专题01 集合与常用逻辑用语第一讲 集合(原卷版)

合集下载

第一章集合与常用逻辑用语1.1 集合的概念

第一章集合与常用逻辑用语1.1 集合的概念

2.描述法
思考:能否用列举法表示不等式 x-3<7的解集?
由于小于10的实数有无穷多个,而且无法一一列举出来, 因此这个集合不能用列举法表示.
但是可以看出,这个集合中的元素满足性质: (1) 集合中的元素都是实数. (2)集合中的元素都小于10.
这个集合可以通过描述其元素性质的方法来表示,来自作: {x R | x 10}
2. 由1,3,0,5,|-3|这些数组成的一个集合中有5个元素,这种说法正确吗?
不正确.集合中只有4个不同元素1,3,0,5 . 3.集合{1,2,3}与集合{3,2,1}的关系是什么? 集合元素没有变化
集合中的元素的性质: 2.互异性
集合中的元素的性质: 3.无序性
两个集合中,元素完全一样,则称两集合相等.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系.
探究4 集合的表示方法 1.列举法
思考1:地球上的四大洋 组成的集合如何表示?
元素一一列举出来
【提示】可以这样表示:{太平洋,大西洋,印度洋,北冰洋}. 思考2: 方程(x+1)(x+2)=0的所有根组成的集合又如何用列举法表示呢?
第一章 集合与常用逻辑用语
1.1 集合的概念
情景导学
情景1:“集合”是日常生活中的一个常用词,现代汉语 解释为:许多的人或物聚在一起. 康托尔(G.Cantor,1845-1918).德国 数学家,集合论创始人.人们把康托尔于 1873年12月7日给戴德金的信中最早提出集
合论思想的那一天定为集合论诞生日.
探究2: 集合中元素的性质 1. 所有的“帅哥”能否构成一个集合?由此说明什么?
“帅”是一个含糊不清的概念,具有相对性,多么“帅”才算“帅”?

专题01 集合与常用逻辑用语-备战2019年高考数学(理)之纠错笔记系列(原卷版)

专题01 集合与常用逻辑用语-备战2019年高考数学(理)之纠错笔记系列(原卷版)

专题01 集合与常用逻辑用语易错点1 忽略集合中元素的互异性设集合2{},,,1,{,}A x x xy B x y ==,若A B =,则实数,x y 的值为 A .1x y =⎧⎨∈⎩RB .1x y =-⎧⎨=⎩C .11x y =⎧⎨=⎩D .1x y =⎧⎨∈⎩R 或10x y =-⎧⎨=⎩或11x y =⎧⎨=⎩【错解】由A B =得21x xy y ⎧=⎨=⎩或21x y xy ⎧=⎨=⎩,解得1x y =⎧⎨∈⎩R 或10x y =-⎧⎨=⎩或11x y =⎧⎨=⎩,所以选D .【错因分析】在实际解答过程中,很多同学只是把答案算出来后就不算了,根本不考虑求解出来的答案是不是合乎题目要求,有没有出现遗漏或增根.在实际解答中要根据元素的特征,结合题目要求和隐含条件,加以重视.当1x y =⎧⎨∈⎩R 时,A =B ={1,1,y },不满足集合元素的互异性;当11x y =⎧⎨=⎩时,A =B ={1,1,1}也不满足元素的互异性;当10x y =-⎧⎨=⎩时,A =B ={1,−1,0},满足题意.集合中元素的特性:(1)确定性. 一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合;(2)互异性. 集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素(3)无序性. 集合与其中元素的排列顺序无关,如a ,b ,c 组成的集合与b ,c ,a 组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系1.集合{x –1,x 2–1,2}中的x 不能取得值是 A .2 B .3 C .4D .5【解析】当x =2时,x –1=1,x 2–1=3,满足集合元素的互异性,集合表示正确;当x =3时,x –1=2,集合中元素重复,不满足互异性,集合表示错误;当x =4时,x –1=3,x 2–1=15,满足集合元素的互异性,集合表示正确;当x =5时,x –1=4,x 2–1=24,满足集合元素的互异性,集合表示正确;故选B . 【答案】B易错点2 误解集合间的关系致错已知集合{}{|0,1}A B x x A ==⊆,,则下列关于集合A 与B 的关系正确的是 A .A B ⊆ B .A ⊂≠B C .B ⊂≠AD .A B ∈【试题解析】因为x A ⊆,所以{}{}{}01{0,1}B =∅,,,,则集合{}0,1A =是集合B 中的元素,所以A B ∈,故选D .【参考答案】D(1)元素与集合之间有且仅有“属于(∈)”和“不属于(∉)”两种关系,且两者必居其一.判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征.(2)包含、真包含关系是集合与集合之间的关系,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇);如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作A B ⊂≠(或B A ⊃≠).2.若集合,,则有 A .B .M ⊂≠NC .M N ⊃≠D .【解析】,,故M ⊂≠N . 故选B . 【答案】B易错点3 忽视空集易漏解已知集合2{|3100}A x x x =--?,{|121}B x m x m =+#-,若A B A =,则实数m 的取值范围是A .[3,3]-B .[2,3]C .(,3]-∞D .[2,)+∞【错因分析】空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.由并集的概念知,对于任何一个集合A ,都有A A ∅=,所以错解中忽略了B =∅时的情况. 【试题解析】∵AB A =,∴B A ⊆.2{|3100}{|25}A x x x x x =--?-#,①若B =∅,则121m m +>-,即2m <,故2m <时,A B A =;②若B ≠∅,如图所示,则121m m +?,即2m ³. 由B A ⊆得21215m m -≤+⎧⎨-≤⎩,解得33m -≤≤.又∵2m ³,∴23m ≤≤.由①②知,当3m ≤时,A B A =.【参考答案】C(1)对于任意集合A ,有A∅=∅,A A ∅=,所以如果A B =∅,就要考虑集合A B 或可能是∅;如果AB A =,就要考虑集合B 可能是∅.(2)空集是任何集合的子集,是任何非空集合的真子集,即A ∅⊆,()B B ⊂∅≠∅≠.3.集合,若,则实数的取值范围是A .B .C .D .【解析】当时,集合,满足题意;当时,,若,则,∴,所以,故选B .【答案】B易错点4 A 是B 的充分条件与A 的充分条件是B 的区别设,a b ∈R ,则“4>+b a ”是“2,2>>b a 且”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件【错解】选A .【错因分析】充分必要条件的概念混淆不清致错.【试题解析】若2,2a b >>且,则4a b +>,但当4,1a b ==时也有4a b +>,故本题选B . 【参考答案】B(1)“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,即B ⇒A 且A /ÞB ; (2)“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ,即A ⇒B 且B /ÞA .4.已知a ,b ∈R ,若221a b +≥的一个充分不必要条件是ab m ≤(0)m <,则实数m 的取值范围是 A .1,2⎛⎤-∞- ⎥⎝⎦B .(],2-∞-C .1,02⎡⎫-⎪⎢⎣⎭D .[)2,0-【解析】由基本不等式得,221212a b ab ab +≥≥⇒≥,由102ab ab <⇒≤-,又因为221a b +≥的一个充分不必要条件是ab m ≤(0)m <,则12m ≤-,故选A . 【答案】A易错点5 命题的否定与否命题的区别命题“()**n f n ∀∈∈N N ,且()f n n ≤”的否定形式是A .()**()n f n f n n ∀∈∉>N N ,且B .**()()n f n f n n ∀∈∉>N N ,或 C .**0000)()(n f n f n n ∃∈∉>N N ,且D .**0000()()n f n f n n ∃∈∉>N N ,或【错因分析】错解1对命题的结论否定错误,没有注意逻辑联结词; 对于错解2,除上述错误外,还没有否定量词;错解3的结论否定正确,但忽略了对量词的否定而造成错选.【试题解析】全称命题的否定为特称命题,因此命题“()**n f n ∀∈∈N N ,且()f n n ≤”的否定形式是“()()**0000n f n f n n ∃∈∉>N N ,或 ”.故选D .【参考答案】D1.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.2.命题的否定(1)对“若p ,则q ”形式命题的否定; (2)对含有逻辑联结词命题的否定; (3)对全称命题和特称命题的否定.(4)全称(或存在性)命题的否定与命题的否定有着一定的区别,全称(或存在性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可.从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题.5.已知2||1:523,:045p x q x x ->>+-,则¬p 是¬q A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件【答案】A的否定形式错误地认为:一、集合1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:(1)确定性:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合.(2)互异性:集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素.(3)无序性:集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系.3.常用数集及其记法:4.集合间的基本关系2n个子集,有否则会造成漏解. 5.集合的基本运算{|B x x =|{B x x =A B A ⊆ A B B ⊆ A A A = A ∅=∅ A B B A = A B A ⊇ A B B ⊇ AA A =A A ∅= AB B A =)A =∅)A U =(.)U UU AB A A B B A B A B =⇔=⇔⊇=⇔∅痧?二、命题及其关系、充分条件与必要条件 1.四种命题2.四种命题间的关系都是任意3.充分条件与必要条件的概念(1)若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)若p ⇒q 且q /⇒p ,则p 是q 的充分不必要条件; (3)若p /⇒q 且q ⇒p ,则p 是q 的必要不充分条件; (4) 若p ⇔q ,则p 是q 的充要条件;(5) 若p /⇒q 且q /⇒p ,则p 是q 的既不充分也不必要条件.(1)等价转化法判断充分条件、必要条件①p 是q 的充分不必要条件⇔q ⌝是p ⌝的充分不必要条件; ②p 是q 的必要不充分条件⇔q ⌝是p ⌝的必要不充分条件; ③p 是q 的充要条件⇔q ⌝是p ⌝的充要条件;④p 是q 的既不充分也不必要条件⇔q ⌝是p ⌝的既不充分也不必要条件.(2)集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :A ={x |p (x ) },q :B ={x |q (x ) },则 ①若A B ⊆,则p 是q 的充分条件; ②若B A ⊆,则p 是q 的必要条件; ③若A B ⊂≠,则p 是q 的充分不必要条件; ④若B A ⊂≠,则p 是q 的必要不充分条件; ⑤若A B =,则p 是q 的充要条件;⑥若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件.三、逻辑联结词、全称量词与存在量词 1.常见的逻辑联结词:或、且、非一般地,用联结词“且”把命题p 和q 联结起来,得到一个新命题,记作p q ∧,读作“p 且q ”; 用联结词“或”把命题p 和q 联结起来,得到一个新命题,记作p q ∨,读作“p 或q ”; 对一个命题p 的结论进行否定,得到一个新命题,记作p ⌝,读作“非p ”. 2.复合命题的真假判断“p 且q ”“p 或q ”“非p ”形式的命题的真假性可以用下面的表(真值表)来确定:3.全称量词和存在量词4.含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:1.(2018浙江)已知全集U ={1,2,3,4,5},A ={1,3},则=U A ð A .∅ B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.(2018新课标全国Ⅰ理科)已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.(2018新课标全国Ⅲ理科)已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,,4.(2018新课标全国Ⅱ理科)已知集合(){}223A x y xy x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .45.(2018浙江)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.(2018天津理科)设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.(2017北京理科)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(2016上海理科)设a ∈R ,则“1>a ”是“12>a ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.(2017新课标Ⅱ卷理)设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,510.(2017新课标Ⅲ卷理)已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1D .011.(2016浙江卷理)命题“*x n ∀∈∃∈,R N ,使得2n x ≥”的否定形式是 A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <12.(2017北京卷理)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件13.(2017天津卷理)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件14.已知集合{}|00{},1x x ax +==,则实数a 的值为 A .−1 B .0 C .1D .215.已知集合,,则()P Q =R ðA .B .C .D .16.设命题p :1,ln x x x ∀>>,则p ⌝为 A .0001,ln x x x ∃>> B .0001,ln x x x ∃≤≤ C .0001,ln x x x ∃>≤D .1,ln x x x ∀>≤17.“若12a ≥错误!未找到引用源。

