历届华杯赛初赛真题集锦-含答案

合集下载

初中华杯赛试题及答案

初中华杯赛试题及答案

初中华杯赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的因式分解?A. \(x^2 - 9 = (x + 3)(x - 3)\)B. \(x^2 - 9 = (x + 3)^2\)C. \(x^2 - 9 = (x - 3)^2\)D. \(x^2 - 9 = (x - 3)(x + 3)\)答案:A2. 如果一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 下列哪个方程的解是x=2?A. \(x + 2 = 4\)B. \(x - 2 = 0\)C. \(2x = 4\)D. \(x^2 = 4\)答案:C4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25B. 50C. 78.5D. 100答案:C5. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 26C. 12D. 8答案:A6. 一个等腰三角形的两个底角相等,如果顶角是60度,那么底角是多少度?A. 30B. 60C. 90D. 120答案:B7. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 下列哪个分数是最简分数?A. \(\frac{4}{8}\)B. \(\frac{3}{9}\)C. \(\frac{5}{10}\)D. \(\frac{7}{14}\)答案:A9. 一个数的绝对值是5,那么这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 下列哪个选项是正确的比例关系?A. \(2:3 = 4:6\)B. \(3:4 = 6:8\)C. \(5:7 = 10:12\)D. \(1:2 = 3:6\)答案:D二、填空题(每题2分,共20分)1. 一个数的平方根是2,那么这个数是______。

答案:42. 一个数的立方是-8,那么这个数是______。

18~22届华杯赛小高组初赛试题及参考答案

18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】

历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
9. 已知被除数比除数大 78, 并且商是 6, 余数是 3, 求被除数与除数之积. 10. 今年甲、乙俩人年龄的和是 70 岁. 若干年前, 当甲的年龄只有乙现在这么大 时, 乙的年龄恰好是甲年龄的一半. 问: 甲今年多少岁? 11. 有三个连续偶数, 它们的乘积是一个五位数, 该五位数个位是 0, 万位是 2, 十位、百位和千位是三个不同的数字, 那么这三个连续偶数的和是多少? 12. 在等式
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)

华杯赛初赛试题及解答

华杯赛初赛试题及解答

第八届华杯赛初赛试题及解答1.2002年将在北京召开国际数学家大会,大会会标如下图所示。

它是由四个相同的直角三角形拼成的(直角边长为2和3)。

问:大正方形的面积是多少?2. 从北京到G城的特别快车在2000年10月前需用12.6小时后提速20% .问;提速后,北京到G城的特别快车需要多少小时?3. 右式中不同的汉字代表I 一9中不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?中国新北京+新典运2 0 0 8~4. 两个同样材料做成的球A和B, —个实心,一个空心。

A的直径为7、重量为22, B的直径为10.6、重量为33.3。

问:哪个球是实心球?5. 铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示。

问:该油罐车的容积是多少立方米?( n=3.1416)6. 将左下图中20张扑克牌分成10对,每对红心和黑桃各一张。

问:你能分出几对这样的牌,两张牌上的数的乘积除以的余数是1?(将A看成I)I0145k7. 右上图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形。

求五边形内阴影部分的面积。

(n =3.14)8. 世界上最早的灯塔于公元270年,塔分三层,每层都高27米,底座呈正四棱柱,中间呈正八棱柱,上部呈正圆锥。

上部的体积是底座的体积的_____ .打开X(A) ■■(B)二(C)--9•将+, -,x,+四个运算符号分别填入下面的四个框中使该式的值最大。

]]]]]10.有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?11.自行车轮胎安装在前轮上行驶5000千米后报废,若安装在后轮上只能行驶3000千米。

