信息论与编码_第一章

合集下载

信息论与编码基础教程第一章

信息论与编码基础教程第一章


常 用
(4)认证性:
术 语
接收者能正确判断所接收的消息的正确性,
验证消息的完整性,而不是伪造和篡改的。
Page 23
1.3
第一章 绪 论
4.信息的特征

息 论
(1)信息是新知识、新内容;
的 概
(2)信息是能使认识主体对某一事物的未知
念 及
性或不确定性减少的有用知识;

用 (3)信息可以产生,也可以消失,同时信息
Page 31
第一章 绪 论
1-1 信息、消息、信号的定义是什么?三者的关 系是什么?
1-2 简述一个通信系统包括的各主要功能模块及 其作用。
1-3 写出信息论的定义(狭义信息论、广义信息 论)。
1-4 信息有哪些特征? 1-5 信息有哪些分类? 1-6 信息有哪些性质?
Page 32
1.1

1961年,香农的“双路通信信道”(Two-
息 论
way Communication Channels)论文开拓了多
发 展
用户信息理论的研究。到20世纪70年代,有关信
简 息论的研究,从点与点间的单用户通信推广发展

到多用户系统的研究。
1972年,T Cover发表了有关广播信道的 研究,以后陆续进行了有关多接入信道和广播信 道模型和信道容量的研究。
Page 20
1.3
第一章 绪 论
信 3)信号
息 论
定义:
的 概
把消息换成适合信道传输的物理量(如电
念 信号、光信号、声信号、生物信号等),这种
及 常
物理量称为信号。



信号是信息的载体,是物理性的。

信息论与编码第1章 绪论

信息论与编码第1章 绪论

1.2 通信系统的模型
通信的基本问题:在存储或者通信等情况 下,精确或者近似再现信源发出的消息。
信源 编码器 信道 译码器 信宿
干扰源
一般模型
香农信息论的通信系统模型,研究从发端(信源)到收端(信宿)有多少信息被传输。
通信过程: 信源发出的消息,经编码器变为二进制数 串,经由信道传输;到了收端,经过译码, 变为计算机或者人(信宿)能够理解的消 息。
信道编码和差错控制 进展
汉明码,纠一位错 Golay,纠3位错 RS码,循环码 卷积码的发现 Viterbi译码 BCH码,循环码 Turbo,接近香农极限(-1.6db)的编码, 随机迭代、随机交织思想的采用。
未来趋势
无线通信频带资源匮乏,高效和高可靠通 信更加依赖信息论的发展。 Internet通信、移动通信、光存储生物等领 域向信息论提出了要求。
从信源编码器输出到信源译码器输入之间形成等效离散信道。
1.2 通信系统的模型
信 源
定义:产生消息的来源,可以是文字、语言、 图像等; 输出形式:符号形式表示具体消息,是信息 的载体 ; 分类:连续的,离散的; 基本特点:具有随机性。描述其使用概率。ቤተ መጻሕፍቲ ባይዱ 主要研究其统计规律和信源产生的信息速率。
单输入、单输出的单向通信系统; 单输入、多输出的单向通信系统; 多输入、多输出的多向通信系统。
信息论研究的进展
信源编码、数据压缩 信道编码与差错控制 多用户信息论和网络通信 多媒体与信息论 信息论、密码学和数据安全等。 开始研究在通信应用,在投资方面的应用。
信源编码与数据压缩关键理论
信道编码器
通过添加冗余位,进行检错、纠错 信道编码的原则:尽量小的误码率,尽量 少的增加冗余位。 举例: BSC信道发重复码。

《信息论与编码》课件第1章 绪论

《信息论与编码》课件第1章 绪论

1.2 通信系统的模型
信源符号
信 源 编码 信 源
(序列)
编码器 信 道 译码器
x y yˆ
重建符号 (序列)
x
❖ 无失真编码: x xˆ
重建符号与信源发送符号一致, 即编码器输出码字序列与信源 发送序列一一映射;
限失真编码: x xˆ
总是成立的
y yˆ
分别是编码输出码字和接收到的码字
重建符号与信源发送符号不 完全一致;编码器输出码字 序列与信源输出符号序列之 间不是一一映射关系,出现 符号合并,使得重建符号的 熵减少了。
限失真、无失真是由于编译 码器形成的
信道编码
增加冗余
提高
对信道干 扰的抵抗 力
信息传输 的可靠性
❖ 由于信道中存在干扰, 数据传递过程中会出现 错误,信道编码可以检 测或者纠正数据传输的 错误,从而提高数据传 输的可靠性。
1.2 通信系统的模型
调制器
作用:
➢ 将信道编码的输出变换为适合信道传输的 要求的信号 ;
消息
信息的表现形 式;
文字,图像, 声音等;
信号
信号的变化描 述消息;
信息的基本特点
1.不确定性
受信者在接收到信息之前,不知道信源发送 的内容是什么,是未知的、不确定性事件;
2.受信者接收到信息后,可以减少或者消除不确定性;
3. 可以产生、消失、存储,还可以进行加工、处理;
4. 可以度量
1.2 通信系统的模型
冗 信源符号 余 变 相关性强 化 统计冗余强
信源编码器
码序列 相关性减弱 统计冗余弱
相关冗余 统计冗余 生理冗余
模型简化
信源输出前后符号之间存在一定相关性
信源输出符号不服从等概率分布

