人教版九年级上册数学公式汇总(供参考)

合集下载

人教版九年级上册数学笔记

人教版九年级上册数学笔记

人教版九年级上册数学笔记以下是一个关于人教版九年级上册数学的笔记示例,供您参考:一、知识点梳理1. 一元二次方程:一元二次方程是只含有一个未知数,且未知数的最高次数为2的整式方程。

一般形式为 ax^2 + bx + c = 0,其中a ≠ 0。

2. 配方法:通过配方将一元二次方程转化为完全平方形式,从而求解方程。

3. 公式法:使用求根公式 x = [-b ± √(b^2 - 4ac)] / (2a) 来求解一元二次方程。

4. 因式分解法:将一元二次方程转化为两个一次方程,从而求解方程。

5. 二次函数的图象与性质:了解二次函数 y = ax^2 + bx + c 的开口方向、顶点坐标和对称轴。

6. 二次函数的解析式:根据不同的条件(如顶点式、交点式等)来表示二次函数。

7. 用函数观点看一元二次方程:通过函数来理解一元二次方程,以及一元二次方程的根与函数图象之间的关系。

二、重点题型解析1. 一元二次方程的根的判别式:利用判别式Δ = b^2 - 4ac 的值来判断方程的根的情况。

2. 一元二次方程的根与系数的关系:了解方程的根的和与积与系数之间的关系。

3. 二次函数的图象与性质的实际应用:结合实际问题,利用二次函数的图象和性质来解决实际问题。

三、易错点提醒1. 在配方或因式分解时,要确保每一项都正确地转化。

2. 在使用求根公式时,要确保 a、b、c 的值计算正确,以避免出现根号下负数的错误。

3. 在判断二次函数的开口方向时,要注意 a 的正负,以确保判断正确。

4. 在求解二次函数的实际应用问题时,要充分考虑实际情况,避免出现不符合实际情况的解。

(完整word版)人教版数学九年级上册知识点整理

(完整word版)人教版数学九年级上册知识点整理
ADC=180°.
知识点五:与圆有关的位置关系
5.点与圆
的位置关系
设点到圆心的距离为d.
⑴d<r?点在OO内;(2)d=r?点在OO上;(3)d>r?点在OO夕卜.
6.直线和 圆的位
m¥方
宀护¥方位置大糸
相离
相切
相交
图形
l®1
[GDI
公共点个数
0个
1个
2个
数量关系
d>r
d=r
dvr
知识点六:切线的性质与判定
解•
(2 )因式分解法:可化为(ax+m)(bx+ n)=0的方程,用因式分解法求
解•
(3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=
2.一元二次方
b曲4ac(b2-4ac>0).2a
程的解法
(4)配方法:当元二次方程的二次项糸数为1, 次项糸数为偶数时,
也可以考虑用配方法.

先用其他,再用公式
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角
(5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
知识点二:垂径定理及其推论
2.垂径定
理及其推

定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
知识点三:二次函数的平移
4.平移与
解析式
的关系
x/_ov2向左(h<0)或向右(h>0)2向上(k>0)或向下(kv0)2
常”>y=a(x-h)—、y=a(x—h)2+k