第一章 集合与常用逻辑用语1 Word版含解析

第一章 集合与常用逻辑用语1 Word版含解析

第一章⎪⎪⎪集合与常用逻辑用语 第一节 集 合本节主要包括2个知识点:1.集合的概念与集合间的基本关系;2.集合的基本运算.突破点(一) 集合的概念与集合间的基本关系[基本知识]1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a ∈A ;若b 不属于集合A ,记作b ∉A . (3)集合的表示方法:列举法、描述法、图示法. 2.集合间的基本关系表示关系文字语言记法集合间的基本关系子集集合A 中任意一个元素都是集合B 中的元素A ⊆B 或B ⊇A真子集集合A 是集合B 的子集,并且B 中至少有一个元素不属于AA B 或B A相等 集合A 的每一个元素都是集合B 的元素,集合B 的每一个元素也都是集合A 的元素A ⊆B 且B ⊆A ⇔A =B空集空集是任何集合的子集∅⊆A 空集是任何非空集合的真子集∅B 且B ≠∅[基本能力]1.判断题(1)若{x 2,1}={0,1},则x =0,1.( )(2)已知集合A ={x |y =x 2},B ={y |y =x 2},C ={(x ,y )|y =x 2},则A =B =C .( ) (3)任何集合都有两个子集.( ) 2.填空题(1)已知集合A ={0,1,x 2-5x },若-4∈A ,则实数x 的值为________.(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.(3)集合A={x∈N|0<x<4}的真子集个数为________.(4)已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=________.[全析考法]集合的概念与集合间的基本关系1.(1)确定构成集合的元素是什么,即确定性.(2)看这些元素的限制条件是什么,即元素的特征性质.(3)根据元素的特征性质求参数的值或范围,或确定集合中元素的个数,要注意检验集合中的元素是否满足互异性.2.判断集合间关系的常用方法列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系[典例](1)若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中元素的个数为()A.5 B.4C.3 D.2(2)(2018·兰州模拟)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅C.A⊆B D.B⊆A(3)(2018·湖南长沙一中月考)已知集合A={x|x2-2x≤0},B={x|x≤a}.若A⊆B,则实数a的取值范围是()A.[2,+∞) B.(2,+∞)C.(-∞,0) D.(-∞,0][易错提醒](1)在用数轴法判断集合间的关系时,其端点能否取到,一定要注意用回代检验的方法来确定.如果两个集合的端点相同,则两个集合是否能同时取到端点往往决定了集合之间的关系.(2)将两个集合之间的关系准确转化为参数所满足的条件时,应注意子集与真子集的区别,此类问题多与不等式(组)的解集相关.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易产生增解或漏解.[全练题点]1.(2018·河北邯郸一中调研)已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B =()A.{0,1,2,3,4} B.{0,1,2}C.{0,2,4} D.{1,2}2.已知集合A={x∈N|x<2},B={y|y=lg(x+1),x∈A},C={x|x∈A或x∈B},则集合C的真子集的个数为()A.3 B.7C.8 D.153.(2018·河北衡水中学调研)设A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B的个数是()A.5 B.4C.3 D.24.(2018·成都模拟)已知集合A={x∈N|1<x<log2k},若集合A中至少有3个元素,则k的取值范围为()A.(8,+∞) B.[8,+∞)C.(16,+∞) D.[16,+∞)5.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.突破点(二)集合的基本运算[基本知识]1.集合的三种基本运算符号表示图形表示符号语言集合的并集A∪B A∪B={x|x∈A,或x∈B}集合的交集 A ∩BA ∩B ={x |x ∈A ,且x ∈B }集合的补集 若全集为U ,则集合A 的补集为∁U A∁U A ={x |x ∈U ,且x ∉A }2.集合的三种基本运算的常见性质(1)A ∩A =A ,A ∩∅=∅,A ∪A =A ,A ∪∅=A . (2)A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .(3)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.[基本能力]1.判断题(1)若A ∩B =A ∩C ,则B =C .( )(2)若集合A =⎩⎨⎧⎭⎬⎫x | 1x >0,则∁R A =⎩⎨⎧⎭⎬⎫x |1x ≤0.( )(3)设集合U ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁U B )={1}.( ) 2.填空题(1)(2018·浙江模拟)已知集合P ={x ∈R |0≤x ≤4},Q ={x ∈R ||x |<3},则P ∪Q =________. (2)(2018·安徽合肥模拟)已知集合A ={x |x 2<4},B ={x |x -1≥0},则A ∩B =________. (3)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(∁U B )=________.(4)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=________.[全析考法]集合的交集或并集[例1] ,则P ∩Q =( ) A .{1} B .{1,2} C .{2,3}D .{1,2,3}(2)(2018·山东菏泽模拟)设集合A =⎩⎨⎧⎭⎬⎫x |12<x <2,B ={x |x 2<1},则A ∪B =( )A .{x |1<x <2}B .{x |-1<x <2} C.⎩⎨⎧⎭⎬⎫x |12<x <1 D .{x |-1<x <1}[方法技巧] 求集合交集或并集的方法步骤交、并、补的混合运算[例2] (1)(2018·山东临沂模拟)设集合U =R ,A ={x |2x (x-2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}(2)(2018·湖北黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( )A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1}[方法技巧]解决交、并、补混合运算的一般思路(1)用列举法表示的集合进行交、并、补集运算时,常采用Venn 图法解决,此时要搞清Venn 图中的各部分区域表示的实际意义.(2)用描述法表示的数集进行运算,常采用数轴分析法解决,此时要注意“端点”能否取到.(3)若给定的集合是点集,常采用数形结合法求解.集合的新定义问题-N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A ⊕B =( )A.⎝⎛⎦⎤-94,0 B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) [方法技巧]解决集合新定义问题的着手点(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.[全练题点]1.[考点一](2018·长春模拟)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)2.[考点二](2018·广州模拟)若全集U=R,集合A={x|1<2x<4},B={x|x-1≥0},则A∩∁U B=()A.{x|1<x<2} B.{x|0<x≤1}C.{x|0<x<1} D.{x|1≤x<2}3.[考点一](2018·潍坊模拟)若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},则A∩B =()A.(2,4] B.[2,4]C.(-∞,0)∪(0,4] D.(-∞,-1)∪[0,4]4.[考点三](2018·沈阳模拟)已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素之和为() A.15 B.16C.20 D.215.[考点三]如图所示的Venn图中,A,B是非空集合,定义集合A B为阴影部分表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x,x>0},则A B为()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅2.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A .{1,-3}B .{1,0}C .{1,3}D .{1,5}3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .04.(2016·全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,35.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( ) A .{1} B .{1,2} C .{0,1,2,3}D .{-1,0,1,2,3}6.(2015·全国卷Ⅱ)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}[课时达标检测][小题对点练——点点落实]对点练(一) 集合的概念与集合间的基本关系 1.已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A BD .B A2.(2018·莱州一中模拟)已知集合A ={x ∈N |x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .53.(2018·广雅中学测试)若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是( )4.已知集合A={m+2,2m2+m},若3∈A,则m的值为________.5.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.对点练(二)集合的基本运算1.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]2.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=()A.{0} B.{1}C.{0,1} D.{0,-1}3.(2018·中原名校联考)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3]B.(-∞,1]∪(2,+∞)C.[1,2)D.(-∞,0)∪[1,+∞)4.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=()A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}5.(2018·河北正定中学月考)已知集合P={y|y2-y-2>0},Q={x|x2+ax+b≤0}.若P ∪Q=R,且P∩Q=(2,3],则a+b=()A.-5 B.5C.-1 D.16.(2018·唐山统一考试)若全集U=R,集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是()A.{x|2<x<3} B.{x|-1<x≤0}C.{x|0≤x<6} D.{x|x<-1}7.已知集合A={x|x2-x-12>0},B={x|x≥m}.若A∩B={x|x>4},则实数m的取值范围是()A.(-4,3) B.[-3,4]C.(-3,4) D.(-∞,4]8.已知全集U={x∈Z|0<x<8},集合M={2,3,5},N={x|x2-8x+12=0},则集合{1,4,7}为()A.M∩(∁U N) B.∁U(M∩N)C.∁U(M∪N) D.(∁U M)∩N[大题综合练——迁移贯通]1.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.2.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.3.(2018·江西玉山一中月考)已知集合A={x|3≤3x≤27},B={x|log2x>1}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.第二节命题及其关系、充分条件与必要条件本节主要包括2个知识点:1.命题及其关系;2.充分条件与必要条件.突破点(一)命题及其关系[基本知识]1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[基本能力]1.判断题(1)“x2+2x-3<0”是命题. ()(2)命题“若p,则q”的否命题是“若p,则綈q”.()2.填空题(1)“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.(2)命题“若x>1,则x>0”的否命题是______________________________________.(3)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是________________________________________________________________________.(4)有下列几个命题:①“若a>b,则1a>1b”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.[全析考法]命题的真假判断[例1]下列命题中为真命题的是()A.若1x=1y,则x=y B.若x2=1,则x=1C.若x=y,则x=y D.若x<y,则x2<y2[方法技巧]判断命题真假的思路方法(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由“p”经过逻辑推理,得出“q”,则可判定“若p,则q”是真命题;②判定“若p,则q”是假命题,只需举一反例即可.四种命题的关系由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.[例2](1)(2018·西安八校联考)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定(2)原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,真,真B.假,假,真C.真,真,假D.假,假,假[方法技巧]1.写一个命题的其他三种命题时的注意事项(1)对于不是“若p,则q”形式的命题,需先改写为“若p,则q”形式.(2)若命题有大前提,需保留大前提.2.判断四种命题真假的方法(1)利用简单命题判断真假的方法逐一判断.(2)利用四种命题间的等价关系:当一个命题不易直接判断真假时,可转化为判断其等价命题的真假.[全练题点]1.[考点一]下列命题中为真命题的是()A.mx2+2x-1=0是一元二次方程B.抛物线y=ax2+2x-1与x轴至少有一个交点C.互相包含的两个集合相等D.空集是任何集合的真子集2.[考点二](2018·河北承德模拟)已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③3.[考点一、二](2018·黄冈调研)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是() A.3 B.2 C.1 D.04.[考点一、二]有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中为真命题的是________(填写所有真命题的序号).突破点(二)充分条件与必要条件[基本知识]1.充分条件与必要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q pp是q的必要不充分条件p q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p q且q p 2.p成立的对象构成的集合为A,q成立的对象构成的集合为Bp是q的充分条件A⊆Bp是q的必要条件B⊆Ap是q的充分不必要条件A Bp是q的必要不充分条件B Ap是q的充要条件A=B[基本能力]1.判断题(1)当q 是p 的必要条件时,p 是q 的充分条件.( )(2)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( ) (3)“x =1”是“x 2-3x +2=0”的必要不充分条件.( ) 2.填空题(1)若x ∈R ,则“x >1”是“1x <1”的____________条件. (2)设x >0,y ∈R ,则“x >y ”是“x >|y |”成立的________条件. (3)在△ABC 中,A =B 是tan A =tan B 的________条件.(4)设p ,r 都是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么p 是t 的________条件,r 是t 的________条件.(用“充分”“必要”“充要”填空)[全析考法]充分条件与必要条件的判断[例1] (1)(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 (2)(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[方法技巧]充分、必要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.