信息论与编码理论第一章

信息论与编码理论第一章

1.2 信息论研究的中心问题和发 展
Shannon信息论的基本任务
1948年shannon发表了“通信的数学理论” 奠定了信息论理论基础 基本任务是设计有效而可靠的通信系统
信息论的研究内容
狭义信息论(经典信息论)
研究信息测度,信道容量以及信源和信道编码理论
一般信息论
研究信息传输和处理问题,除经典信息论外还包括噪 声理论,信号滤波和预测,统计检测和估值理论,调 制理论,信息处理理论和保密理论
几乎无错地经由Gaussian信道传信 对于非白Gassian信道,Shannon的注水定理和多载波调制(MCM) CDMA、MCM(COFDM)、TCM、BCM、各种均衡、对消技术、
以及信息存储编码调制技术
信息论几个方面的主要进展
Ⅰ.信源编码与数据压缩 Ⅱ.信道编码与差错控制技术 Ⅲ.多用户信息论与网络通信 Ⅳ.多媒体与信息论 Ⅴ.信息论与密码学和数据安全 Ⅵ.信息论与概率统计 Ⅶ.信息论与经济学 Ⅷ.信息论与计算复杂性 Ⅸ.信息论与系统、控制、信号检测和处理 Ⅹ.量子信息论 Ⅺ.Shannon的其它重要贡献 参见课程网站:信息论进展50年
2.简化模型。理论的作用是浓缩知识之树, “简 单模型胜于繁琐的现象罗列”, “简单化才能显 现出事物的本质,它表现了人的洞察力”。 好的性能量度和复杂性的量度(信息量、熵、 信道容量、商品等),常会引导出优秀的理论结 果和令人满意的实际应用。
1.3 Shannon信息论的局限性
如果实际信源或信道符合所采用的概率模 型描述,这种方法是有效的,否则只能是 近似的,甚至根本无效。
信道 编码器
信道编码 器
调制器
信 道
干扰源
信源 译码器
信道 译码器

信息论与编码第

信息论与编码第

第1章 绪论
目前,编码理论与技术不但在通信、计算机以及自动控 制等电子学领域中得到直接旳应用,而且还广泛地渗透到生 物学、医学、生理学、语言学、社会学和经济学等领域。在 编码理论与自动控制、系统工程、人工智能、仿生学、电子 计算机等学科相互渗透、相互结合旳基础上,形成了某些综 合性旳新兴学科。尤其是伴随数学理论,如小波变换、分形 几何理论、数学形态学等,以及有关学科,如模式辨认、人 工智能、神经网络、感知生理心理学等旳进一步发展,世界 范围内旳有关教授一直在追求、寻找既有压缩编码旳迅速算 法,同步,又在不断探索新旳科学技术在压缩编码中旳应用, 所以,新奇、高效旳当代压缩措施相继产生。
第1章 绪论
对图像信源亦是如此,人们看电影时能够充分利用人眼旳视 觉暂留效应,当放映机放速达25张每秒以上时,人眼就能将 离散旳照片在人脑内反应成连续画面。若放速大大超出25张 每秒,则对一般画面是毫无意义旳。限失真信源编码旳研究 较信道编码和无失真信源编码落后十年左右。1948年,香农 在其论文中已体现出了有关率失真函数旳思想,在1959年, 他刊登旳《保真度准则下旳离散信源编码定理》首先提出了 率失真函数及率失真信源编码定理。1971年,伯格尔旳《信 息率失真理论》是一本较全方面地论述有关率失真理论旳专 著。率失真信源编码理论是信源编码旳关键问题,是频带压 缩、数据压缩旳理论基础,直到今日它仍是信息论研究旳课 题。
第1章 绪论 图1-1 信息传播系统模型
第1章 绪论
1.信源 信源是产生消息和消息序列旳源,它能够是人、生物、 机器或其他事物,它是事物多种运动状态或存在状态旳集合。 信源发出旳消息有语音、图像、文字等,人旳大脑思维活动 也是一种信源。信源旳输出是消息,消息是详细旳,但它不 是信息本身。另外,信源输出旳消息是随机旳、不拟定旳, 但又有一定旳规律性。信源输出旳消息有多种形式,能够是 离散旳或连续旳、平稳旳或非平稳旳、无记忆旳或有记忆旳。