为行驶尽可能多的路,如果采用当自行车行驶一定路程后将前后轮胎调换的方法,那么安装在自行车上的一对轮胎最多可行驶多少千米?12.将一边长为I的正方形二等分,再将其中的一半二等分,又将这一半的一半二等分,这样继续下去……展开想象的翅膀,从这个过程中你能得到什么?12、答案可以是各种各样的1. 【解】中间小正方形的面积为 1,大正方形的面积为 4个三角形与中间小正方形的面积之和,所以,大正方形的面积=1[X 2 X 3X 4+ 1= 13.1002.【解】时间与速度成反比,提速后的时间为 12.6 -( 1 + 20%)= 12.6 X 二「I =10.5 (小时)3. 【解】“新”必为9,千位才能得2,所以“中”应为8.“国”、“京”、“运”之和应为8或18,但当和为18时,(“国”、“京”、“运”分别为 7, 6, 5),“中”、“北”、“奥”之和最大为 15 (“中”、“北”、“奥”分别为8, 4, 3),不能进位2,所以“国”、“京”、“运”之和只能是 8,此时,“北”、“奥”只能分别为7和5,则“国”、“京”、“运”分别为 4、3、1,为使“中国”代表的两位数最大,“国”取4.即“中国”这两个汉字所代表的两位数最大是84.B 的比重为33.3 +(彳 I 2丿),两式均含22 333_所以只需比较 F 与ill 「的大小,二1亍〉1000, ,= 147,可知A 的比重较大,即 A 是实心球. 5. 【解】-XJTX13两个半球合成一个球,体积为」,圆柱部分的高为14- 2= 12,4.【解】显然比重较大的一个是实心球.A 的比重为22十-x^xf 一所以罐的容积为: E +nX 12x 12=(12+ 1 )X n ~ 13.3333 X 3.1416 ~41.888 (立方米)6. 【解】本题实际上是求1到10这些数中,取出2个数(可以重复)相乘,能组成几个个位是1的数.显然,双数不成所以只能是1X 1,3 X 7,7X 3和9X 9,共4对.7. 【解】我们用两条绿线将五边形分成了三个三角形,可以看出,这个五边形的五个角的度数和是180 X 3= 540度,即阴影部分面积相当于 1.5个半径为5的圆的面积,所以阴影部分的面积是n X 52X 1.5 - 3.14 X 25X 1.5 = 111.75 (平方厘米).◎8. 【解】由图可以看出,塔的上部底面圆的直径与底座的一边等长.设底座的一边长为2a,则塔的上部的体积为}X n .■/ -X 27,底座的体积为4:' X 27,所以,塔的上部的体积是底座的体积的,答案为B.9. 【解】题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数111111 1 1 1 1 1 1 1 1 1一X—二一一乂一 = —一乂一 =——一X-=——-X^ =-相加应尽量大,[一「,人J 「,4 1 :'ii , :〔「.;二一I■,111111111 113 114 115 116-X-=— -X-"—-X-"—一* _=一- 一士一二一一一=一1 一1 , •• 1 二,—二;而「二4 Tj 4 , 1 1 ;其中最小的是:〔二•,而二匚」 - 一_,[匚■- --,1丄1 1 1 1所以2 r :”最大,即答案为:+、*、一、X。

历届华杯赛初赛真题集锦-含答案

历届华杯赛初赛真题集锦-含答案

目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A 的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.。

18~22届华杯赛初二组初赛试题及参考答案

18~22届华杯赛初二组初赛试题及参考答案

A. a b c
B. 2b a c
C. 3b a c
19.【第 22 届华杯赛初赛卷第 2 题】
D. 3b a c
已知实数 a、b 满足 a2 b2 1和ab 2a b 2 0 ,则 3 a 2b 的值等于 ______ .
A. 2 2
B.1 3
C. 2 2
D. 2
7
A.8
B.10
C.12
D.14
2.【第 18 届华杯赛初赛 B 卷第 2 题】
以 O(0,0), B(40,20),C(60,0) 为顶点的三角形的三边上,整点(横坐标和纵坐标都是整
数的点)的个数是 ______ .
A.81
B.90
C.100
D.103
3.【第 19 届华杯赛初赛卷第 7 题】
4
2
13.【第 20 届华杯赛初赛卷第 2 题】
已知实数 a、b、c 满足{a b} {b c} {c a} 1 ,其中的{x}定义为 x [x] ,[x] 表 3
示不大于 x 的最大整数,那么{a b c}有 ______ 种可能的取值.
A.1
B.2
C.3
D.4
14.【第 20 届华杯赛初赛卷第 5 题】
满足式子 x 5 y 2 10 的整数对 (x, y) 有 ______ 对.
A.40
B.42
C.43
D.45
12.【第 19 届华杯赛初赛卷第 6 题】
关于 x 的方程 x2 2 m x 有 3 个互不相同的解,则 m 的最大值是 ______ .
A. 9
B. 3
C. 9
D. 7
2
4
9.【第 18 届华杯赛初赛 B 卷第 9 题】

华杯赛初赛历年真题集(含答案)

华杯赛初赛历年真题集(含答案)