人教版九年级上册数学知识点汇总

人教版九年级上册数学知识点汇总

一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

一般形式为:ax² + bx + c = 0(a ≠ 0)。

2. 解法•配方法:通过配成完全平方形式来解一元二次方程。

步骤包括:移项、除二次项系数、配方、开平方。

•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。

•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。

3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。

二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。

•设:设出未知数。

•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。

•解:解方程,求出未知数的值。

•验:检验方程的解是否保证实际问题有意义,符合题意。

•答:写出答案。

2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。

•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。

•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。

•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。

三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。

2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。

人教版九年级上册数学公式【七篇】

人教版九年级上册数学公式【七篇】

导语:我们在新的学习过程中要注意不断反思和调整,逐渐摸索出适合⾃⼰的学法,做到事半功倍。

以下是⽆忧考整理的⼈教版九年级上册数学公式【七篇】,希望对⼤家有帮助。

排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照⼀定的顺序排成⼀列,叫做从n个不同元素中取出m个元素的⼀个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,⽤符号 p(n,m)表⽰.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成⼀组,叫做从n个不同元素中取出m个元素的⼀个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.⽤符号c(n,m) 表⽰.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);⾯积公式:(1)S=ah/2(2).已知三⾓形三边a,b,c,则 (海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)](3).已知三⾓形两边a,b,这两边夹⾓C,则S=1/2 * absinC(4).设三⾓形三边分别为a、b、c,内切圆半径为rS=(a+b+c)r/2(5).设三⾓形三边分别为a、b、c,外接圆半径为RS=abc/4R(6).根据三⾓函数求⾯积:S= absinC/2 a/sinA=b/sinB=c/sinC=2R注:其中R为外切圆半径。

三⾓不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|⼀元⼆次⽅程的解根与系数的关系-b+√(b2-4ac)/2a -b-√(b2-4ac)/2aX1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:⽅程有两个相等的实根b2-4ac>0 注:⽅程有两个不等的实根b2-4ac<0 注:⽅程没有实根,有共轭复数根两⾓和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍⾓公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半⾓公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))。

新人教版九年级数学上册知识点归纳

新人教版九年级数学上册知识点归纳

新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。

数学九年级公式

数学九年级公式

1.长方形的周长= 2 × (长+ 宽),即C = 2(a + b)。

2.正方形的周长= 4 ×边长,即C = 4a。

3.圆的周长= π × 直径,即C = πd。

4.长方形的面积= 长×宽,即S = ab。

5.正方形的面积= 边长×边长,即S = a²。

6.圆的面积= π × 半径²,即S = πr²。

7.扇形面积= (n/360) × π × 半径²,其中n 是圆心角度数,即S = nπr²/360。

8.三角形的面积= (底×高) / 2,即S = (a × h) / 2。

9.正方形的面积= 边长×边长,即S = a²。

10.平行四边形的面积= 底×高,即S = a × h。

11.菱形的面积= (对角线1 ×对角线2) / 2,即S = (d1 × d2) / 2。

12.梯形的面积= ((上底+ 下底) ×高) / 2,即S = (a + b)h/2。

这些公式包括了一些常见的几何形状(如长方形、正方形、圆、三角形、平行四边形、菱形和梯形)的周长和面积的计算公式。

请注意,这些公式可能需要适应具体的问题和情境进行应用。

初中数学九年级上册知识点及公式总结大全(人教版)

初中数学九年级上册知识点及公式总结大全(人教版)