信息论与编码_第一章

信息论与编码_第一章

信息论发展中的悲情人物
• 诺贝尔经济学获得者:
JOHN NASH
于1951年发表《非合作博弈论》
成就著名的“纳什均衡”理论
1958年(30岁)开始痴迷于信息编码技术,出现精神失 常。直到80年代末,方从癫疯中苏醒,继续从事经济学博弈 论研究,1994年获得诺贝尔经济学奖
奥斯卡影片《美丽心灵》
第二节、信息的概念
(17) 发现格码,1989,R.deBuda。格(lattice)码可趋近频带受限高斯信道 容量。Loeligerz在1992年已证明,这是Zp上的欧氏空间群码。
(18)发现Turbo码,迭代自适应译码算法,1993, C. Berrou and A. Glavieux. (19) LDPC码,近来又重新被发现。
信息定义的总结
• 信息是人与外界交互的内容,是有序程度的度量 和负熵,是用以减少不定性的东西 ,这些都是 Wiener 、 Brillouin 、 Shannon 等人的理解。这些 认识比仅仅把信息看作消息或通信内容要更深刻。 • 在数学上很容易证明, Hartley 的信息概念仅是 Shannon信息概念的一种特殊情形。 • 总起来说,在现有的各种理解中, Shannon 的定 义比较深刻,而且这种定义还导出了相应的算法。
香农信息定义的缺陷(2)
• 只考虑了随机型的不定性,不能解释与其 他型式的不定性(如模糊不定性)有关的 信息问题。 • 这种信息定义只从功能角度上来表述,还 是没有从根本上回答“信息是什么”的问 题。
2、发展
信 息 论 主 要 几 个 方 面 的 进 展
Ⅰ.信源编码与数据压缩 Ⅱ.信道编码与差错控制技术 Ⅲ.多用户信息论与网络通信 Ⅳ.多媒体与信息论 Ⅴ.信息论与密码学和数据安全 Ⅵ.信息论与概率统计 Ⅶ.信息论与经济学 Ⅷ.信息论与计算复杂性 Ⅸ.信息论与系统、控制、信号检测和处理 Ⅹ.量子信息论 Ⅺ.Shannon的其它重要贡献

信息论与编码一

信息论与编码一

x2 xm X x 1 q(X ) q (x ) q(x ) q(x ) 1 2 m
x为各种长为N的符号序列,x = x1 x2 … xN ,xi { a1 , a2 , … , ak },1 i N,序列集X = {a1a1… a1 , a1a1… a2 , … , akak… ak },共有kN种序列,x X。 序列的概率q (x) = q (x1x2 … xN) =
根据统计特性,即转移概率p (yx )的不同,信道又可分类为:
无记忆信道 信道的输出y只与当前时刻的输入x有关。
有记忆信道 信道的输出y不仅与当前时刻的输入有关, 还与以前的输入有统计关系 。
1.4.1 离散无记忆信道
离散无记忆信道的输入和输出消息都是离散无记忆的单个符 号,输入符号xi { a1 , a2 , … , ak},1 i I,输出符号yj { b1 , b2 , … , bD },1 j J,信道的特性可表示为转移概率矩阵:
p ( y1 x1 ) p ( y1 x 2 ) P p ( y1 x I ) p ( y 2 x1 ) p( y 2 x 2 ) p( y 2 x I ) p ( y J x1 ) p( y J x 2 ) p( y J x I )
p 1 p 0 P 0 1 p p
0 e
0 1-p 1-p 1
p
p
1
图1-7 二元删除信道
4.二元Z信道
二元Z信道如图1-8所示,信道输入符 号x {0 , 1},输出符号y {0 , 1}转
0 1 移概率矩阵为 P p 1 p
0 1 0 p 1 1-p
下面列举几种常见的离散无记忆信道: 1.二元对称信道(Binary Symmetric Channel,简记为BSC) 这是一种很重要的信道,它的输入符号x {0 , 1},输出符 号y {0 , 1},转移概率p (yx ) ,如图1-5所示,信道特性