根据充分、必要条件求参数范围[例2] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[方法技巧]根据充分、必要条件求参数范围的思路方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[全练题点]1.[考点一](2018·长沙四校联考)“x >1”是“log 2(x -1)<0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 2.[考点二]已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1]3.[考点一](2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.[考点一](2016·北京高考)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.[考点二](2018·河北石家庄模拟)已知命题p :⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围是________.[全国卷5年真题集中演练——明规律]1.(2014·全国卷Ⅱ)函数f(x) 在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件2.(2017·全国卷Ⅰ)设有下面四个命题:p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=z2;p4:若复数z∈R,则z∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4[课时达标检测][小题对点练——点点落实]对点练(一)命题及其关系1.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是() A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数2.命题“若△ABC有一内角为π3,则△ABC的三内角成等差数列”的逆命题()A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题3.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题中结论成立的是()A.都真B.都假C.否命题真D.逆否命题真4.(2018·德州一中模拟)下列命题中为真命题的序号是________.①若x≠0,则x+1x≥2;②命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1;③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;④命题“若x<-1,则x2-2x-3>0”的否命题为“若x≥-1,则x2-2x-3≤0”.5.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________________________________________________________________.对点练(二)充分条件与必要条件1.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2018·浙江名校联考)一次函数y=-mn x+1n的图象同时经过第一、三、四象限的必要不充分条件是()A.m>1,且n<1 B.mn<0C.m>0,且n<0 D.m<0,且n<03.(2018·河南豫北名校联盟精英对抗赛)设a,b∈R,则“log2a>log2b”是“2a-b>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2018·重庆第八中学调研)定义在R上的可导函数f(x),其导函数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(2018·山西怀仁一中期中)命题“∀x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是()A.a≥4 B.a>4C.a≥1 D.a>16.(2018·广东梅州质检)已知命题p:“方程x2-4x+a=0有实根”,且綈p为真命题的充分不必要条件为a>3m+1,则实数m的取值范围是()A.[1,+∞) B.(1,+∞)C.(-∞,1) D.(0,1)7.(2018·福建闽侯二中期中)设命题p:|4x-3|≤1;命题q:x2-(2a+1)x+a(a+1)≤0.若綈p是綈q的必要不充分条件,则实数a的取值范围是________.[大题综合练——迁移贯通]1.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.2.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}. (1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围. (2)若A ∩B =∅,求a 的取值范围.第三节 简单的逻辑联结词、全称量词与存在量词 本节主要包括2个知识点: 1.简单的逻辑联结词;2.全称量词与存在量词.突破点(一) 简单的逻辑联结词[基本知识]命题p ∧q 、p ∨q 、綈p 的真假判定p q p ∧q p ∨q 綈p 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真简记为“p ∧q 綈p 与p 真假相反”.[基本能力]1.判断题(1)命题“5>6或5>2”是假命题.( )(2)命题綈(p ∧q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)p ∨q 为真命题,p ∧q 为假命题,则p 真q 假.( ) 2.填空题(1)已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是________.(2)命题“全等三角形的面积一定都相等”的否定是______________________________.(3)已知命题p :∃x 0∈R ,e x 0-mx 0=0,q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是________.[全析考法]含逻辑联结词命题的真假判断[例1] (2017·山东高考)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q[方法技巧]判断含有逻辑联结词命题真假的关键及步骤(1)判断含有逻辑联结词的命题真假的关键是正确理解“或”“且”“非”的含义,应根据命题中所出现的逻辑联结词进行命题结构的分析与真假的判断.(2)判断命题真假的步骤根据复合命题的真假求参数[例2] x 2-x +c ≤0的解集是∅.若p 且q 为真命题,则实数c 的取值范围是________.[方法技巧]根据复合命题真假求参数的步骤(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况); (2)求出每个命题是真命题时参数的取值范围;(3)根据给出的复合命题的真假推出每个命题的真假情况,从而求出参数的取值范围.[全练题点]1.[考点一](2018·山西临汾一中等五校联考)已知命题p :∀x ≥4,log 2x ≥2;命题q :在△ABC 中,若A >π3,则sin A >32.则下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C.(綈p)∧(綈q) D.(綈p)∨q2.[考点一](2018·广西陆川模拟)已知命题p:若a>|b|,则a2>b2;命题q:若x2=4,则x=2.下列说法正确的是()A.“p∨q”为真命题B.“p∧q”为真命题C.“綈p”为真命题D.“綈q”为假命题3.[考点二]设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax在x∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,则实数a的取值范围为________.4.[考点二]已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y =2x2+ax+4在[3,+∞)上是增函数.若p∨q是真命题,则实数a的取值范围是________.突破点(二)全称量词与存在量词[基本知识]1.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个、任给等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃名称全称命题特称命题形式结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记∀x∈M,p(x)∃x0∈M,p(x0)否定∃x0∈M,綈p(x0)∀x∈M,綈p(x)[基本能力]1.判断题(1)“长方形的对角线相等”是特称命题.()(2)命题“对顶角相等”的否定是“对顶角不相等”.()(3)写特称命题的否定时,存在量词变为全称量词.()(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.()2.填空题(1)(2018·东北育才检测)已知命题p:∀x∈R,e x-x-1>0,则綈p是________________________.(2)命题p 的否定是“对∀x ∈(0,+∞),x >x +1”,则命题p 是________________________________.(3)命题“存在实数x,使x >1”的否定是_______________________________________.(4)若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[全析考法]全(特)称命题的否定[例1] (1)(2016·浙江高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2(2)命题“∃x 0∈R ,2x 0<12或x 20>x 0”的否定是( ) A .∃x 0∈R ,2 x 0≥12或x 20≤x 0 B .∀x ∈R ,2x ≥12或x 2≤xC .∀x ∈R ,2x ≥12且x 2≤xD .∃x 0∈R ,2 x 0≥12且x 20≤x 0[方法技巧]对全(特)称命题进行否定的方法(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词; (2)否定结论:对于一般命题的否定只需直接否定结论即可.[提醒] 对于省略量词的命题,应先挖掘命题中的隐含的量词,改写成含量词的完整形式,再写出命题的否定.全(特)称命题的真假判断[例2]下列命题中为假命题的是()A.∀x∈R,e x>0 B.∀x∈N,x2>0C.∃x0∈R,ln x0<1 D.∃x0∈N*,sin πx02=1[方法技巧]全(特)称命题真假的判断方法全称命题(1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立;(2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可特称命题要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题根据全(特)称命题的真假求参数[例3](2018·昆明模拟)由命题“存在x0∈R,使x20+2x0+m≤0”是假命题,求得m 的取值范围是(a,+∞),则实数a的值是________.[方法技巧]根据全(特)称命题的真假求参数的思路与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.[全练题点]1.[考点一]“∀x∈R,2x-12x<1”的否定为()A.∀x∈R,2x-12x≥1B.∀x∈R,2x-12x≤1C.∃x0∈R,2x0-12x0>1D.∃x0∈R,2x0-12x0≥12.[考点一、二](2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则()A .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)≤0B .p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0C .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0D .p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>03.[考点二]以下四个命题既是特称命题又是真命题的是( )A .锐角三角形有一个内角是钝角B .至少有一个实数x ,使x 2≤0C .两个无理数的和必是无理数D .存在一个负数x ,1x>2 4.[考点二]已知命题p :∀x ∈R ,x 2+ax +a 2≥0;命题q :∃x 0∈R ,sin x 0+cos x 0=2,则下列命题中为真命题的是( )A .p ∧qB .p ∨qC .(綈p )∨qD .(綈p )∧(綈q )5.[考点三]若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.[全国卷5年真题集中演练——明规律]1.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n2.(2013·全国卷Ⅰ)已知命题p :∀x ∈R ,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q[课时达标检测][小题对点练——点点落实]对点练(一) 简单的逻辑联结词1.(2018·衡阳质检)已知命题p :∃α∈R ,cos(π-α)=cos α;命题q :∀x ∈R ,x 2+1>0.则下面结论正确的是( )A .p ∧q 是真命题B .p ∧q 是假命题C .綈p 是真命题D .p 是假命题2.(2018·开封模拟)已知命题p 1:∀x ∈(0,+∞),3x >2x ,命题p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 43.(2018·河北武邑中学双基测试)设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是( )A .{a |0<a <1或a >2}B .{a |0<a <1或a ≥2}C .{a |1<a ≤2}D .{a |1≤a ≤2}4.已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x 0∈R ,使得x 20+4x 0+a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围为________.5.已知命题p :f (x )=1-2m x 2在区间(0,+∞)上是减函数;命题q :不等式x 2-2x >m -1的解集为R .若命题“p ∨q ”为真,“p ∧q ”为假,则实数m 的取值范围是________.对点练(二) 全称量词与存在量词1.(2018·黑龙江鸡西月考)命题“对任意x ∈R ,都有x 2-2x +4≤0”的否定为( )A .对任意x ∈R ,都有x 2-2x +4≥0B .对任意x ∈R ,都有x 2-2x +4>0C .存在x 0∈R ,使得x 20-2x 0+4>0D .存在x 0∈R ,使得x 20-2x 0+4≤02.(2018·山东临沂期中)命题“∃x 0∈(0,+∞),ln x 0=x 0-2”的否定是( )A .∀x ∈(0,+∞),ln x ≠x -2B .∀x ∉(0,+∞),ln x =x -2C .∃x 0∈(0,+∞),使得ln x 0≠x 0-2D .∃x 0∉(0,+∞),使得ln x 0=x 0-23.命题p :∃x ∈N ,x 3<x 2;命题q :∀a ∈(0,1)∪(1,+∞),函数f (x )=log a (x -1)的图象过点(2,0),则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真4.(2018·福州质检)命题“∃x 0∈R ,使得f (x 0)=x 0”的否定是( )A .∀x ∈R ,都有f (x )=xB .不存在x 0∈R ,使f (x 0)≠x 0C .∀x ∈R ,都有f (x )≠xD .∃x 0∈R ,使f (x 0)≠x 05.(2018·九江调研)下列命题中,真命题是( )A .存在x 0∈R ,sin 2x 2+cos 2x 2=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2+1>xD .存在x 0∈R ,x 20+x 0=-16.(2018·长沙模拟)已知函数f (x )=e x ,g (x )=x +1.则关于f (x ),g (x )的语句为假命题的是( )A .∀x ∈R ,f (x )>g (x )B .∃x 1,x 2∈R ,f (x 1)<g (x 2)C .∃x 0∈R ,f (x 0)=g (x 0)D .∃x 0∈R ,使得∀x ∈R ,f (x 0)-g (x 0)≤f (x )-g (x )7.若命题p :存在x ∈R ,ax 2+4x +a <-2x 2+1是假命题,则实数a 的取值范围是________.[大题综合练——迁移贯通]1.给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.2.已知命题p :“存在a >0,使函数f (x )=ax 2-4x 在(-∞,2]上单调递减”,命题q :“存在a ∈R ,使∀x ∈R ,16x 2-16(a -1)x +1≠0”.若命题“p ∧q ”为真命题,求实数a 的取值范围.3.设p :实数x 满足x 2-4ax +3a 2<0,其中a >0.q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.。