目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (30)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (32)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (38)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (40)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (46)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (48)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (53)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (60)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (70)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (72)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (79)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (81)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C 面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M和BC 的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.13.(3分)自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点,…、13点牌各一张).洗好后背面朝上放好.一次至少抽取_________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取_________张牌.。

华杯赛小中组初赛试题及答案

华杯赛小中组初赛试题及答案

华杯赛小中组初赛试题及答案华杯赛小中组初赛试题及答案初赛试卷(小学中年级组)一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.19届华杯赛小中组初赛试题:两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值是().(A)83(B)99(C)96(D)982.现有一个正方形和一个长方形,长方形的周长比正方形的周长多4厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.(A)2(B)8(C)12(D)43.用8个3和1个0组成的九位数有若干个,其中除以4余1的有()个.(A)5(B)6(C)7(D)84.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.(A)10(B)8(C)12(D)165.新生开学后去远郊步行拉练,到达A地时比原计划时间10点10分晚了6分钟,到达C地时比原计划时间13点10分早了6分钟,A,C之间恰有一点B是按照原计划时间到达的,那么到达B点的时间是().(A)11点35分(B)12点5分(C)11点40分(D)12点20分6.右图中的正方形的边长为10,则阴影部分的面积为().(A)56(B)44(C)32(D)78二、填空题(每小题10分,满分40分)7.爷爷的年龄的个位数字和十位数字交换后正好是爸爸的年龄,爷爷与爸爸的年龄差是小林年龄的5倍.那么小林的年龄是岁.8.五个小朋友A,B,C,D和E参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5个编号之和等于35.已知站在E,D,A,C右边的选手的编号的和分别为13,31,21和7.那么A,C,E三名选手编号之和是________.9.用左下图的四张含有4个方格的纸板拼成了右下图所示的图形.若在右下图的.16个方格分别填入1,3,5,7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A,B,C,D四个方格中数的平均数是________.10.在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,右图是一示例.现在用20根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有________个单位边长的正方形.初赛试题答案(小学中年级组)一、选择题(每小题10分,满分60分)题号123456答案BDBCCA二、填空题(每小题10分,满分40分)题号78910答案92447。

华杯赛小高近5年真题(附详解)20C

华杯赛小高近5年真题(附详解)20C

A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
3月1 4 相 约 华杯
90000
15975 平方厘米.
(2)连接圆弧交点与正方形底边顶点,如图: A
300
B 300 C 可见 BA BC 300 ,CA CB 300 ,即三角形 ABC 为等边三角形,内角皆为 60 度,故知下半部分阴
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
10.
【答案】 125;1880
【解析】(1)“三人同时到达 D 地”的意义即为甲在两次减速后,以及乙在一次减速后的速度,与丙的速度是相 同的,故可设甲的速度是 100 份,则一次、两次减速后的速度分别应是 100 (1 40%) 60 份和
60 (1 40%) 36 份;说明丙的速度就是 36 份;进一步逆推出乙在减速之前的速度为 36 (1 25%) 48
“相”与 3 的和是质数,只能“相” 4 ,进而“约” 1;
再看右宫:“华”,“杯”,d 分别是 2、3、6,但其中只有 2 3 是质数,故此时可断定 d 6 ;进一步地,
“华”与 1 的和是质数,只能“华” 2 ,进而“杯” 3 .
ቤተ መጻሕፍቲ ባይዱ
4
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
120

4 3
30+ 40 3

历年华杯赛初赛真题合集(12年至17年)(小高组)

历年华杯赛初赛真题合集(12年至17年)(小高组)
目录
第二十二届华罗庚金杯少年数学邀请赛............................................................................................................................ 1 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 3 第二十一届华罗庚金杯少年数学邀请赛........................................................................................................................... 5 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 7 第二十届华罗庚金杯少年数学邀请赛............................................................................................................................... 9 第十九届华罗庚金杯少年数学邀请赛 ............................................................................................................................... 11 第十九届华罗庚金杯少年数学邀请赛 ..............................................................................................................................13 第十八届华罗庚金杯少年数学邀请赛 ..............................................................................................................................15 第十八届华罗庚金杯少年数学邀请赛 .............................................................................................................................. 17 第十七届华罗庚金杯少年数学邀请赛............................................................................................................................. 19 第十七届华罗庚金杯少年数学邀请赛 ..............................................................................................................................21 第二十二届华罗庚金杯少年数学邀请赛答案............................................................................................................... 23 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 24 第二十一届华罗庚金杯少年数学邀请赛答案............................................................................................................... 25 第二十届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 26 第二十届华罗庚金杯少年数学邀请赛答案 ....................................................................................................................27 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 28 第十九届华罗庚金杯少年数学邀请赛答案 ................................................................................................................... 29