大学信息论与编码(第2版)-信息论与编码

大学信息论与编码(第2版)-信息论与编码

20XX年复习资料大学复习资料专业:班级:科目老师:日期:第1章绪论1.1信息论的形成与发展⏹信息论的发展过程✓20X X X X24年,H N y q u i s t,信息率与带宽联系✓20X X X X28年,R V H a r t l e y,引入非统计信息量✓20X X X X36年,E H A r m s t r o n g,带宽与抗干扰能力✓20X X X X36年,H D u d l e y,发明声码机✓40年代初,N W i e n e r,“控制论”✓20X X X X48年,S h a n n o n,“信息论”“A m a t h e m a t i c a l t h e o r y o fc o m m u n i c a t i o n s”信息时代的里程碑✓50年代开始,I R E成立信息论组,出版信息论汇刊⏹信息论的形成与发展✓20X X X X59年,S h a n n o n,信源压缩编码理论,“C o d i n g t h e o r e m f o r a d i s c r e t e s o u r c e w i t h a f i d e l i t y c r i t e r i o n”✓20X X X X0X X1年,S h a n n o n,“双路通信信道”,多用户理论✓20X X X X0X X2年,C o v e r,广播信道⏹三大定理⏹无失真信源编码定理(第一极限定理)⏹信道编码定理(第二极限定理)⏹限失真信源编定理(第三极限定理)S h a n n o n信息论:在噪声环境下,可靠地、安全地、有效地传送信息理论----狭义信息论⏹信息✓定义广义定义:信息是物质的普遍属性,所谓物质系统的信息是指它所属的物理系统在同一切其他物质系统全面相互作用(或联系)过程中,以质、能和波动的形式所呈现的结构、状态和历史概率信息:信息表征信源的不定度,但它不等同于不定度,而是为了消除一定的不定度必须获得与此不定度相等的信息量⏹信息✓性质信息是无形的信息是可共享的信息是无限的信息是无所不在的信息是可度量的⏹信息✓信息与消息、信号比较消息是信息的数学载体、信号是信息的物理载体信号:具体的、物理的消息:具体的、非物理的 信息:非具体的、非物理的 信息的定义和性质⏹ 信息、消息、信号u 信号最具体,它是一物理量,可测量、可显示、可描述,同时它又是载荷信息的实体 信息的物理层表达u 消息是具体的、非物理的,可描述为语言文字、符号、数据、图片,能够被感觉到,同时它也是信息的载荷体。

信息论与编码第一章

信息论与编码第一章

通信系统模型主要分成下列五个部分。
23
编码器可分为信源编码器和信道编码器
• 信源编码器的作用
–是把信源发出的消息变换成由二进制码元 (或多进制码元)组成的代码组,这种代码组 就是基带信号; –同时通过信源编码可以压缩信源的冗余度, 以提高通信系统传输消息的效率。
• 信道编码器的作用
主要作用是提高信息传送的可靠性。
当法拉第于1820-1830年期间发现电磁感应的基本 规律后,不久莫尔斯就建立起电报系统(18321835)。1876年,贝尔又发明了电话系统。 1864年麦克斯韦预言了电磁波的存在,1888年赫兹 用实验证明了这一预言。接着1895年英国的马可尼 和俄国的波波夫就发明了无线电通信。20世纪初 (1907),根据电子运动规则,福雷斯特发明了能 把电磁波进行放大的电子管。。
33
1.4
信息论的主要研究成果
• 语音信号压缩
• 长途电话网标准 –1972年CCITT G.711标准中的 64kbit/s, –1995年 CCITT G. 723.1标准中的 6.3 kbit/s。 • 移动通信中 –1989年GSM标准中语音编码速率为13.2 kbit/s –1994年在为半码速GSM研究的VSELP编码算法中,码 速率为5.6 kbit/s • 军用通信 –美国NSA标准的速率在1975年已达2.4 kbit/s • 目前在实验室中已实现600bit/s的低速率语音编码,特 别是按音素识别与合成原理构造的声码器其速率可低 于100bit/s,已接近信息论指出的极限。
2
课程特点
信息理论为中心,区别 “信源编码” 与“信道编码” 概念和物理意义为主,数学推导尽量 放到课外 结合通信系统实际应用
3
学习目标