九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。

3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。

注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。

8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。

在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。

9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。

第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。

人教版九年级数学上册知识点整理完整版

人教版九年级数学上册知识点整理完整版

人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。

②变量:数量可能改变的量。

③代数式:由数、字母、加减乘除号、括号等符号组成的式子。

④同类项:指含有相同字母并且指数相同的项。

⑤合并同类项:指将同类项合并成一个项。

⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。

⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。

2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。

②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。

⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。

3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。

②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。

④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。

⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。

4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。

②函数的零点:函数 f(x) = 0 的解叫做函数的零点。

即 f(x) = 0 时 x 的解。

③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。

二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。

②射线:在一个端点处向一个方向上延伸的线段,叫做射线。

③直线:没有端点,在一个方向上延伸的线段,称为直线。

④平行线:永远不会相交的两条直线叫做平行线。

⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。

人教版初三数学公式总结归纳

人教版初三数学公式总结归纳

人教版初三数学公式总结归纳1、同旁内角互补,两直线平行2、两直线平行,同位角相等3、两直线平行,内错角相等4、两直线平行,同旁内角互补5、定理三角形两边的和大于第三边6、推论三角形两边的差小于第三边7、三角形内角和定理三角形三个内角的和等于180°8、推论1直角三角形的两个锐角互余9、推论2三角形的一个外角等于和它不相邻的两个内角的和10、推论3三角形的一个外角大于任何一个和它不相邻的内角11、全等三角形的对应边、对应角相等12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等15、边边边公理(SSS)有三边对应相等的两个三角形全等16、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等17、定理1在角的平分线上的点到这个角的两边的距离相等18、定理2到一个角的两边的距离相同的点,在这个角的平分线上19、角的平分线是到角的两边距离相等的所有点的集合20、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21、推论1等腰三角形顶角的平分线平分底边并且垂直于底边22、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23、推论3等边三角形的各角都相等,并且每一个角都等于60°24、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25、推论1三个角都相等的三角形是等边三角形26、推论2有一个角等于60°的等腰三角形是等边三角形27、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28、直角三角形斜边上的中线等于斜边上的一半29、定理线段垂直平分线上的点和这条线段两个端点的距离相等30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32、定理1关于某条直线对称的两个图形是全等形33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形38、定理四边形的内角和等于360°39、四边形的外角和等于360°40、多边形内角和定理n边形的内角的和等于(n-2)×180°41、推论任意多边的外角和等于360°42、平行四边形性质定理1平行四边形的对角相等43、平行四边形性质定理2平行四边形的对边相等44、推论夹在两条平行线间的平行线段相等45、平行四边形性质定理3平行四边形的对角线互相平分46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形48、平行四边形判定定理3对角线互相平分的四边形是平行四边形49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形50、圆是定点的距离等于定长的点的集合51、圆的内部可以看作是圆心的距离小于半径的点的集合52、圆的外部可以看作是圆心的距离大于半径的点的集合53、同圆或等圆的半径相等54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线56、到已知角的两边距离相等的点的轨迹,是这个角的平分线57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线58、定理不在同一直线上的三点确定一个圆。

人教版九年级数学上册知识点整理(完整版)

人教版九年级数学上册知识点整理(完整版)

−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。

(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。

特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。

(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。

2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。

3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。

(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。

(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。

二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。

2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。

(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。

(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。

(人教版九年级上册数学)概念定义公式归纳

(人教版九年级上册数学)概念定义公式归纳

九年级上册数学概念、定义、公式归纳一、二次根式1.2.二次根式的被开方数为非负数。

所有二次根式都是非负数。

3.4.二次根式乘法法则:反过来也适用。

5.二次根式除法法则:,反过来也适用。

6.被开方数不含分母、不含能开得尽方的因数或因式的二次根式,称为最简二次根式。

7.二次根式加减法则:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

二、一元二次方程8.等号的两边都是整式,只含有一个未知数,并且未知数的最高次数是2,这样的方程叫一元二次方程。

9.一元二次方程的一般形式:ax²+bx+c=0(a≠0),其中a叫做二次项系数,b叫做一次项系数,c是常数项。

10.解一元二次方程的基本思路是“降次”。

方法有四种:①直接开平方法。

如果方程能化成x²=p或(mx+n)²=p(p≥0)的形式,那么x=±√p,或mx+n=±√p。

②配方法:(1)移项,把常数项移到等号右边。

(2)系数化为1,方程两边同除以二次项系数。

(3)配方,等号两边同加一次项系数一半的平方。

(4)直接开平方。

③公式法。

(1)运用根的判别式b²-4ac判断根的情况。

若判别式△小于0,则方程无实数根;若等于0,则有两个相等的实数根;若大于0,则有两个不相等的实数根。

(2)△≥0时,运用一元二次方程的求根公式“-b±√b²-4ac /2a”来解方程。

④因式分解法。

把方程化为mn=0的形式。

11.求两个单位时间段平均增长(减少)率公式:a(1±x)²=b三、旋转12.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。