华杯赛历届试题

华杯赛历届试题

第一届华杯赛决赛一试试题1. 计算:2.975×935×972×〔〕,要使这个连乘积的最后四个数字都是“0〞,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9○13○7=100 14○2○5=□4.一条1米长的纸条,在间隔一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后翻开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积。

这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,如今池内有池水,假如按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如以下图,四个小三角形的顶点处有六个圆圈。

假如在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。

问这六个质数的积是多少?11.假设干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如以下图,甲、乙、丙是三个站,乙站到甲、丙两站的间隔相等。

第八届华赛杯初赛试题及答案

第八届华赛杯初赛试题及答案

第八届“华杯赛”初赛试题1.2002年将在北京召开国际数学家大会,大会会标如右图所示,它是由四个相同的直角三角形拼成的(直角边长为2和3)。

问大正方形的面积是多少?2.从北京到G城的特别快车在2000年10月前需要12.6小时,后提速20%。

问提速后,北京到G城的特别快车要用多少小时?3. 下式中不同的汉字代表1—9中不同的数字,问当算式成立时,表示“中国”这个两位数最大是多少?4.两个同样材料做成的球A和B,一个实心,一个空心,A的直径为7、重量为22,B的直径为10.6、重量为33.3,问哪个球是实心球?5.铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示,问:该油罐车的容积是多少立方米?(π=3.1416)6.将下图中20张扑克牌分成10对,每对红心和黑桃各一张。

问:你能分出几对这样的牌,两张牌上的数的乘积除以10的余数是1?(将A 看成1)7.下图中五个相同的圆的圆心连线构成一个边长为10厘米的正五边形,求五边形内红色部分的面积。

(π=3.14)8.世界上最早的灯塔建于公元前270年,塔分三层,每层都高27米,底座呈正四棱柱、中间呈正八棱柱、上部呈正圆锥。

问上部的体积是底座的体积的()。

9.将+、-、×、÷四个运算符号分别填入下面的四个框中使该式的值最大。

10.下边这堆球共有多少个?11.自行车轮胎安装在前轮上能行驶5000千米后报废,若安装在后轮上只能行驶3000千米,为行驶尽可能多的路,如果采用当自行车行驶一定路程后将前后轮胎调换的方法,问安装在自行车上的一对轮胎最多可行驶多少千米?12.将边长为1的正方形二等分,再将其中的一半二等分,又将这一半的一半二等分这样继续下去,……展开想象的翅膀,从这个过程你能得到什么?第八届“华杯赛”初赛答案1.大正方形的面积是13。

2.北京到G 城的特别快车要用10.5小时。

3.844.A 是实心球。

5.油罐车的容积是41.888立方米。

第十五届华杯赛初赛试卷及答案

第十五届华杯赛初赛试卷及答案

第十五届华杯赛初赛试卷参考答案1、A【解析】每个空白正六边形能分成六个相同的正三角形,所以空白部分总共包含12个这样的正三角形;而整个大平行四边形能分成24个这样的正三角形,所以空白部分占整个平行四边形的一半,那么阴影部分也占整个平行四边形的一半。

所以选A。

2、B【解析】设剪下的长度为x厘米则可以列出不等式:23-x≥2(15-x),整理得x≥7所以剪下的长度至少是7厘米。

3、B【解析】此题出的不严谨,本题原意为两人捞第二个水池内的金鱼,亮亮与红红捞到得金鱼数之比为3:4,共捞了7份;这样,第一个水池内涝完后水池内的,亮亮和红红所捞到的金鱼数目比是5:3,共捞了8份;由于两个水池内的鱼的量是相等的,则找[]7,856=。

两个水池内的总份数,均统一为56份,则在捞第一个水池时,亮亮和红红所捞到的金鱼数目之比为:3:4=24:32;捞第二个水池时,亮亮和红红所捞到的金鱼数目之比为:5:3=35:21。

亮亮第一次捞了24份,第二次捞了35份,差了11份,为33条,则1份为3条。

所以原来每隔水池内的金鱼为:3×56=168。

4、D【解析】1119453461260111201512473456060111115524612601115225660++==++++==++==++=本题不是计算最大,而是计算哪个与67接近,再找分母的最小公倍数比较大小,[]7,60420=, 则以上分式分别可以写成:305420,329420,385420,364420,67可以写成360420,显然364420最接近。