信息论与编码第1章绪论

信息论与编码第1章绪论

1.1 信息论的形成和发展
美国另一科学家维纳(N. Wiener)出版了“Extrapolation, Interpolation and Smoothing of Stationary Time Series”和 "Control Theory”这两本名著。 维纳是控制论领域的专家,重点讨论微弱信号的检测理论, 并形成了信息论的一个分支。他对信息作了如下定义:信 息是人们在适应外部世界和控制外部世界的过程中,同外 部世界进行交换的内容的名称。 补充:老三论(SCI论 ): system, control, information 新三论:耗散结构论、协同论、突变论
信息论与编码 Information Theory & Coding
伟大的科学家-香农
伟大的科学家-香农
“通信的基本问题就是在一点重新准确地或 近似地再现另一点所选择的消息”。 这是数学家香农(Claude E.Shannon)在 他的惊世之著《通信的数学理论》中的一 句名言。正是沿着这一思路他应用数理统 计的方法来研究通信系统,从而创立了影 响深远的信息论。
1.1 信息论的形成和发展
①语言产生:人们用语言准确地传递感情和意图,使语言成为 传递信息的重要工具。 ②文字产生:人类开始用书信的方式交换信息,使信息传递的 准确性大为提高。 ③发明印刷术:使信息能大量存储和大量流通,并显著扩大了 信息的传递范围。 ④发明电报电话:开始了人类电信时代,通信理论和技术迅速 发展。这一时期还诞生了无线电广播和电视。更深入的问 题:如何定量研究通信系统中的信息,怎样更有效、更可 靠传递信息? ⑤计算机与通信结合:促进了网络通信的发展,宽带综合业务 数字网的出现,给人们提供了除电话服务以外的多种服务, 使人类社会逐渐进入了信息化时代。

信息论与编码_第一章.

信息论与编码_第一章.
信息论与编码
(Information theory and coding)
主讲老师:姚志强 yaozhiqiang@
学习的意义
• 信息论与编码理论是信息科学的基础理论, 对信息进行定量的分析,对信息处理给出理 论的指导,是20世纪后半叶数字化革命的主 要理论和技术支柱.
• 信息论与编码的许多思想和方法已广泛渗透 到许多领域: [计算机],[通信技术],[统计学], [物理学], [生物学],[系统科学], [经济学], [社会学], ……
需具备的相关数学知识:
高等数学 概率与统计理论 矩阵论 最优化理论 需了解的相关专业方面知识:
通信原理
本课程的主要教学目标: 信息论基本原理与应用
第一章、绪论
第一节、信息论起源和发展 第二节、信息的概念 第三节、信息论的研究内容和核心
第一节、信息论的起源及发展
1、起源
1924年,奈奎斯特(Nyquist):信号带宽和信息 速率间的关系。
主要参考文献
• 《信息理论与编码》 姜丹、钱玉美编著 中国科技大学出版 社(第一版,第二版,第三版);
• 《信息论—基础理论与应用》 傅祖芸编著 电子工业出版社
2001年版;
• 《信息论与编码方法》西南交通大学勒蕃教授著;
• 《信息论与编码》陈运、周亮、陈新编著 电子工业出版社; • 《信息论与编码》仇佩亮 编著 高等教育出版社;
息的理解:信息是用来减少随机不确定性的东西。 • 这篇论文以概率论为工具,深刻阐述了通信 随机不确定性是指由于随机因素所造成的不能肯定 工程的一系列基本理论问题,给出了计算信 的情形,在数值上可以用概率熵来计量。 源信息量和信道容量的方法和一般公式,得 到了一组表征信息传递重要关系的编码定理。

信息论与编码

信息论与编码

信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。

2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。

信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。

单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。

(3) =0时, = , =0说明该事件是不可能事件。

(4)是的单调递减函数。

3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。

)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。

(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。

4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。

(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。

(3)信源熵H(X)反映了变量X 的随机性。

6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。

当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。

两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。

当且仅当p(z/x,y)=p(z/y)时取等号。

联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。

《信息论与编码》课件

《信息论与编码》课件

发展趋势与未来挑战
探讨信息论和编码学领域面临的未 来挑战。
介绍多媒体数字信号压缩和编码技术的发展和应用。
可靠的存储与传输控制技术
解释可靠存储和传输控制技术在信息论中的重要性。
生物信息学中的应用
探讨信息论在生物信息学领域的应用和突破。
总结与展望
信息论与编码的发展历程
回顾信息论和编码学的发展历程和 里程碑。
信息技术的应用前景
展望信息技术在未来的应用前景和 可能性。
介绍误码率和信噪比的定义和关系。
2
码率与修正码率的概念
解释码率和修正码率在信道编码中的重要性。
3
线性码的原理与性质
探讨线性码的原理、特点和应用。
4
编码与译码算法的实现
详细介绍信道编码和译码算法的实现方法。
第四章 信息论应用
无线通信中的信道编码应用
探索无线通信领域中信道编码的应用和进展。
多媒体数字信号的压缩与编码技术
《信息论与编码》T课 件
# 信息论与编码 PPT课件
第一章 信息的度量与表示
信息的概念与来源
介绍信息的定义,以及信息在各个领域中的来源和 应用。
香农信息熵的定义与性质
介绍香农信息熵的概念和其在信息论中的重要性。
信息量的度量方法
详细解释如何度量信息的数量和质量。
信息压缩的基本思路
探讨信息压缩的原理和常用方法。
第二章 信源编码
等长编码与不等长编码
讨论等长编码和不等长编码的特点 和应用领域。
霍夫曼编码的构造方法与 性质
详细介绍霍夫曼编码的构造和优越 性。
香农第一定理与香农第二 定理
解释香农第一定理和香农第二定理 在信源编码中的应用。