点O叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。

13.旋转的性质:①对应点到旋转中心距离相等。

②对应点与旋转中心所连线段的夹角等于旋转角。

③旋转前后图形全等。

14.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。

九上数学公式归纳人教版

九上数学公式归纳人教版

九上数学公式归纳人教版在九年级数学公式归纳部分,根据人教版教材,我们主要学习了以下几个内容:1.一次幂的公式归纳:对于任意实数a,a^1 = a。

这个公式告诉我们,一个数的1次幂就是其本身。

2.幂的乘法公式归纳:对于任意实数a和正整数m,a^m × a^n = a^(m+n)。

这个公式告诉我们,相同底数的幂数相乘,等于底数不变、指数相加的幂。

3.幂的除法公式归纳:对于任意实数a和正整数m,a^m ÷ a^n = a^(m-n)。

这个公式告诉我们,相同底数的幂数相除,等于底数不变、指数相减的幂。

4.幂的乘方公式归纳:对于任意实数a和正整数m,(a^m)^n =a^(m × n)。

这个公式告诉我们,一个幂的乘方等于这个幂的指数乘以乘方的指数。

除了以上几个主要内容,数学公式归纳还包括了二次幂的公式归纳、平方根的公式归纳等其他内容。

但是在九年级数学中,这些内容并没有明确提及。

需要注意的是,数学公式归纳部分需要学生通过观察、思考和验证,加深对数学定理的理解,并运用这些定理解决实际问题。

在学习过程中,可以通过一些习题来拓展提高:1.进一步拓展幂的乘法公式,尝试证明负指数的幂的乘法公式a^(-m) × a^(-n) = a^(-m-n)。

2.探索零指数的特殊情况,讨论a^0的定义以及其与其他幂的关系。

3.深入理解幂的除法公式,尝试解决一些实际问题,如模拟计算科学记数法中的幂的除法。

4.研究幂的乘方公式的特殊情况,探索指数为零、一的情况,思考这两种情况与其他情况的联系。

希望以上的回答和拓展能对你有所帮助!。

数学公式初中九年级上册

数学公式初中九年级上册

数学公式初中九年级上册九年级上册数学公式(人教版)一、一元二次方程。

1. 一般形式。

- 一元二次方程的一般形式为ax^2+bx + c = 0(a≠0)。

2. 求根公式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

3. 根的判别式。

- Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根。

- 当Δ = 0时,方程有两个相等的实数根。

- 当Δ<0时,方程没有实数根。

二、二次函数。

1. 一般式。

- 二次函数的一般式为y = ax^2+bx + c(a≠0)。

- 对称轴公式为x =-(b)/(2a)。

- 顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。

2. 顶点式。

- y=a(x - h)^2+k(a≠0),其中(h,k)为顶点坐标,对称轴为x = h。

三、旋转。

1. 点(x,y)绕原点旋转90^∘(逆时针)后的坐标。

- 变为(-y,x)。

2. 点(x,y)绕原点旋转180^∘后的坐标。

- 变为(-x,-y)。

四、圆。

1. 圆的周长公式。

- C = 2π r(r为圆的半径)。

2. 圆的面积公式。

- S=π r^2。

3. 弧长公式。

- l=(nπ r)/(180)(n为弧所对圆心角的度数,r为圆的半径)。

4. 扇形面积公式。

- S_扇形=frac{nπ r^2}{360}=(1)/(2)lr(n为圆心角的度数,r为半径,l为弧长)。

5. 圆锥侧面积公式。

- S_侧=π rl(r为圆锥底面半径,l为圆锥母线长)。

6. 圆锥全面积公式。

- S_全=π rl+π r^2。

人教版九年级上册数学公式汇总(供参考)

人教版九年级上册数学公式汇总(供参考)

第二十一章 二次根式一、一个正数有两个平方根;在实数范围内,负数没有平方根。

二、一样地,咱们把形如 (a ≥0)的式子叫做二次根式,“ ”称为二次根号。

3、a (a ≥0)是一个非负数.当a 为带分数是,要把a 改写成假分数,即5322要写成5384、二次根式的性质:(a )2=a (a ≥0), 2a =a (a ≥0)五、用大体运算符号(大体运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,咱们称如此的式子为代数式。