专题01 集合与常用逻辑用语-2014年高考数学试题分项版解析(原卷版)

专题01 集合与常用逻辑用语-2014年高考数学试题分项版解析(原卷版)
2 A. x0 R,பைடு நூலகம்x0 1 0 2 C. x0 R, x0 1 0
2 B. x0 R, x0 1 0
D. x R , 2x 1 0
11. 【2014 高考湖南卷文第 2 题】已知集合 A {x | x 2}, B {x |1 x 3} ,则 A B (

4. 【2014 高考大纲卷文第 1 题】设集合 M={1,2,4,6,8},N={2,3,5,6,7},则 M 元素的个数为( A. 2 B. ) 3 C. 5 D. 7
N中
5. 【2014 高考福建卷文第 1 题】 若集合 P x 2 x 4 , Q x x 3 , 则 P Q 等于
7. 【2014 高考广东卷文第 1 题】已知集合 M 2,3, 4 , N 0, 2,3,5 ,则 M A. 0, 2 D. 3,5 B. 2,3
N (

C. 3, 4
8.【2014 高考湖北卷文第 1 题】已知全集 U {1,2,3,4,5,6,7} , 集合 A {1,3,5,6} , 则 CU A ( A. {1,3,5,6} B. {2,3,7} C. {2,4,7} D. {2,5,7} )
12.【2014 高考江苏卷第 1 题】 已知集合 A 2, 1,3, 4 , 则 A B B 1, 2,3 ,
.
13. 【2014 高考江西卷文第 2 题】设全集为 R ,集合 A {x | x2 9 0}, B {x | 1 x 5} ,则
A (CR B) (
第2页 共4页
N

) B. (1,1) C. (1,3) D. (2,3) )
A. (2,1)

专题01 集合与常用逻辑用语-2014年高考数学试题分项版解析(原卷版)

专题01 集合与常用逻辑用语-2014年高考数学试题分项版解析(原卷版)

专题1 集合与常用逻辑用语1. 【2014高考安徽卷文第2题】命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x2. 【2014高考北京卷文第1题】若集合A={}0,1,2,4,B={}1,2,3,则A B ⋂=( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}33. 【2014高考北京卷文第5题】设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件4. 【2014高考大纲卷文第1题】设集合M={1,2,4,6,8},N={2,3,5,6,7},则M N 中元素的个数为( )A. 2B. 3C. 5D. 75.【2014高考福建卷文第1题】若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于 ( ) }{}{}{}{.34.34.23.23A x x B x x C x x D x x ≤<<<≤<≤≤ 6. 【2014高考福建卷文第5题】命题“[)30,.0x x x ∀∈+∞+≥”的否定是 ( )()()[)[)3333000000.,0.0.,0.0.0,.0.0,.0A x x x B x x x C x x x D x x x ∀∈-∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥7. 【2014高考广东卷文第1题】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( )A.{}0,2B.{}2,3C.{}3,4D.{}3,58. 【2014高考湖北卷文第1题】 已知全集}7,6,5,4,3,2,1{=U ,集合}6,5,3,1{=A ,则=A C U ( )A.}6,5,3,1{B. }7,3,2{C. }7,4,2{D. }7,5,2{9. 【2014高考湖北卷文第3题】命题“R ∈∀x ,x x ≠2”的否定是( )A. R ∉∀x ,x x ≠2B. R ∈∀x ,x x =2C. R ∉∃x ,x x ≠2D. R ∈∃x ,x x =210. 【2014高考湖南卷文第1题】设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 2.,10D x R x ∀∈+≤ 11. 【2014高考湖南卷文第2题】已知集合{|2},{|13}A x x B x x =>=<<,则A B =( ).{|2}A x x > .{|1}B x x > .{|23}C x x << .{|13}D x x << “高中数学教师俱乐部”QQ 群号码:44359573,欢迎各位一线高中数学教师加入.注:该群为教师群,拒绝学生申请.“高中数学师生群”QQ 群号码:341383390,欢迎各位一线高中数学教师加入,欢迎各位在读高中学生加入.12. 【2014高考江苏卷第1题】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= . 13. 【2014高考江西卷文第2题】设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D - 14. 【2014高考江西卷文第6题】下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ15. 【2014高考辽宁卷文第1题】 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<16. 【2014高考全国1卷文第1题】已知集合{}{}|13,|21M x x N x x =-<<=-<<,则MN =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-17. 【2014高考全国2卷文第1题】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅B. {}2C. {0}D. {2}-获取更多优质资源,请在百度文库输入“曹亚云”搜索。

2020年高考文科数学专题一 集合与常用逻辑用语 含习题答案

2020年高考文科数学专题一  集合与常用逻辑用语 含习题答案

2020年高考文科数学专题一集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a 不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。

专题01 集合与常用逻辑用语——三年(2021-2021)高考真题理科数学分项汇编(解析版)

专题01 集合与常用逻辑用语——三年(2021-2021)高考真题理科数学分项汇编(解析版)

专题01 集合与常用逻辑用语1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a = A .–4 B .–2 C .2 D .4【答案】B 【解析】 【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故12a-=, 解得2a =-. 故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 2.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UAB =A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选A【点睛】本题主要考查并集、补集的定义与应用,属于基础题.3.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 A .2B .3.C .4D .6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.4.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】 【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知{}2,1,1UB =--,则(){}U1,1AB =-.故选C .【点睛】本题主要考查补集运算,交集运算,属于基础题.5.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】 【分析】根据交集定义直接得结果. 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选D .【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题. 6.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选A .【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题. 7.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4} 【答案】C 【解析】 【分析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==.故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.8.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则PQ =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<【答案】B 【解析】 【分析】根据集合交集定义求解 【详解】(1,4)(2,3)(2,3)P Q ==.故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.9.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B 【解析】 【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选B.【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题..10.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)kk αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】 【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得π(1)kk αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦; (2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)kk αβ=+-.所以,“存在k ∈Z 使得π(1)kk αβ=+-”是“sin sin αβ=”的充要条件.故选C .【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.11.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则MN =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}MN x x =-<<.故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.12.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞.故选A .【名师点睛】本题考点为集合的运算,为基础题目.13.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-.故选A .【名师点睛】本题考查了集合交集的求法,是基础题.14.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D 【解析】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.15.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】∵{1,3}UA =-,∴(){1}U AB =-.故选A.【名师点睛】注意理解补集、交集的运算.16.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 17.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 18.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.19.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.20.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},A ={1,3}, 所以根据补集的定义得∁U A ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.21.【2018年高考全国Ⅰ卷理数】已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥【答案】B【解析】解不等式x 2−x −2>0得x <−1或x >2,所以A ={x|x <−1或x >2}, 所以可以求得{}|12A x x =-≤≤R.故选B .【名师点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.22.【2018年高考全国Ⅲ卷理数】已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】易得集合{|1}A x x =≥, 所以{}1,2AB =.故选C .【名师点睛】本题主要考查交集的运算,属于基础题.23.【2018年高考天津理数】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R ABA .{01}x x <≤B .{01}x x <<C .{12}x x ≤<D .{02}x x <<【答案】B【解析】由题意可得:B R={x|x <1},结合交集的定义可得:()=R A B {0<x <1}.故选B.【名师点睛】本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.24.【2018年高考全国Ⅱ卷理数】已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【答案】A【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z,∴x =−1,0,1, 当x =−1时,y =−1,0,1; 当x =0时,y =−1,0,1; 当x =−1时,y =−1,0,1, 所以共有9个元素. 选A .【名师点睛】本题考查集合与元素的关系,点与圆的位置关系,考查学生对概念的理解与识别. 25.【2018年高考北京理数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A【解析】∵|x|<2,∴−2<x <2, 因此A ∩B =(−2,2)∩{−2,0,1,2}={0,1}. 故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.26.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为m ⊄α,n ⊂α,m//n ,所以根据线面平行的判定定理得m//α.由m//α不能得出m 与α内任一直线平行,所以m//n 是m//α的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.27.【2018年高考天津理数】设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】绝对值不等式|x −12|<12 ⇔ −12<x −12<12 ⇔ 0<x <1, 由x 3<1 ⇔ x <1.据此可知|x −12|<12是x 3<1的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.28.【2018年高考北京理数】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C 【解析】2222223333699+6-=+⇔-=+⇔-⋅+=⋅+a b a b a b a b a a b b a a b b ,因为a ,b 均为单位向量,所以2222699+60=-⋅+=⋅+⇔⋅⇔a a b b a a b b a b ⊥a b ,即“33-=+a b a b ”是“a ⊥b ”的充分必要条件.故选C.【名师点睛】充分、必要条件的三种判断方法:1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 29.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =_____. 【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2A B =.故答案为{}0,2.【点睛】本题考查了交集及其运算,是基础题型.30.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合A ={0,1,2,8},B ={−1,1,6,8},那么A ∩B =________.【答案】{1,8}【解析】由题设和交集的定义可知:A ∩B ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2018年高考北京理数】能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =-- (答案不唯一) 【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是单调函数. 【名师点睛】解题本题需掌握充分必要条件和函数的性质,举出反例即可.。