信息论与编码第一章绪论

信息论与编码第一章绪论

编码的效率与性能
编码效率
编码效率是指编码过程中信息传输速率与原始信息传输速率的比 值,反映了编码过程对信息传输的影响程度。
错误概率
错误概率是指在传输或存储过程中,解码后的信息与原始信息不 一致的概率。
抗干扰能力
抗干扰能力是指编码后的信息在传输过程中抵抗各种干扰的能力, 包括噪声、失真等。
03
信息论与编码的应用领域
信息论与编码第一章绪论
• 信息论的基本概念 • 编码理论的基本概念 • 信息论与编码的应用领域 • 信息论与编码的发展历程 • 信息论与编码的交叉学科
01
信息论的基本概念
信息量的定义与性质
信息量的定义
信息量是衡量信息多少的量,通常用熵来表示。熵是系统不确定性的量度,表示 随机变量不确定性的程度。
04
信息论与编码的发展历程
信息论的起源与发展
19世纪
1928年
随着电报和电话的发明,信息传递开始快 速发展,人们开始意识到信息的传递需要 遵循一定的规律和原则。
美国数学家哈特利提出信息度量方法,为 信息论的诞生奠定了基础。
1948年
1950年代
美国数学家香农发表论文《通信的数学理 论》,标志着信息论的诞生。
信息量的性质
信息量具有非负性、可加性、可数性和传递性等性质。非负性是指信息量总是非 负的;可加性是指多个信息源的信息量可以相加;可数性是指信息量可以量化; 传递性是指信息量可以传递,从一个信息源传到另一个信息源。
信息的度量
信息的度量方法
信息的度量方法有多种,包括自信息、互信息、条件互信息、相对熵等。自信息是指随机变量取某个值的概率; 互信息是指两个随机变量之间的相关性;条件互信息是指在某个条件下的互信息;相对熵也称为KL散度,是两个 概率分布之间的差异度量。

第1章绪论-信息论与编码(第3版)-曹雪虹-清华大学出版社

第1章绪论-信息论与编码(第3版)-曹雪虹-清华大学出版社

13
信息论对研究实际通信系统的作用
提供一个最为普遍的概念性框架,在该 框架内可以构建实际信源和信道更详细 的模型;
由该理论建立的关系可为给定系统构建 编码器和译码器时进行折衷指明方向。
1.3 通信系统的模型
1.3 通信系统的模型
信源
产生消息的源,消息可以是文字,语言, 图像。可以离散,可以连续。随机发生。
信息、消息、信号
信息:一个抽象的概念。 消息:是信息的载体,相对具体的概念,如语言,文字,
数字,图像
信号:表示消息的物理量,电信号的幅度,频率,相位
等等
所以,消息是信息的数学载体、信号是信息的物 理载体
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
11

烽火台
信息:有/无敌情 消息:s(x)=sgn(x) 信号:火光(亮,灭)
of communications”信息时代的里程碑 ✓ 50年代开始,IRE成立信息论组,出版信息论汇刊
普通高等教育“十五”国家级规划教材《信息论与编码》 曹雪虹等编著
5
信息论发展简史
1948年,Shannon信息论奠基信息的度量
1952年,Fano证明了Fano不等式,给出了 Shannon信道编码逆定理的证明;1957年, Wolfowitz,1961 Fano,1968Gallager给出信道编 码定理的简单证明并描述了码率、码长和错误概 率的关系;1972年Arimoto和Blahut发明了信道划教材《信息论与编码》 曹雪虹等编著
4
1.1 信息论的形成与发展
信息论的发展过程
✓ 1924年,H Nyquist, 信息率与带宽联系 ✓ 1928年,RV Hartley, 引入非统计信息量 ✓ 1936年,EH Armstrong, 带宽与抗干扰能力 ✓ 1939年,H Dudley, 发明声码器 ✓ 40年代初,N Wiener, “控制论” ✓ 1948年,Shannon, “信息论” “A mathematical theory

信息论与编码第1章概论

信息论与编码第1章概论

数据融合
信息论中的数据融合算法可以用于物 联网中的多源数据融合,提高数据处 理效率和准确性。
THANKS
感谢观看
信息论的起源与发展
01
02
03
04
19世纪
随着电报和电话的发明,信息 传递开始受到关注。
20世纪40年代
香农提出信息论,为信息传递 和编码提供了理论基础。
20世纪60年代
随着计算机技术的兴起,信息 论在数据压缩、传输和存储方
面得到广泛应用。
21世纪
信息论在物联网、大数据、人 工智能等领域发挥重要作用。