六、二次根式的乘法规定:a ×b =ab (a ≥0,b ≥0)7、二次根式的除法规定:b a =ba (a ≥0,b >0) 八、最简二次根式条件:①被开方数不含字母;②被开方数中不含能开得尽方的因数或因式。

九、二次根式加减法法那么:先将二次根式化成最简二次根式,再归并同类二次根式10、同类二次根式即指被开方数相同的最简二次根式1一、平方差公式:a 2-b 2=(a+b)(a-b) 完全平方公式:(a ±b )2=a 2±2ab+b 21二、二次根式除法没有分派率,任何非零数的零次幂都是1,(ab )m =a m b m第二十二章 一元二次方程1、 等号两边都是整式,只含有一个未知数,而且未知数的最高次数是2的方程,叫做一元二次方程。

2、 一元二次方程的一样形式:ax 2+bx+c=0(a ≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

3、 使方程左右两边的值相等的未知数的值,叫做那个方程的解,一元二次方程的解也叫一元二次方程的根。

4、 解一元二次方程的方式:(1) 直接开方式:若是方程能化成x 2=p 或(mx+n )2=p(p ≥0)的形式,那么可得x=p ±或mx+n=p ±配方式:步骤:第一步,把方程化成一样形式(二次项系数是1);第二步,把常数项移到方程的右边;第三步,配方,方程的左右两边同时加上一次项系数一半的平方;第四步,把方程左侧写成含有未知数的代数式的平方的形式,即(x-k)2=h(h ≥0);第五步,用直接开平方式解方程。

初三上册所有数学公式

初三上册所有数学公式
=x, =│x│等。
4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。
7.算术平方根
⑴正数a的正的平方根([a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
9.算术根的性质:=; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .
11.科学记数法:(1≤a<10,n是整数=
三、应用举例(略)
四、数式综合运算(略)
第三章统计初步
★重点★
☆内容提要☆
一、重要概念
1.总体:考察对象的全体。
2.个体:总体中每一个考察对象。
3.样本:从总体中抽出的一部分个体。
4.样本容量:样本中个体的数目。
5.众数:一组数据中,出现次数最多的数据。
6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
二、计算方法
1.样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 二次根式1、一个正数有两个平方根;在实数范围内,负数没有平方根。

2、一般地,我们把形如 (a ≥0)的式子叫做二次根式,“ ”称为二次根号。

3、a (a ≥0)是一个非负数.当a 为带分数是,要把a 改写成假分数,即5322要写成538 4、二次根式的性质:(a )2=a (a ≥0), 2a =a (a ≥0)5、用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式。

6、二次根式的乘法规定:a ×b =ab (a ≥0,b ≥0)7、二次根式的除法规定:b a =ba (a ≥0,b >0) 8、最简二次根式条件:①被开方数不含字母;②被开方数中不含能开得尽方的因数或因式。

9、二次根式加减法法则:先将二次根式化成最简二次根式,再合并同类二次根式10、同类二次根式即指被开方数相同的最简二次根式11、平方差公式:a 2-b 2=(a+b)(a-b) 完全平方公式:(a ±b )2=a 2±2ab+b 212、二次根式除法没有分配率,任何非零数的零次幂都是1,(ab )m =a m b m第二十二章 一元二次方程1、 等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

2、 一元二次方程的一般形式:ax 2+bx+c=0(a ≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

3、 使方程左右两边的值相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫一元二次方程的根。

4、 解一元二次方程的方法:(1) 直接开方法:如果方程能化成x 2=p 或(mx+n )2=p(p ≥0)的形式,那么可得x=p ±或mx+n=p ±(2) 配方法:步骤:第一步,把方程化成一般形式(二次项系数是1);第二步,把常数项移到方程的右边;第三步,配方,方程的左右两边同时加上一次项系数一半的平方;第四步,把方程左边写成含有未知数的代数式的平方的形式,即(x-k )2=h(h ≥0);第五步,用直接开平方法解方程。