高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

高考数学必刷真题分类大全-专题01-集合与常用逻辑用语

【答案】D
【试题解析】由题意, B= x x2 4x 3 0 1,3,所以 A B 1,1, 2,3 ,
所以 ðU A B 2, 0 .故选:D.
【命题意图】本类题通常主要考查简单不等式解法、交集、并集、补集等运算. 【命题方向】这类试题在考查题型上主要以选择题的形式出现.试题难度不大,多为低档题,集合的基本 运算是历年高考的热点.集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解 及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力. 常见的命题角度有: (1)求交集或并集;(2)交、并、补的混合运算;(3)新定义集合问题. 【得分要点】 解集合运算问题应注意如下三点:
”的(

A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
7.(2022·青海·海东市第一中学模拟预测(文))设
m,
n
为实数,则“
0.1m
0.1n
”是“
lg
1 m
lg
1 n
”的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
8.(2022·上海虹口·二模)已知 l1 ,l2 是平面 内的两条直线,l 是空间的一条直线,则“ l ”是“ l l1 且 l l2 ”
CU A _____.
13.(2022·广东·华南师大附中三模)当 x a 时, x 1 0 成立,则实数 a 的取值范围是____________. x
14.(2022·山东聊城·三模)命题“ x R ,a2 4 x2 a 2 x 1 0 ”为假命题,则实数 a 的取值范围为______.

专题01 集合与常用逻辑用语(解析版)

专题01 集合与常用逻辑用语(解析版)

专题01 集合与常用逻辑用语1.【2022年全国甲卷】设集合,则()A.B.C.D.【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为,,所以.故选:A.2.【2022年全国甲卷】设全集,集合,则()A.B.C.D.【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,,所以,所以.故选:D.3.【2022年全国乙卷】集合,则()A.B.C.D.【答案】A【解析】【分析】根据集合的交集运算即可解出.【详解】因为,,所以.故选:A.4.【2022年全国乙卷】设全集,集合M满足,则()A.B.C.D.【答案】A【解析】【分析】先写出集合,然后逐项验证即可【详解】由题知,对比选项知,正确,错误故选:5.【2022年新高考1卷】若集合,则()A.B.C.D.【答案】D【解析】【分析】求出集合后可求.【详解】,故,故选:D6.【2022年新高考2卷】已知集合,则()A.B.C.D.【答案】B【解析】【分析】求出集合后可求.【详解】,故,故选:B.7.【2021年甲卷文科】设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B 【解析】 【分析】求出集合N 后可求M N ⋂. 【详解】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B.8.【2021年甲卷理科】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则MN =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143x x ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B 【解析】 【分析】根据交集定义运算即可 【详解】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B. 【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.9.【2021年乙卷文科】已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5 B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 【解析】首先进行并集运算,然后进行补集运算即可. 【详解】 由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A.10.【2021年乙卷文科】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧ B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A 【解析】 【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项. 【详解】由于sin0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题; 所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题. 故选:A .11.【2021年乙卷理科】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( ) A .∅ B .SC .TD .Z【答案】C 【解析】 【分析】分析可得T S ⊆,由此可得出结论. 【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.12.【2021年新高考1卷】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( ) A .{}2 B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】利用交集的定义可求A B . 【详解】由题设有{}2,3A B ⋂=, 故选:B .13.【2021年新高考2卷】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =() A .{3} B .{1,6} C .{5,6} D .{1,3}【答案】B 【解析】 【分析】根据交集、补集的定义可求()U A B ⋂. 【详解】 由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.14.【2020年新课标1卷理科】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】 【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B. 【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 15.【2020年新课标1卷文科】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】 【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果. 【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =, 故选:D. 【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.16.【2020年新课标2卷理科】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3}【答案】A 【解析】 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A. 【点睛】本题主要考查并集、补集的定义与应用,属于基础题.17.【2020年新课标2卷文科】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】 【分析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--, {}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-. 故选:D. 【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.18.【2020年新课标3卷理科】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B中元素的个数为( ) A .2 B .3C .4D .6【答案】C 【解析】 【分析】采用列举法列举出A B 中元素的即可. 【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故A B 中元素的个数为4. 故选:C. 【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.19.【2020年新课标3卷文科】已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】采用列举法列举出A B 中元素的即可. 【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.20.【2020年新高考1卷(山东卷)】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}【答案】C 【解析】 【分析】根据集合并集概念求解. 【详解】 [1,3](2,4)[1,4)AB ==故选:C 【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.21.【2020年新高考2卷(海南卷)】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =( ) A .{1,3,5,7} B .{2,3}C .{2,3,5}D .{1,2,3,5,7,8}【答案】C 【解析】 【分析】根据集合交集的运算可直接得到结果. 【详解】 因为A{2,3,5,7},B ={1,2,3,5,8},所以{}2,3,5A B = 故选:C 【点睛】本题考查的是集合交集的运算,较简单.22.【2019年新课标1卷理科】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N⋂=( ) A .}{43x x -<< B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C . 【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 23.【2019年新课标1卷理科】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解. 【详解】设人体脖子下端至肚脐的长为x cm ,肚脐至腿根的长为y cm ,则262651105x x y +-=+得42.07, 5.15x cm y cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.24.【2019年新课标1卷文科】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7【答案】C 【解析】 【分析】 先求UA ,再求UBA .【详解】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案. 25.【2019年新课标2卷理科】设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A 【解析】 【分析】先求出集合A ,再求出交集. 【详解】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 【点睛】本题考点为集合的运算,为基础题目.26.【2019年新课标2卷文科】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅ 【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-,故选C . 【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.27.【2019年新课标2卷文科】在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.28.【2019年新课标3卷理科】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】先求出集合B 再求出交集. 【详解】21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B =-, 故选A . 【点睛】本题考查了集合交集的求法,是基础题.29.【2019年新课标3卷文科】记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是 A .①③ B .①②C .②③D .③④【答案】A 【解析】 【分析】根据题意可画出平面区域再结合命题可判断出真命题. 【详解】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩ 即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .【点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.30.【2018年新课标1卷理科】已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃ D .}{}{|1|2x x x x ≤-⋃≥【答案】B 【解析】 【详解】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.31.【2018年新课标1卷文科】已知集合{}02A =,,{}21012B =--,,,,,则A B = A .{}02, B .{}12, C .{}0D .{}21012--,,,, 【答案】A 【解析】 【分析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合A B 中的元素,最后求得结果. 【详解】详解:根据集合交集中元素的特征,可以求得{}0,2A B =,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.32.【2018年新课标2卷理科】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9 B .8 C .5D .4【答案】A 【解析】 【分析】根据枚举法,确定圆及其内部整点个数. 【详解】 223x y +≤ 23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-; 当0x =时,1,0,1y =-; 当1x =时,1,0,1y =-; 所以共有9个,故选:A. 【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 33.【2018年新课标2卷文科】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 【解析】 【详解】分析:根据集合{1,3,5,7},{2,3,4,5}A B ==可直接求解{3,5}A B =. 详解:{1,3,5,7},{2,3,4,5}A B ==,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.34.【2018年新课标3卷理科】已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0 B .{}1 C .{}12, D .{}012,, 【答案】C 【解析】 【详解】分析:由题意先解出集合A,进而得到结果. 详解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C.点睛:本题主要考查交集的运算,属于基础题.35.【2018年新课标3卷文科】已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B = A .{0} B .{1}C .{1,2}D .{0,1,2}【答案】C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.36.【2020年新课标2卷理科】设有下列四个命题: p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 【答案】①③④ 【解析】 【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论. 【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题. 综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④. 【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.。

高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)

高中数学第一章集合与常用逻辑用语总结(重点)超详细(带答案)