熵是衡量随机变量不确定性的度量,可以用来衡量信息的平均量。对于离散随机变量,熵 是所有可能事件概率的加权对数值。对于连续随机变量,熵是概率密度函数的积分值的对 数值。
冗余
冗余是指信息中多余的部分,即不包含新信息的部分。编码的目标是减少冗余,提高信息 的有效性和传输效率。
编码的分类
01
信源编码
信源编码是对原始信息进行压缩和编码的过程,以减少信息的冗余和提
编码实践验证信息论理论
编码实践为信息论提供了实验验证的机会,帮助完善和发展信息论的理论体系。
编码推动信息论的应用
编码技术的发展推动了信息论在实际应用领域的发展,使得信息论在通信、数据存储等领域得到广泛 应用。
信息论与编码的应用领域
通信系统
数据存储
信息论和编码在通信系统中发挥着重要作 用,如数字电视、卫星通信、移动通信等 。
信息论与编码第1章概论
• 信息论的基本概念 • 编码理论的基本概念 • 信息论与编码的关系 • 信息论与编码的发展历程 • 信息论与编码的应用案例
01
信息论的基本概念

信息论与编码第一章绪论

信息论与编码第一章绪论
研究信息传输和处理问题,除经典信息论外 还包括噪声理论,信号滤波和预测,统计检 测和估值理论,调制理论,信息处理理论和 保密理论
➢ 广义信息论
除上述内容外,还包括自然和社会领域有关 信息的内容,如模式识别,计算机翻译,心 理学,遗传学,神经生理学
信息论发展简史
➢ 电磁理论和电子学理论对通信理论技术 发展起重要的促进作用
➢ 研究目的:提高信息系统的可靠性、有效性和安全性以
便达到系统最优化。
1.1 信息的概念
信息是信息论中最基本、最重要的概念,既抽象又 复杂
信息在日常生活中被认为是“消息”、“知识”、“情报” 等➢“信息”不同于消息(在现代信息论形成之前,信息一直
被看作是通信中消息的同义词,没有严格的数学含义), 消息是表现形式,信息是实质;