5、B【解析】20=20=2×10=4×5=2×2×5四种情况下的最小自然数分别为:192、923⨯、4323⨯、4235⨯⨯,其中最小的是最后一个,为240。

(第十五届华罗庚金杯少年数学邀请赛初赛)6、C【解析】先找一个能够面积为3的点,比如A 点,然后根据等积变换,底相等,高相等,即面积相等。

华杯赛1-15届的真题和答案

华杯赛1-15届的真题和答案
第一届华罗庚金杯少年数学邀请赛初赛试题
1. 1966、1976、1986、1996、2006 这五个数的总和是多少? 2.每边长是 10 厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽 1 厘米的方框。 把五个这样的方框放在桌面上,成为一个这样的图案(如图 1 所示)。问桌面上被这些方框盖 住的部分面积是多少平方厘米?
=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。

华罗庚金杯赛数学试题与答案[第1至15届]

华罗庚金杯赛数学试题与答案[第1至15届]

华罗庚金杯赛数学试题与答案[第1至15届]目录第1届华罗庚金杯赛数学试题与答案 (1)第2届华罗庚金杯赛数学试题与答案 (6)第3届华罗庚金杯赛数学试题与答案 (14)第4届华罗庚金杯赛数学试题与答案 (21)第5届华罗庚金杯赛数学试题与答案 (26)第6届华罗庚金杯赛数学试题与答案 (31)第7届华杯赛初赛试题及解答 (38)第8届华杯赛初赛试题及解答 (41)第9届华杯赛初赛试题及解答 (45)第10届华杯赛初赛试题及解答 (49)第11届华杯赛初赛试题及解答 (53)第12届华杯赛初赛试题及解答 (60)第13届华杯赛少年邀请赛初赛摸拟试卷 (64)第14届华罗庚金杯少年数学邀请赛 (66)第15届华杯赛决赛真题及答案解析 (68)第1届华罗庚金杯赛数学试题与答案1、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。

问甲班和丁班共多少人?2、一笔奖金分一等奖、二等奖、三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。

如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元?3、一个长方形,被两条直线分成四个长方形,其中三个的面积是20亩、25亩和30亩。

问另一个长方形的面积是多少亩?4、在一条公路上,每隔一百公里有一个仓库,共有五个仓库。

一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。

现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输一公里需要0.5元的运费,那么最少要花多少运费才行?5、有一个数,除以3余数是2,除以4余数是1。