(3)公式法:Δ=b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)根的判别式。

当Δ>0时,方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根;当Δ=0时,方程ax 2+bx+c=0(a ≠0)有两个相等的实数根;当Δ<0时,方程ax 2+bx+c=0(a ≠0)无实数根。

当Δ≥0时,式子x=a acb b24 2-±-叫做一元二次根式 ax2+bx+c=0(a≠0) 的求根公式。

(4)因式分解法:左端能够因式分解成(a1x+b1)(a2x+b2)=0,根据乘法中一个数同零相乘积是零的性质,可得(a1x+b1)=0或(a2x+b2)=0,进而求出方程的解。

5、一元二次方程的根与系数的关系:方程的两个根x1,x2和系数a,b,c有如下关系:x 1+ x2=-ab, x1x2=ac6、一元二次方程解实际应用题的步骤:(1)审题;(2)设未知数;(3)列代数式;(4)列方程;(5)解方程;(6)检验;(7)写出答案。

①平均增长率方面:平均增长率公式:a(x+1)2=b;降低率公式:a(x-1)2=b(a为起始量,b为终止量,n为增长的次数及降低的次数,x为平均增长率及平均降低率)②利润方面:总利润=总销售额-总成本;总利润=单个利润×总销售量③与几何图形有关的:涉及三角形的三边关系,三角形全等,面积的计算,体积的计算,勾股定理等④行程方面:路程=速度×时间第二十三章旋转1、平移是指在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。

性质:对应线段平行且相等;对应角相等;对应点所连接的线段平行且相等。

轴对称图形是指如果一个图形沿着一条直线对折后两部分完全重合。

旋转是指在平面内,把一个图形绕着某一点转动一个角度的图形变换;在旋转过程中始终保持固定不动的定点叫旋转中心;图形绕一个定点沿某个方向转动的角叫旋转角。

2、旋转性质:(1)只改变位置,不改变图形的大小及形状;(2)任意一对对应点与旋转中心所连线段的夹角都相等;(3)对应点到旋转中心的距离相等;(4)图形上的每一个点都沿相同的方向旋转相同都角度。

3、旋转作图的步骤:第一步,确定旋转角的大小和方向;第二步,确定每对对应点;第三步,确定旋转后的图形。

一般情况下,旋转角小于360度。

4、把一个图形绕着某一点旋转180度,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,5、全等的图形不一定是中心对称,而中心对称的两个图形一定全等。

中心对称有一个对称中心,绕中心旋转180度,旋转后与另一个图形重合;轴对称有一条对称轴,图形对称折叠,折叠后与另一个图形重合。

6、中心对称性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形。

7、把一个图形绕着某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

线段、平行四边形是中心对称图形。

(1)既是轴对称又是中心对称图形的有:长方形、正方形、圆、菱形等(2)只是轴对称的有:角、五角星、等腰三角形、等边三边形、等腰梯形等(3)只是中心对称的有:平行四边形等(4)既不是轴对称又不是中心对称图形的有:不等边三角形、非等腰梯形等。

8、两个点关于原点对称时,它们的坐标符号相反,即P(x,y)关于原点的对称点为P '(-x,-y)第二十四章 圆1、(1)点和圆的位置关系:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d(2)不在同一直线的三个点确定一个圆。