➢ 1928年Hartley提出信息量定义为可能消息量的 对数
➢ 1939年Dudley发明声码器 ➢ 1940维纳将随机过程和数理统计引入通信与控制
系统
信息论发展简史
1948年shannon信息论奠基
1952年Fano证明了Fano不等式,给出了 shannon信道编码逆定理的证明
1957,Wolfowitz,1961 Fano, 1968Gallager给出信道编码定理的简介证 明并描述了码率,码长和错误概率的关系, 1974年Bahl发明了分组码的迭代算法( BCRJ)
➢ 重点讲授信息的概念,信息的度量和计算等 一些基本问题。还学习几种常用的信源编码方 法和纠错编码方法。
课程位置
基础课程
概率论 数理统计
后续课程:
通信原理 数字通信 数字图像处理
课程目标
➢ 掌握基本的信息论概念,而且要求能够和日常 生活和学习结合起来,做到活学活用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 根据这一思想,法裔美国科学家布里渊(Brillouin, 1956)在他的名著《科学与信息论》中直接了当地 指出:信息就是负熵。并且他还创造了Negentropy 这一词来表示负熵的概念。
• 美国数学家、控制论的主要奠基人维纳在1950年出 版的《控制论与社会》一书中对信息的理解是:
– “人通过感觉器官感知周围世界”,
……
• 组成客观世界的三大基本要素:物质、能 量和信息,材料科学、能源科学、和信息 科学一起被称为当代文明的“三大支柱”。
– Without materials, there is nothing. • 没有物质的世界是虚无的世界; – Without energy, nothing happens.
1928年,哈特利(Hartley):通讯系统传递信息 的能力,并给出了信息度量的方法。
1948年,香农(Shannon):通讯中的数学理论。 并由此创立了信息论学科,因此称他为信息论的 创始人。
1956年,布里渊( Brillouin ):《科学与信息
论》,信息就是负熵。
信息定义的概念
• 1928年,哈特利在《 Bell System Technical Journal 》上发表了一篇题为“信息传输”的论文。 在这篇论文中,他把信息理解为选择通信符号的方 式,并用选择的自由度来计量这种信息的大小。他 认为,发信者所发出的信息,就是他在通信符号表 中选择符号的具体方式。
• 美国数学家香农在《Bell System Technical Journal》 发 表 了 一 篇 题 为 “ A Mathe香m农a在ti进c行a信l 息T的h定eo量r计y算的o时f 候C明o确m地m把信un息i量cation” 的长文定(义1为9随4机8不)定。性程度的减少。这就表明了他对信
• 目前国内各高校的信息类专业研究生都 已把信息论与编码作为一门重要的专业 基础理论课.
信息论对于不同学科的重要性
• 通讯工程师说:当受信者对一个事件出现的先验 概率估计越小时,他获得的信息量就越大;
• 计算机科学家则说:微处理器时钟频率的大小, 决定着它处理信息的速度高低;
• 生物学家则高呼:脱氧核糖核酸上的信息是控制 子代和亲代相象的唯一源泉。
……
• 不同学科的信息有着不同的内涵,有着不同的研 究目的
主要参考文献
• 《信息理论与编码》 姜丹、钱玉美编著 中国科技大学出版 社(第一版,第二版,第三版);
• 《信息论—基础理论与应用》 傅祖芸编著 电子工业出版社 2001年版;
• 《信息论与编码方法》西南交通大学勒蕃教授著; • 《信息论与编码》陈运、周亮、陈新编著 电子工业出版社; • 《信息论与编码》仇佩亮 编著 高等教育出版社;
需具备的相关数学知识: 高等数学 概率与统计理论 矩阵论 最优化理论
需了解的相关专业方面知识: 通信原理
本课程的主要教学目标: 信息论基本原理与应用
第一章、绪论
第一节、信息论起源和发展 第二节、信息的概念 第三节、信息论的研究内容和核心
第一节、信息论的起源及发展
1、起源
1924年,奈奎斯特(Nyquist):信号带宽和信息 速率间的关系。
哈特利信息定义的局限性
• 哈特利的这种理解能够在一定程度上解释 通信工程中的一些信息问题,但是它也存 在着一些严重时局限性:
所定义的信息不涉及内容和价值,只考虑选择的 方式,
没有考虑到信源的统计性质;
把信息理解为选择的方式,就必须有一个选择的 主体作为限制条件。
这些缺点使它的运用范围受到很大的限制。
信息论与编码
(Information theory and coding)
学习的意义
• 信息论与编码理论是信息科学的基础理论, 对信息进行定量的分析,对信息处理给出理 论的指导,是20世纪后半叶数字化革命的主 要理论和技术支柱.
• 信息论与编码的许多思想和方法已广泛渗透 到许多领域:
[计算机],[通信技术],[统计学], [物理学], [生物学],[系统科学], [经济学], [社会学],
• 这篇论息文的理以解概:信率息论是用为来减工少具随机,不深确定刻性的阐东述西。了通信 工程的随一机不系确列定性基是本指由理于随论机问因素题所,造成给的不出能了肯定计算信Βιβλιοθήκη 的情形,在数值上可以用概率熵来计量。
源信息量和信道容量的方法和一般公式,得 到了一组表征信息传递重要关系的编码定理。
香农简介
1916-2001,信息论及数字通信时代的奠基人。美国科 学院院士、工程院院士,英国皇家学会会员,美国哲学学会 会员。
• 没有能源的世界是死寂的世界;
– Without information, nothing makes sense
• 没有信息的世界是混乱的世界。
信息论的奠基人:
美国科学家 Claude Elwood Shannon , 1916年4月30日—2001年2月26日, 以60多年前Shannon的不朽论文《通信的数学理论》 为里程碑.
几十年来许多优秀的学者,工程师共同努力推动了 该理论和实践的发展.
• 信息论的学习有助于对其他学科的研究, 同时其他相关学科的研究也会促进信息 论的发展.
• 这些理论是属于21世纪的工程科学理论, 将对21世纪新科技产生巨大的作用.
• 国外的一流学校在20世纪50年代末就开 始设立信息论与编码课程.
– “我们支配环境的命令就是给环境的一种信息”,因此, “信息就是我们在适应外部世界,并把这种适应反作用于 外部世界的过程中,同外部世界进行交换的内容的名称”。
– “接收信息和使用信息的过程,就是我们适应外界环境的 偶然性的过程,也是我们在这个环境中有效地生活的过 程”。
维纳信息定义的缺陷
1936年获得密西根大学数学与电气工程学士学位。 1938年获MIT(麻省理工学院)电气工程硕士学位, 《继电器与开关电路的符号分析》。 1940年获MIT数学博士学位,《理论遗传学的代数论》。 二战期间:著名的密码破译者,在BELL实验室,主要 跟踪德国的飞机和火箭。 1948年发表《通信中的数学理论》。 1949年,另一著名论文《噪声下的通信》
相关文档
最新文档