高中数学第一章集合与常用逻辑用语总结(重点)超详细单选题1、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.2、已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,|x−y∣∈A}中所含元素的个数为()A.2B.4C.6D.8答案:C分析:根据题意利用列举法写出集合B,即可得出答案.解:因为A={1,2,3},所以B={(2,1),(3,1),(3,2),(1,2),(1,3),(2,3)},B中含6个元素.故选:C.3、若集合A={x∣|x|≤1,x∈Z},则A的子集个数为()A.3B.4C.7D.8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A={x∥x∣≤1,x∈Z}={−1,0,1},则A的子集个数为23=8个,故选:D.4、已知集合M={x|1−a<x<2a},N=(1,4),且M⊆N,则实数a的取值范围是()A.(−∞,2]B.(−∞,0]C.(−∞,13]D.[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13]. 故选:C5、已知集合P ={x|1<x <4},Q ={x|2<x <3},则P ∩Q =( )A .{x|1<x ≤2}B .{x|2<x <3}C .{x|3≤x <4}D .{x|1<x <4}答案:B分析:根据集合交集定义求解.P ∩Q =(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.6、已知集合S ={x ∈N|x ≤√5},T ={x ∈R|x 2=a 2},且S ∩T ={1},则S ∪T =( )A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}答案:C分析:先 根据题意求出集合T ,然后根据并集的概念即可求出结果.S ={x ∈N|x ≤√5}={0,1,2},而S ∩T ={1},所以1∈T ,则a 2=1,所以T ={x ∈R|x 2=a 2}={−1,1},则S ∪T ={−1,0,1,2}故选:C.7、设集合A ={x |−2<x <4},B ={2,3,4,5},则A ∩B =( )A .{2}B .{2,3}C .{3,4}D .{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.多选题9、若集合A={x|x=m2+n2,m,n∈Z},则()A.1∈A B.2∈A C.3∈A D.4∈A答案:ABD解析:分别令m2+n2等于1,2,3,4,判断m,n是否为整数即可求解.对于选项A:m2+n2=1,存在m=0,n=1或m=1,n=0使得其成立,故选项A正确;对于选项B:m2+n2=2,存在m=1,n=1,使得其成立,故选项B正确;对于选项C:由m2+n2=3,可得m2≤3,n2≤3,若m2=0则n2=3可得n=±√3,n∉z,不成立;若m2=1则n2=2可得n=±√2,n∉z,不成立;若m2=3,可得n2=0,此时m=±√3,m∉z,不成立;同理交换m与n,也不成立,所以不存在m,n为整数使得m2+n2=3成立,故选项C不正确;对于选项D:m2+n2=4,此时存在m=0,n=2或m=2,n=0使得其成立,故选项D正确,故选:ABD.10、已知全集U =R ,集合A ={x|−2≤x ≤7},B ={x|m +1≤x ≤2m −1},则使A ⊆∁U B 成立的实数m 的取值范围可以是( )A .{m|6<m ≤10}B .{m|−2<m <2}C .{m|−2<m <−12}D .{m|5<m ≤8}答案:ABC分析:讨论B =∅和B ≠∅时,计算∁U B ,根据A ⊆∁U B 列不等式,解不等式求得m 的取值范围,再结合选项即可得正确选项.当B =∅时,m +1>2m −1,即m <2,此时∁U B =R ,符合题意,当B ≠∅时,m +1≤2m −1,即m ≥2,由B ={x|m +1≤x ≤2m −1}可得∁U B ={x|x <m +1或x >2m −1},因为A ⊆∁U B ,所以m +1>7或2m −1<−2,可得m >6或m <−12, 因为m ≥2,所以m >6,所以实数m 的取值范围为m <2或m >6,所以选项ABC 正确,选项D 不正确;故选:ABC.11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1 答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( )A .函数F (x )是偶函数B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图.由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确;函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确.故选:ABD[0,1]13、使a∈R,|a|<4成立的充分不必要条件可以是()A.a<4B.|a|<3C.−4<a<4D.0<a<3答案:BD分析:根据集合的包含关系,结合各选项一一判断即可.由|a|<4可得a的集合是(−4,4),A.由(−4,4)⊂≠(−∞,4),所以a<4是|a|<4成立的一个必要不充分条件;B.由(−3,3)⊂≠(−4,4),所以|a|<3是|a|<4成立的一个充分不必要条件;C.由(−4,4)=(−4,4),所以−4<a<4是|a|<4成立的一个充要条件;D.由(0,3)(−4,4),所以0<a<3是|a|<4成立的一个充分不必要条件;故选:BD.填空题14、已知集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},则M的子集个数______答案:8分析:按x、y、z的正负分情况计算m值,求出集合M的元素个数即可得解.因为集合M={m|m=x|x|+y|y|+z|z|+xyz|xyz|,x、y、z为非零实数},当x、y、z都是正数时,m=4,当x、y、z都是负数时,m=-4,当x、y、z中有一个是正数,另两个是负数时,m=0,当x、y、z中有两个是正数,另一个是负数时,m=0,于是得集合M中的元素有3个,所以M的子集个数是8.所以答案是:815、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:416、已知全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},若A={1,2,3},B={−1,0,1},则∁U(A⊙B)______.答案:{x∈Z||x|≥4}分析:利用集合运算的新定义和补集运算求解.全集U=Z,定义A⊙B={x|a⋅b,a∈A,b∈B},A={1,2,3},B={−1,0,1}所以A⊙B={−3,−2,−1,0,1,2,3},所以∁U(A⊙B)={x||x|≥4,x∈Z}.所以答案是:{x||x|≥4,x∈Z}解答题17、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:名师点评有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.18、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。

考点01 集合与常用逻辑用语-2020高考(理)模考考前复习指导与抢分集训(原卷版)

考点01 集合与常用逻辑用语-2020高考(理)模考考前复习指导与抢分集训(原卷版)

专题一 核心考点速查练考点01 集合与常用逻辑用语1.设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∪N =M2.设集合A ={-1,0,1,2},B ={x |y =x 2-1},则图中阴影部分所表示的集合为( )A .{1}B .{0}C .{-1,0}D .{-1,0,1}3.已知集合A ={4,a },B ={x ∈Z |x 2-5x +4≥0},若A ∩(∁Z B )≠∅,则实数a 的值为( )A .2B .3C .2或4D .2或34.已知命题对任意,总有;是的充分不必要条件,则下列命题为真命题的是( )5.已知命题p :存在x 0∈R ,x 0-2>lg x 0;命题q :任意x ∈R ,x 2+x +1>0.给出下列结论: ①命题“p 且q ”是真命题; ②命题“p 且q ⌝”是假命题;③命题“p ⌝或q ”是真命题;④命题“p 或q ⌝”是假命题.其中所有正确结论的序号为( )A .②③B .①④C .①③④D .①②③ 6.设是公比为的等比数列,则是为递增数列的( )充分且不必要条件 必要且不充分条件充分必要条件 既不充分也不必要条件:p x R ∈20x >:"1"q x >"2"x >.A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝{}n a q "1"q >"{}"n a .A .B .C .D7.下面四个条件中,使a b >成立的充分而不必要的条件是( ).A .1a b >+B .1a b <-C .22a b >D .33a b > 8.已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“20190S >”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设,则“”是“”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件10.人们常说“便宜没好货”,这句话的意思是:“不便宜”是“好货”的()A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件 11.下列说法正确的个数是( )①命题“若4a b +…,则a ,b 中至少有一个不小于2”的逆命题是真命题 ②命题“设,a b ∈R ,若5a b +≠,则3a ≠或2b ≠”是一个真命题③“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->”④已知x ,y 都是实数,“x y >”是“1x y >+”的充分不必要条件A .1B .2C .3D .412.下列有关命题的说法正确的是( )A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B .命题p :0x R ∃∈,使得0sin 2x =;命题q :x R ∀∈,都有sin x x >;则命题p q ∨为真.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.13.下列选项中说法正确的是( )A .若非零向量a r ,b r 满足0a b ⋅>r r ,则a r 与b r的夹角为锐角B .“0x ∃∈R ,2000x x -≤”的否定是“x ∀∈R ,20x x -≥” R b a ∈,4>+b a 2,2>>b a 且C .直线1:210l ax y ++=,2:220l x ay ++=,12l l //的充要条件是12a =D .在ABC ∆中,“若sin sin A B >,则A B >”的逆否命题是真命题 14.已知命题“[]01,1x ∃∈-,20030x x a -++>”为真命题,则实数a 的取值范围是( ) A .9,4⎛⎫-+∞ ⎪⎝⎭ B .()4,+∞ C .()2,4- D .()2,-+∞ 15.已知条件p :4 6x -≤;条件q :22(1)0 (0)x m m --≤>,若p 是q 的充分不必要条件,则m 的取值范围是( )A .[)21,+∞B .[)19,+∞C .[)9,+∞D .()0,+∞16.有关下列说法正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的必要不充分条件B .若p :存在x 0∈R ,x 20-x 0-1>0,则p ⌝:任意x ∈R ,x 2-x -1<0 C .命题“若x 2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1或x ≠-1”D .命题p 和命题q 有且仅有一个为真命题的充要条件是(p ⌝且q )或(q ⌝且p )为真命题 17.ABC △的内角、、A B C 的对边分别为,,a b c ,则“a b >”是“cos cos A B <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 18.如果不等式|x -a|<1成立的充分不必要条件是1322x <<,则实数a 的取值范围是( ) A .1322a << B .1322a ≤≤ C .32a >或12a < D .32a ≥或12a ≤ 19.下列说法正确的个数是( )①命题“若4a b +…,则a ,b 中至少有一个不小于2”的逆命题是真命题 ②命题“设a b R ∈,,若5a b +≠,则3a ≠或2b ≠”是一个真命题 ③“20000x R x x ∃∈-<,的否定是“20x R x x ∀∈->,”④已知x ,y 都是实数,“||||1x y +„”是“221x y +„”的充分不必要条件A .1B .2C .3D .420.已知函数f (x )=a 2x -2a +1.若命题“任意x ∈(0,1),f (x )≠0”是假命题,则实数a 的取值范围是________.。

高考数学真题题型分类解析专题01 集合与常用逻辑用语

高考数学真题题型分类解析专题01 集合与常用逻辑用语

高考数学真题题型分类解析高考数学真题题型分类解析 专题01集合与常用逻辑用语集合与常用逻辑用语命题解读考向 考查统计1.高考对集合的考查,重点是集合间的基本运算,主要考查集合的交、并、补运算,常与一元二次不等式解法、一元一次不等式解法、分式不等式解法、指数、对数不等式解法结合.2.高考对常用逻辑用语的考查重点关注如下两点:(1)集合与充分必要条件相结合问题的解题方法;(2)全称命题与存在命题的否定和以全称命题与存在命题为条件,求参数的范围问题. 交集的运算2022·新高考Ⅰ卷,12023·新高考Ⅰ卷,1 2024·新高考Ⅰ卷,1 2022·新高考Ⅱ卷,1根据集合的包含关系求参数 2023·新高考Ⅱ卷,2 充分必要条件的判定2023·新高考Ⅰ卷,7全称、存在量词命题真假的判断 2024·新高考Ⅱ卷,2命题分析2024年高考新高考Ⅱ卷未考查集合,Ⅰ卷依旧考查了集合的交集运算,常用逻辑用语在新高考Ⅱ卷中考查了全称、存在量词命题真假的判断,这也说明了现在新高考“考无定题”,以前常考的现在不一定考了,抓住知识点和数学核心素养是关键!集合和常用逻辑用语考查应关注:(1)集合的基本运算和充要条件;(2)集合与简单的不等式、函数的定义域、值域的联系。

