.(2)已知x2﹣3x+1=0,求的值.变式1、(1)已知:a+b=﹣5,ab=1,求:的值.(2)已知:x2﹣3x+1=0,求的值.例3、已知a2+b2﹣4a﹣2b+5=0,求的值.变式1、.【分层训练】<A组>1、已知,则2xy的值为()A.﹣15B.15C.D.2、已知a<b,则化简二次根式的正确结果是()A.B.C.D.3、下列计算正确的是()A.=±4B.=﹣=1C.(2﹣)(2+)=1D.=3﹣14、.<B组>1.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1C.﹣﹣1D.++12.若4与可以合并,则m的值不可以是()A.B.C.D.3.观察下列二次根式的化简S1==1+,S2=+=(1)+(1)S3=++=(1)+(1)+(1)则=.4.观察下列二次根式的化简:,,,…从计算结果中找到规律,再利用这一规律计算下列式子的值.=.5.已知:a<0,化简=.6.已知:a、b、c为正实数,且a+b+c=1.(1)比较大小:a2a;(2)试判断与4的大小关系,并说明理由.7.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;参照(四)式得=.(3)化简:+++…+.参考答案【考点突破】考点一:二次根式的基本概念例1、解:由题意得,x﹣2≥0,解得x≥2.故选B.变式1、解:由题意得,x﹣1≥0,解得,x≥1,故选:B.例2、解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项不合题意;D、不能化简,符号题意;故选D变式1、解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A例3、解:原式===2+.故选A.变式1、解:(+++…+)(+1)=(﹣1+﹣+﹣+…+)(+1)=()()=2009﹣1=2008.故选B.例3、解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选D.变式1、解:A、=2,与不是同类二次根式,本选项错误;B、=,与是同类二次根式,本选项正确;C、=2,与不是同类二次根式,本选项错误;D、=3,与不是同类二次根式,本选项错误.故选B.例4、解:A、与不是同类项,不能合并,故本选项错误;B、﹣=﹣=,故本选项正确;C、×=,故本选项错误;D、==2,故本选项错误.故选B.变式1、解:A、3﹣=2≠3,故本选项错误;B、=2,故本选项正确;C、2与不是同类项,不能合并,故本选项错误;D、=2≠﹣2,故本选项错误.故选B.考点二:二次根式的基本概念例1、解:原式===.变式1、解:原式=2﹣﹣(﹣2)=2﹣﹣+2=+.变式2、解:(1)原式=4+3﹣2+4=7+2;(2)原式=6﹣﹣=6﹣.(3)原式=3+2﹣2=5﹣2.(4)原式=,====.(5)原式=2﹣+4=5;(6)原式=2﹣2+2﹣3=2﹣3.(7)原式=(2+)2013•(2﹣)2014=[(2+)(2﹣)]2013•(2﹣)=(4﹣3)2013•(2﹣)=2﹣.故选B.例2、解:(1)原式=+==3;(2)∵x2﹣3x+1=0,变形为x+=3,∴原式====.变式1、(1)已知:a+b=﹣5,ab=1,求:的值.解:∵a+b=﹣5,ab=1,∴a<0,b<0,∴原式=+=﹣(+)=﹣=5.(2)已知:x2﹣3x+1=0,求的值.解:∵x2﹣3x+1=0,∴x+=3,∴()2=x++2=5,∴=.例3、解:∵a2+b2﹣4a﹣2b+5=0∴(a﹣2)2+(b﹣1)2=0∴a=2,b=1,∴==7+.变式1、解:要使y=++9有意义,必须x﹣8≥0,且8﹣x≥0,解得:x=8,把x=8代入得:y=0+0+9=9,∴=,=+,=+,=.【分层训练】<A组>1、解:要使有意义,则,解得x=,故y=﹣3,∴2xy=2××(﹣3)=﹣15.故选:A.2、解:∵有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴=﹣a.故选A.3、解:A、原式=4,所以A选项错误;B、原式==,所以B选项错误;C、原式=4﹣5=﹣1,所以C选项错误;D、原式=﹣=3﹣1,所以D选项正确.故选D.4、解:x===2﹣,∴原式===﹣=﹣=﹣.<B组>1.解: ﹣=﹣===,a的小数部分=﹣1;﹣===,b的小数部分=﹣2,﹣====.故选B.2.解:A、把代入根式分别化简:4=4=,==,故选项不符合题意;B、把代入根式化简:4=4=;==,故选项不合题意;C、把代入根式化简:4=4=1;=,故选项不合题意;D、把代入根式化简:4=4=,==,故符合题意.故选D.3.解: =1+﹣,=1+﹣,=1+﹣,…=1+﹣,S1==1+,S2=+=(1)+(1),S3=++=(1+﹣)+(1)+(1),…S2016=(1+﹣)+(1)+(1)+…+(1+﹣)+(1+﹣),=2016+1﹣,=2016+,则==1+=.4.解:原式=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2009.5.解: 原式=﹣=﹣又 二次根式内的数为非负数a﹣=0a=1或﹣1a<0a=﹣1原式=0﹣2=﹣2.6.解:(1) a、b、c为正实数,且a+b+c=1,0<a<1,0<b<1,0<c<1,a2<a,故答案为:<;(2)>4,理由:方法一:=3a+1+3b+1+2=3(a+b)+2+2>[3(a+b)+1]+2=,同理可证,>,>>,a+b+c=1,=,即>4.方法二:由(1)知a2<a,则b2<b,c2<c,=>=a+1+b+1+c+1=a+b+c+3,a+b+c=1,a+b+c+3=4,即>4.7.解:(1)=,=;(2)原式=+…+=++…+=.。

相关文档
最新文档