问这个数除以12余数是几?6、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形。

大正方形的面积是49平方米,小正方形的面积是4平方米。

问长方形的短边长度是几米?7、有两条纸带,一条长21厘米,一条长13厘米,把两条纸带剪下同样长的一段以后,发现短纸带剩下的长度是长纸带的长度的八分之十三。

第十二届华杯赛初赛试题和答案是什么

第十二届华杯赛初赛试题和答案是什么

第十二届华杯赛初赛试题和答案是什么一、选择题1.算式等于( )A.3B.2C.1D.02.折叠一批纸鹤,甲同学单独折叠需要半小时,乙同学单独折叠需要45分钟,则甲、乙两同学共同折叠需要( )A.12分钟B.15分钟C.18分钟D.20分钟3.如图,将四条长为16cm,宽为2cm的矩形纸条垂直相交平放在桌面上,则桌面被盖住的面积是( )A.72cm2B.128cm2C.124cm2D.112cm24.地球表面的陆地面积和海洋面积之比是29∶71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是( )A.284∶29B.284∶87C.87∶29D.171∶1135.一个长方体的长、宽、高恰好是3个连续的自然数,并且它的体积的数值等于它的所有棱长之和的数值的2倍,那么这个长方体的表面积是( )A.74B.148C.150D.1546.从和为55的10个不同的'自然数中,取出3个数后,余下的数之和是55的,则取出的三个数的积最大等于( )A.280B.270C.252D.216二、填空题7.如图,某公园有两段路,AB=175米,BC=125米,在这两段路上安装路灯,要求A、B、C三点各设一个路灯,相邻两个路灯间的距离都相等,则在这两段路上至少要安装路灯___个.8.将×0.63的积写成小数形式是____.9.如图,有一个边长为1的正三角形,第一次去掉三边中点连线围成的那个正三角形;第二次对留下的三个正三角形,再分别去掉它们中点连线围成的三角形;…做到第四次后,一共去掉了________个三角形.去掉的所有三角形的边长之和是________.10.同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要___种颜色的旗子,如果贝贝从某营地出发,不走重复路线就___(填“能”或“不能”)完成任务.一、选择题1.答案:B2.答案:C3.解:16×2×4-2×2×4=112(cm2) 答案:D4.解:设地球表面积为1,则北半球海洋面积为:0.5-0.29×==南半球海洋面积为:0.71-==南北半球海洋面积之比为:∶=171∶113答案:D5.解:设长方体的三条棱长分别为a-1,a,a+1,则它的体积为,它的所有棱长之和为[(a-1)+a+(a+1)]×4=12a于是有=12a×2,即=25a,=25,a=5,即这个长方体的棱长分别为4,5,6所以,它的表面积为(4×5+4×6+5×6)×2=148答案:B6.解:余下的数之和为:55×=35,取出的数之和为:55-35=20,要使取出的三个数之积尽量大,则取出的三个数应尽量接近,我们知6+7+8=21,所以取5×7×8=280答案:A二、填空题7.解:175与125的最大公约数为25,所以取25米为两灯间距,175=25×7,125=25×5,AB段应按7+1=8盏灯,BC段应按5+1=6盏灯,但在B点不需重复按灯,故共需安装8+6-1=13(盏)8.解:×0.63=5×0.63===9.解:第一次去掉1个三角形,得到3个小三角形,去掉的三角形的边长为3×;第二次去掉3个三角形,得到9个小三角形,去掉的三角形的边长为3×3×;第三次去掉9个三角形,得到27个小三角形,去掉的三角形的边长为9×3×;第四次去掉27个三角形,去掉的三角形的边长为27×3×;所以,四次共去掉1+3+9+27=40(个)小三角形,去掉的所有三角形的边长之和是:3×+9×+27×+81×=1210.解:最少需要3种颜色的旗子。

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点中学!

“华杯赛”初赛试题(附详细答案),能做全对的直接上重点
中学!
一、什么是华杯赛?
华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。

华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。

华杯赛”是以教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱科学的精神;激发广大中小学生学习数学的兴趣、开发智力、普及数学科学为宗旨的活动。

二、为什么报名参加各大数学杯赛的考试?
1、检验学习效果
通过奥数的学习,能培养良好的思维习惯,有利于智力的开发,且对以后数理化各科的学习也都非常有帮助。

杯赛考试是检测学习效果最好的方式。

2、锻炼思维能力
各大奥数杯赛不仅仅是一种考试,其举办宗旨更多的是致力于学生独立思考、科学探索、创造性地解决问题和创新思维能力的培养。

3、助升学一臂之力
通过杯赛证书增加升学砝码,突出简历亮点,进而拿到参加重点中学升学选拔的机会。

三、华杯赛作用
华杯赛作为目前全国最权威的初中数学比赛,备受北京市各重点中学的认可。

2007年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐。

甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。

今天的分享就到这儿了。

您有什么问题或建议可以在评论栏留言或给小编发私信,小编一定会在看到留言后第一时间给您回复。

历届华杯赛初赛小高真题

历届华杯赛初赛小高真题

初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754 C DB A5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ).(A )8615 (B )2016 (C )4023 (D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的. (A )1 (B )2 (C )3 (D )4二、填空题 (每小题 10 分, 共40分)7. 若1532 2.254553923444741A ⎛⎫-⨯÷+= ⎪ ⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________. 这句话里有( )个数大于1,有( )个数大于2,有( )个数大于3,有( )个数大于4. 罗华庚金 杯第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________. 2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y .y x515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程) 13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟.(A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A 的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么 γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、再加入50克含糖率20%的糖水. 再加入20克糖和30克水. 再加入100克糖与水的比是2:3的糖水.乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有()个三角形.(A)9 (B)10 (C)11 (D)126.从1~11这11个整数中任意取出6个数, 则下列结论正确的有()个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题 10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是 . 9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是 .10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是 .第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999 的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米.(A )532 (B )542 (C )3 (D )5133. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角,CE CB =, 则2AE 等于( ). (A )84 (B )80(C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ).(A )109 (B )110 (C )111 (D )112二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB的中点, 且2=OM , 那么PM 长为 .9.设q是一个平方数. 如果2-q和2+q都是质数, 就称q为P型平方数. 例如, 9就是一个P型平方数.那么小于1000的最大P型平方数是.10.有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A 的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.。

相关文档
最新文档