预计2025年高考还是主要考查集合的基本运算。

试题精讲1.(2024新高考Ⅰ卷·1)已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =∩( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−【答案答案】】A2.(2024新高考Ⅱ卷·2)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ¬和q 都是真命题 C .p 和q ¬都是真命题D .p ¬和q ¬都是真命题1.(2022新高考Ⅰ卷·1)若集合{4},{31}M x N x x =<=≥∣,则M N ∩=( ) A .{}02x x ≤<B .123x x≤<C .{}316x x ≤<D .1163x x≤<A .{}2,1,0,1−−B .{}0,1,2C .{}2−D .{}2A .{1,2}−B .{1,2}C .{1,4}D .{1,4}−4.(2023新高考Ⅱ卷·2)设集合,,若,则().A .2B .1C .23D .1−【答案答案】】B【分析分析】】根据包含关系分20a −=和220a −=两种情况讨论,运算求解即可. 【详解详解】】因为A B ⊆,则有则有::若20a −=,解得2a =,此时{}0,2A =−,{}1,0,2B =,不符合题意不符合题意;; 若220a −=,解得1a =,此时{}0,1A =−,{}1,1,0B =−,符合题意符合题意;; 综上所述综上所述::1a =. 故选故选::B. 5.(2023新高考Ⅰ卷·7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件一、元素与集合1、集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2、集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关. 3、元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 4、集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图). 5、常用数集的表示数集 自然数集 正整数集 整数集 有理数集 实数集 符号N*N 或N +ZQR二、集合间的基本关系(1)子集:一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作A B Ü(或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”. (3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (4)空集:把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ∩,即{}|A B x x A x B ∩=∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ∪,即{}|A B x x A x B ∪=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.四、集合的运算性质(1),,A B B A =∩∩,A B A ∩⊆,A B B ∩⊆. (2)A A A =∪,A A ∅=∪,A B B A =∪∪,A A B ⊆∪,B A B ⊆∪. (3),()U A C A U =∪,()U U C C A A =. (4)U UU A B A A B B A B B A A B ∩=⇔∪=⇔⊆⇔⊆⇔∩=∅痧?A A A =∩A ∅=∅∩()U A C A =∅∩【集合常用结论集合常用结论】】(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n −个,非空子集有21n −个,非空真子集有22n −个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆∩∪. (4)()()()U U U C A B C A C B =∩∪,()()()U U U C A B C A C B =∪∩.五、充分条件充分条件、、必要条件必要条件、、充要条件1、定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2、从逻辑推理关系上看(1)若p q ⇒且q p ¿,则p 是q 的充分不必要条件; (2)若p q ¿且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); (4)若p q ¿且q p ¿,则p 不是q 的充分条件,也不是q 的必要条件.六、全称量词与存在量词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题). 七、含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ¬为0x M ∃∈,0()p x ¬. (2)存在量词命题00:,()p x M p x ∃∈的否定p ¬为,()x M p x ∀∈¬. 注:全称、存在量词命题的否定是高考常见考点之一. 【常用逻辑用语常用结论常用逻辑用语常用结论】】 1、从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B 躡,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ¿; 注:关于数集间的充分必要条件满足:“小⇒大”. (2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.集合三模题一、单选题1.(2024·河南·三模)命题“20,10x x x ∃>+−>”的否定是( ) A .20,10x x x ∀>+−> B .20,10x x x ∀>+−≤ C .20,10x x x ∃≤+−>D .20,10x x x ∃≤+−≤【答案答案】】B【分析分析】】根据存在量词命题的否定形式根据存在量词命题的否定形式,,即可求解. 【详解详解】】根据存在量词命题的否定为全称量词命题根据存在量词命题的否定为全称量词命题,, 即命题“20,10x x x ∃>+−>”的否定为“20,10x x x ∀>+−≤”. 故选故选::B. 2.(2024·湖南长沙·三模)已知集合{}2,{|ln 1}M x x N x x ==<∣…,则M N ∩=( ) A .[)2,eB .[]2,1−C .[)0,2D .(]0,2【答案答案】】D【分析分析】】由对数函数单调性解不等式由对数函数单调性解不等式,,化简N ,根据交集运算求解即可. 【详解详解】】因为[]()2,2,0,e M N =−=, 所以(]0,2M N =∩. 故选故选::D. 3.(2024·河北衡水·三模)已知集合{}()11,2,3,4,51lg 12A B x x==−≤−≤,,则A B =∩( ) A .11510x x≤≤B .{2,3,4}C .{2,3}D .11310x x≤≤4.(2024·陕西·三模)已知集合A =A .RB .(]0,2【答案答案】】D【分析分析】】先解一元二次不等式求出集合【详解详解】】由230x x −+>,解得03x <<所以3|}1{A B x x ∪=−≤<,所以A 故选故选::D. 5.(2024·安徽·三模)已知集合A x=为( )A .{}21x x −≤≤ C .{}52x x −≤≤−6.(2024·湖南长沙·三模)已知直线使点P 在圆O 内”的( ) A .充分不必要条件 C .充要条件【答案答案】】B【分析分析】】由直线与圆相交可求得1−<【详解详解】】由直线l 上存在点P ,使点解得11k −<<,即()1,1k ∈−,因为1k <不一定能得到11k −<<,而11k −<<可推出1k <,所以“k <1”是“直线l 上存在点P ,使点P 在圆O 内”的必要不充分条件. 故选故选::B 7.(2024·湖北荆州·三模)已知集合{}220A x x x =−≤,B A =R ð,其中R 是实数集,集合(],1C ∞=−,则B C ∩=( )A .(],0−∞B .(]0,1C .(),0∞−D .()0,18.(2024·北京·三模)已知集合ln 1A x x =<,若a A ∉,则a 可能是() A .1eB .1C .2D .3【答案答案】】D【分析分析】】解对数不等式化简集合A ,进而求出a 的取值集合即得.【详解详解】】由ln 1x <,得0e x <<,则{|0e}A x x =<<,R {|0A x x =≤ð或e}≥, 由a A ∉,得R a A ∈ð,显然选项ABC 不满足不满足,,D 满足. 故选故选::D 9.(2024·河北衡水·三模)已知函数()()22sin x xf x m x −=+⋅,则“21m =”是“函数()f x 是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案答案】】B【分析分析】】由函数()f x 是奇函数是奇函数,,可求得1m =,可得结论. 【详解详解】】若函数()f x 是奇函数是奇函数,,则()()()()()22sin 22sin (1)22sin 0x x x x x xf x f x m x m x m x −−−+−=+⋅−+⋅=−−=恒成立恒成立,,即1m =,而21m =,得1m =±.故“21m =”是“函数()f x 是奇函数”的必要不充分条件的必要不充分条件.. 故选故选::B .10.(2024·内蒙古·三模)设α,β是两个不同的平面,m ,l 是两条不同的直线,且l αβ=∩则“//m l ”是“//m β且//m α”的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件【答案答案】】C【分析分析】】根据题意根据题意,,利用线面平行的判定定理与性质定理利用线面平行的判定定理与性质定理,,结合充分条件结合充分条件、、必要条件的判定方法必要条件的判定方法,,即可求解.【详解详解】】当//m l 时,m 可能在α内或者β内,故不能推出//m β且//m α,所以充分性不成立所以充分性不成立;; 当//m β且//m α时,设存在直线n ⊂α,n β⊄,且//n m ,因为//m β,所以//n β,根据直线与平面平行的性质定理根据直线与平面平行的性质定理,,可知//n l , 所以//m l ,即必要性成立即必要性成立,,故“//m l ”是“//m β且//m α”的必要不充的必要不充分条件分条件. 故选故选::C. 11.(2024·北京·三模)已知(){}2log 11A x x =−≤,{}32B x x =−>,则A B =∩( )A .空集B .{3x x ≤或}5x >C .{3x x ≤或5x >且}1x ≠D .以上都不对A .∅B .{}0C .{}0,2,3,5D .{}0,3A .(1,4)−B .1,14C .1,12D .1,22A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件有下列两个结论:①存在a和b,使得集合B中恰有5个元素;②存在a和b,使得集合B中恰有4个元素.则下列判断正确的是()A.①②都正确B.①②都错误C.①错误,②正确D.①正确,②错误二、多选题16.(2024·江西南昌·三模)下列结论正确的是()A .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a <−B .若{}{}300x x x x a +>∩−<=∅,则a 的取值范围是3a ≤−C .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a ≥−D .若{}{}300x x x x a +>∪−<=R ,则a 的取值范围是3a >−17.(2024·辽宁·三模)已知12max ,,,n x x x 表示12,,,n x x x 这个数中最大的数.能说明命题“,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题的对应的一组整数a ,b ,c ,d 值的选项有( )A .1,2,3,4B .3−,1−,7,5C .8,1−,2−,3−D .5,3,0,1−【答案答案】】BC【分析分析】】根据{}12max ,,,n x x x 的含义说明AD 不符合题意,举出具体情况说明BC ,符合题意即可.【详解详解】】对于A ,D ,从其中任取两个数作为一组从其中任取两个数作为一组,,剩下的两数作为另一组剩下的两数作为另一组,,由于这两组数中的最大的数都不是负数由于这两组数中的最大的数都不是负数,,其中一组中的最大数即为这四个数中的最大值其中一组中的最大数即为这四个数中的最大值,,故都能使得命题“,,,R a b c d ∀∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”成立成立;;对于B ,当{}{}{}max ,max 3,11,max 7,57a b =−−=−=时,而{}max 3,1,7,57−−=,此时177−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 对于C ,当{}{}{}max ,max 8,18,max 2,32a b =−=−−=−时,而{}max 8,1,2,38−−−=,此时288−+<,即命题“,,a b c ∀,R d ∈,{}{}{}max ,max ,max ,,,a b c d a b c d +≥”是假命题是假命题;; 故选故选::BC 18.(2024·重庆·三模)命题“存在0x >,使得2210mx x +−>”为真命题的一个充分不必要条件是()A .2m >−B .1m >−C .0m >D .1m >A .11a b <B .|2||2|a b −>−C .22a b ab a b −>−D .()()22ln 1ln 1a b +>+有且仅有3个不同元素,则实数m 的值可以为( )A .0B .1C .2D .3三、填空题21.(2024·湖南长沙·三模)已知集合{}1,2,4A =,{}2,B a a =,若A B A ∪=,则=a .【答案答案】】{}0,1【分析分析】】把集合中的元素代入不等式331x x −≤检验可求得{0,1}A B =∩.【详解详解】】当0x =时,303001−×=≤,所以0B ∈,当1x =时,313121−×=−≤,所以1B ∈,当2x =时,323221−×=>,所以2∉B ,所以{0,1}A B =∩.23.(2024·湖南衡阳·三模)已知集合{},1A a a =+,集合{}2N 20|B x x x =∈−−≤,若A B ⊆,则=a .25.(2024·安徽·三模)已知集合,2,1,,A B yy x x A λ=−==∈∣,若A B ∪的所有元素之和为12,则实数λ=. 【答案答案】】3−【分析分析】】分类讨论λ是否为1,2−,进而可得集合B ,结合题意分析求解.【详解详解】】由题意可知由题意可知::1λ≠−且2λ≠,当x λ=,则2y λ=;当2x =,则4y =;当=1x −,则1y =;若1λ=,则{}1,4B =,此时A B ∪的所有元素之和为6,不符合题意不符合题意,,舍去舍去;;若2λ=−,则{}1,4B =,此时A B ∪的所有元素之和为4,不符合题意不符合题意,,舍去舍去;;若1λ≠且2λ≠−,则{}21,4,B λ=,故2612λλ++=,解得3λ=−或2λ=(舍去舍去););综上所述综上所述::3λ=−.26.(2024·山东聊城·三模)已知集合{}{}21,5,,1,32A a B a ==+,且A B A ∪=,则实数a 的值为.C 的个数为.A B ∪=.。