(3)经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫这个三角形的外心。

任意三角形都有且只有一个外接圆,圆的内接三角形有无数个。

(3)假设命题的结论不成立,由此经过推理得出矛盾,有矛盾断定所做的假设不正确,从而得到原命题成立,这种方法叫做反证法。

2、(1)直线和圆的位置关系:直线L 和⊙O 相交⇔d <r ;直线L 和⊙O 相切⇔d=r ;直线L 和⊙O 相离⇔d >r 。

相交有两个公共点,公共点为交点,直线叫割线;相切有1个公共点,公共点叫切点,直线叫切线;相离没有公共点。

(2)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线(有切线,连半径,得垂直)。

切线的性质定理:圆的切线垂直于过切点的半径。

切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

(3)判断一条直线是否是切线的方法:①一条直线与一个圆只有一个公共点②圆心到一条直线的距离等于这个圆的半径;③切线的判定定理。

(4)经过圆外一点做圆的切线,这点和切点之间的线段长,叫这点到圆的切线长。

过圆上的一点只能引圆的一条切线。

(5)与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心,内心一定在三角形的内部。

一个圆可以有无数个外切三角形,但一个三角形只有一个内切圆。

直角三角形的内切圆半径r=21(短直角边+长直角边-斜边长);三角形的周长L ,面积S ,半径r ,则S=21Lr 。

3、(1)圆和圆的外置关系:相离没有公共点包括外离d >r 1+r 2,内含d <r 1+r 2;相切一个公共点包括外切d=r 1+r 2,内切d=r 1-r 2;相交两个公共点r 1-r 2<d <r 1+r 2。

(2)等腰三角形三线合一(中线,垂直平分线,角平分线)11、一个正多边形的外接圆的圆心叫这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形的每一边所对的圆心角叫正多边形的中心角,中心到正多边形的一边的距离叫正多边形的边心距。

4、(1)正n 边形的内角和是(n-2)×1800,所以每一个内角为nn 180*)2(-;(2)正n 边形的中心角的和是360度,所以正n 边形的一个中心角是n360;(3)正n 边形的中心角和外角的大小相等;(4)判断一个多边形是否是正多边形的条件:各边都相等;各内角都相等;(5)圆内接正三角形,正三角形半径r ,边心距d ,则d=21r ;正四边形d=22r ;正六边形d=23r ;(6)正三角形半径r ,边长x ,x=3r ;正四边形x=2r ;正六边形x=r ;(7)正三角形半径r ,面积S ,则S=343R 2;正四边形S=2 R 2;正六边形S=323R 2。

5、圆的周长C=2πR ,n °的圆心角所对的弧长为L=180R n π;圆的面积S=πR 2,扇形的周长C=2R+L ,扇形的面积①S=3602R n π;②S=21LR (L 为扇形的弧长) 6、圆锥的侧面积S=21L ×2πR=πRL (L 为母线,R 为底面圆半径);圆锥的表面积(全面积)S=πRL+πR 2第二十五章 概率初步1、 确定事件包括:①必然发生的事件:在特定条件下,有些事件我们事先能肯定它一定发生;②不可能发生的事件:在特定条件下,有些事件我们事先能肯定它一定不会发生2、 随机事件:在一定条件下,可能发生,也可能不发生的事件。

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。

3、 一般地,在大量重复试验中,如果事件A 发生的频率nm 会稳定在某个常数p 附近,那么这个常数p 叫做事件A 的概率。

记作P(A)=p ,P(A)=试验总次数出现的次数事件A 4、 概率的范围:因为在n 次试验中,事件A 发生的频数m 满足0≤m ≤n ,所以0≤n m ≤1,进而可知频率nm 所稳定到的常数p 满足0≤p ≤1,即0≤P(A)≤1 5、 事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近06、 一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为:P(A)=nm =所有可能结果总数包含的可能结果数事件A 7、 用列举法求概率:树形图;列表法。

当一次试验涉及两个因素,并且可能出现的结果数目较多时,常采用列表法;当一次试验涉及三个或更多的因素时,可采用树形图法。

8、 用频率估计概率的前提条件:试验次数足够大。

试验中,某事件出现的次数与总次数的比值叫频率。

大量试验后某事件发生的频率逐渐稳定到某一数值附近,这个数值便可近似认为是给事件发生的概率。

9、 在充分多次的试验中,一个随机事件的频率一般在一个定值附近摆动,而且试验次数越大,摆动幅度越小,这个性质称为频率的稳定性。

相关文档
最新文档