高考数学第1讲 集合与常用逻辑用语

高考数学第1讲 集合与常用逻辑用语
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
2.(1)(∁RA)∩B=B⇔B⊆∁RA; (2)A∪B=B⇔A⊆B⇔A∩B=______A_____; (3)∁U(A∪B)=(∁UA)∩(∁UB); (4)∁U(A∩B)=(∁UA)∪(∁UB).
核心知识 核心考点 高考押题 限时规范训练
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
解法二:∵m=λn,∴m·n=λn·n=λ|n|2. ∴当 λ<0,n≠0 时,m·n<0. 反之,由 m·n=|m||n|cos〈m·n〉<0⇔cos〈m,n〉<0⇔〈m,n〉 ∈π2,π,当〈m,n〉∈π2,π时,m,n 不共线. 故“存在负数 λ,使得 m=λn”是“m·n<0”的充分而不必要条件.故 选 A.
C.∃x0∈R,ln x0<1
D.∃x0∈N*,sin π2x0=1
解析:选 B.当 x=0 时,x2=0.
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
考点三 充分、必要条件——正推、反推
(1)设 m,n 为非零向量,则“存在负数 λ,使得 m=λn” 是“m·n<0”的( A )
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
1.已知 N 是自然数集,设集合 A=xx+6 1∈N,B={0,1,2,3,
4},则 A∩B=( B )
A.{0,2}
B.{0,1,2}
C.{2,3}
D.{0,2,4}
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
考点一 集合的关系与运算

专题1第一讲_集合与常用逻辑用语(原稿版)

专题1第一讲_集合与常用逻辑用语(原稿版)

3.在△ABC 中,角 A,B,C 所对应的边分别为 a, b,c,则“a≤b”是“sin A≤sin B”的(A) A.充分必要条件 C.必要非充分条件 B.充分非必要条件 D.非充分非必要条件
a b 解析:由正弦定理知 = ,∵a,b,sin A, sin A sin B sin B 都为正数,∴a≤b⇔sin A≤sin B.
(1)从近几年高考试卷来看,考像上面这类新定义创新 题成为常态. (2)这类新定义题考查了同学们创新思维、应用新定义 解决问题的能力,是考查能力的好题,注意准确理解题意, 有意识训练这类题型,很多类似题都可以从特殊情况入手, 借助选项得到正确结果. (3)此类题一般放在选择题中作为最后一题,是体现区 分度的题.
思路点拨:本题是一道新定义题,主要考查创新意识, 本题抽象,不易理解,难度较大,若采用“遇难则反”的策 略,可举特例作答. 解析:取 T={x|x<0,且 x∈Z},V=∁ZT={x|x≥0,且 x∈Z},即 V=N,显然 T 对于乘法是不封闭的,而 V 是封 闭的,排除选项 D.又取 T={0},V={x|x∈Z,且 x≠0},可 得 T 关于乘法是封闭的,V 也是封闭的,可排除 B、C.故选 A. 答案:A
5.命题“存在一个无理数,它的平方是有理数”的否定是 (B) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数
1.正确理解集合的意义,明确集合的元素及所具有的性质. 2.注意集合中元素的特性 (确定性、互异性、无序性 ),特别是元 素的互异性对解题的影响. 3.空集∅是一个特殊的集合,它在解题中往往起到关键的作用,切 不可疏忽. 4.掌握集合的图形表示(即 Venn 图)、数轴表示等基本方法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D.1,1
25.(2015 湖北)已知集合 A {(x, y) | x2 y 2 ≤1, x, y Z} , B {(x, y) || x |≤ 2,
| y |≤ 2, x, y Z} ,定义集合 A B {(x1 x2, y1 y2 ) | (x1, y1) A, (x2, y2 ) B} ,
.
7.(2019 浙江 1) 已知全集U 1, 0,1, 2,3 ,集合 A 0,1, 2 ,B 1, 0,1 ,则 ðU A B =
A.1
B. 0,1
C.1, 2,3
D.1, 0,1,3
第1页共4页
2015-2018 年
一、选择题 1.(2018 全国卷Ⅰ)已知集合 A {0, 2} , B {2 ,1,0 ,1,2} ,则 A B
13.(2017 浙江)已知集合 P {x | 1 x 1} , Q {x | 0 x 2} ,那么 P Q =
A. (1, 2) B. (0,1) C. (1, 0)
D. (1, 2)
14.(2016 全国 I 卷)设集合 A {1,3,5, 7} , B {x | 2 ≤ x ≤ 5} ,则 A B=
中的元素个数为
A.5
B.4
C.3
D.2
19.(2015 北京)若集合 A {x | 5 x 2} , B {x | 3 x 3} ,则 A B =
A.{x | 3 x 2}
B.{x | 5 x 2}
C.{x | 3 x 3}
D.{x | 5 x 3}
20.(2015 天津)已知全集U {1, 2,3, 4,5, 6} ,集合 A 2,3,5 ,集合 B {1,3, 4, 6} ,则
A. { 4 ,8 }
B. {0,2,6}
C. {0,2,6,10}
D. {0,2,4,6,8,10}
17.(2015 新课标 2)已知集合 A {x | 1 x 2} , B {x | 0 x 3},则 A B =
A. (1,3)
B. (1,0)
C. (0,2)
D. (2,3)
18.(2015 新课标 1)已知集合 A {x x 3n 2, n N}, B {6,8,10,12,14},则集合 A B
A.(–1,+∞)
B.(–∞,2)
C.(–1,2)
Байду номын сангаас
D.
3.(2019 全国Ⅲ文 1)已知集合 A {1, 0,1, 2},B {x x 2 1} ,则 A B
A.1, 0,1
B. 0,1
C.1,1
D.0,1, 2
4.(2019 北京文 1)已知集合 A={x|–1<x<2},B={x|x>1},则 A∪B=
A. A B {x | x 3} 2
C. A B {x | x 3} 2
B. A B D. A B R
8.(2017 新课标Ⅱ)设集合 A {1, 2,3} , B {2,3, 4}
则 AB=
A.{1, 2,3, 4}
B.{1, 2,3}
C.{2,3, 4} D.{1,3, 4}
A. {0}
B.{1}
C.{1, 2}
D.{0,1, 2}
6.(2018 天津)设集合 A {1, 2,3, 4} , B {1, 0, 2,3} , C {x R | 1≤ x 2} ,则 (A B) C
A.{ 1,1}
B.{0,1}
C.{ 1, 0,1} D.{2,3, 4}
7.(2017 新课标Ⅰ)已知集合 A {x | x 2} , B {3 2x 0},则
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
15.(2016 全国Ⅱ卷)已知集合 A {1,2,3},B {x | x2 9} ,则 A B
A.{ 2,1,0,1,2,3} B.{ 2, 1,0,1,2} C.{1,2,3} D.{1,2}
16.(2016 全国Ⅲ)设集合 A {0, 2, 4, 6,8,10}, B {4,8} ,则 ðAB =
A. {3}
B.{5}
C. {3, 5}
D.1, 2,3, 4,5, 7
4.(2018 北京)已知集合 A {x || x | 2} , B {2, 0,1, 2},则 A B
A.{0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2}
5.(2018 全国卷Ⅲ)已知集合 A {x | x 1≥ 0} , B {0,1, 2} ,则 A B
专题 01 集合与常用逻辑用语
第一讲 集合
2019 年
1.(2019 全国Ⅰ文 2)已知集合U 1,2,3,4,5,6,7,A 2,3,4,5,B 2,3,6,7 ,
则 B ðU A
A. 1, 6
B. 1, 7
C. 6, 7
D. 1, 6, 7
2.(2019 全国Ⅱ文 1)已知集合 A={x | x 1}, B {x | x 2},则 A∩B=
A. 1,3
B. 1, 4
C. 2,3
D. 2, 4
23.(2015 福建)若集合 M x 2 x 2, N 0,1, 2 ,则 M N 等于
A.0
B.1
C.0,1, 2 D.0,1
24.(2015 广东)若集合 M 1,1 , N 2,1, 0 ,则 M N
A.0, 1
B.1
C. 0
B.{1, 2, 4}
C.{1, 2, 4, 6}
D.{1, 2,3, 4, 6}
第2页共4页
11.(2017 山东)设集合 M x x 1 1 ,N x x 2 ,则 M N
A. 1,1
B. 1, 2
C. 0, 2
D. 1, 2
12.(2017 北京)已知U R ,集合 A {x | x 2或x 2} ,则 ðU A = A. (2, 2) B. (, 2) (2, ) C.[2, 2] D. (, 2] [2, )
9.(2017 新课标Ⅲ)已知集合 A {1, 2,3, 4} , B {2, 4, 6,8} ,则 A B 中元素的个数为
A.1
B.2
C.3
D.4
10.(2017 天津)设集合 A {1, 2, 6} , B {2, 4} , C {1, 2,3, 4} ,则 (A B) C
A.{2}
则 A B 中元素的个数为
A.77
B.49
C.45
D.30
第4页共4页
(A)(–1,1)
(B)(1,2)
(C)(–1,+∞) (D)(1,+∞)
5.(2019 天津文 1)设集合 A 1,1, 2,3,5 , B 2,3, 4 ,C {x R |1 x 3} ,则
(AC) B
(A){2}
(B){2,3}
(C){-1,2,3}
(D){1,2,3,
4}
6.(2019 江苏 1)已知集合 A {1, 0,1, 6}, B {x | x 0, x R},则 A B
A.{0, 2}
B.{1, 2}
C.{0}
D.{2 ,1,0 ,1,2}
2.(2018 浙江)已知全集U {1, 2, 3, 4, 5} , A {1, 3} ,则 ðU A=
A.
B.{1,3}
C.{2,4,5} D.{1,2,3,4,5}
3.(2018 全国卷Ⅱ)已知集合 A 1,3,5, 7 , B 2,3, 4,5 ,则 A B
集合 A ðU B
A.{3}
B. {2, 5}
C.{1, 4, 6}
D. {2, 3, 5}
第3页共4页
21.(2015 陕西)设集合 M {x | x2 x} , N {x | lg x ≤ 0} ,则 M N =
A.[0,1] B.(0,1]
C.[0,1)
D.(-∞,1]
22.(2015 山东)已知集合 A x 2 x 4 , B x (x 1)(x 3) 0,则 A B
相关文档
最新文档