高考数学必胜秘诀在

合集下载

2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结一、常规题型技巧1.选择题:(1)寻找关键信息:仔细阅读题目,理解题意,找出关键信息,如条件、要求等。

(2)排除法:根据选项逐一排除错误的选项,缩小范围,提高正确选项的概率。

(3)逻辑推理:借助题目中的条件或要求进行逻辑推理,寻找解题的线索。

2.填空题:(1)审题准确:仔细阅读题目,理清题目要求,确定填空的种类(数、代数式、字母等)。

(2)转换思路:将复杂问题转换为简单问题,利用等式、条件等求解填空。

(3)检验答案:填入数值后,进行计算,验证答案是否正确。

3.解答题:(1)系统化思考:将问题分解为多个简单的小问题,逐步解决,构建完整的解题框架。

(2)注重图像:合理运用图表、图像、示意图等工具,对于几何问题,可以先绘制图形帮助理解。

(3)条理清晰:清晰地表达解题过程,用文字说明解题思路、逻辑关系和计算过程。

二、解应用题的技巧1.审题:仔细阅读题目,理解问题背景和要求,确定所给信息和需要求解的内容。

2.建立模型:将问题抽象为数学模型,利用数学知识将问题转化为等价的数学表达式或方程组。

3.计算准确:对所建立的模型进行计算,注意运算的准确性、规范性和简洁性。

4.结果验证:对答案进行合理性检验,通过合理的估算、逻辑推理等方法,判断解是否符合实际情况。

5.拓展思考:对应用题进行扩展思考,探索更多的解题思路和方法。

三、应对难题的技巧1.缩小范围:通过对题目进行分类,找出难题的共性,逐个攻克,缩小解题范围。

2.变换角度:换一种角度思考问题,利用数学性质和公式,尝试不同的解题思路。

3.多维思考:综合运用多个数学知识点,进行多层面的思考和分析,拓宽解题思路。

4.寻求帮助:及时向老师或同学请教,讨论解题思路和方法,互相帮助和提升。

四、备考技巧1.制定合理的学习计划:根据自身的情况,合理安排学习时间和任务,分解目标,逐步实现。

2.多做真题和模拟题:通过大量的题目练习,熟悉考点,提高解题速度和准确率。

一数高考数学核心方法

一数高考数学核心方法

一数高考数学核心方法高考数学是所有高中学生必须面对的重要考试科目之一。

想要在高考数学中取得好成绩,除了平时的认真学习和练习外,还需要掌握一些核心方法。

下面就介绍一些可以帮助你在高考数学中取得好成绩的核心方法。

1. 熟练掌握基本概念和公式高考数学中的所有内容都是建立在基本概念和公式之上的。

因此,熟练掌握基本概念和公式是非常重要的。

在平时的学习中,要认真理解每个概念的定义和意义,并且积累各种常用的公式。

只有掌握了基本概念和公式,才能更好地理解和解决数学问题。

2. 注重基本技能的训练高考数学中的许多题目都需要进行基本技能训练,如加减乘除、分式化简、代数式简化等。

因此,在平时的学习中,要重视基本技能的训练,掌握各种技巧和方法,熟练掌握各种运算的规律。

只有掌握了基本技能,才能更好地解决各种数学问题。

3. 善于分析问题和解题思路高考数学中的题目往往比较复杂,需要我们善于分析问题和解题思路。

在做题时,要认真阅读题目,分析问题的本质和要求,确定解题思路和方法,并按照一定的步骤进行求解。

只有善于分析问题和解题思路,才能更好地解决复杂的数学问题。

4. 增强数学应用能力高考数学中的许多题目都需要我们灵活应用数学知识解决实际问题。

因此,在平时的学习中,要注重培养数学应用能力,掌握各种数学方法和技巧,并通过实际问题的练习,提高数学应用能力。

只有具备了较强的数学应用能力,才能更好地解决实际问题。

总之,高考数学的核心方法不仅包括基本概念和公式的掌握,还包括基本技能的训练、分析问题和解题思路的能力以及数学应用能力的提高。

只有通过不断的练习和总结,才能掌握这些核心方法,取得好成绩。

2024年高考数学拿120分的全攻略总结

2024年高考数学拿120分的全攻略总结

2024年高考数学拿120分的全攻略总结2024年高考数学考试拿满分的全攻略总结1. 努力学习数学基础知识:高考数学考试的题目主要来自于中学数学的基础知识,所以要先打牢基础。

逐章逐节复习教材内容,掌握概念、定理和公式,做好笔记整理,加深记忆。

2. 高效利用教材和辅导资料:使用好教材和辅导资料对提高数学成绩非常重要。

建议选用教育部推荐的教材,参考人教版、北师大版等。

同时,还可以从市面上购买一些名师的辅导资料,进行巩固和拓展。

3. 多做真题和模拟题:通过做真题和模拟题,可以熟悉考试的题型和考点,提高解题能力和应试能力。

可以选择每周安排一个固定的时间段,专门用来做真题和模拟题,同时要认真分析自己的错题,找出解题方法和思路上的问题,及时改正。

4. 注重解题技巧和方法:掌握一些解题技巧和方法,能够帮助在考试中更快更准确地解题。

例如,可以学习利用等式性质、函数性质进行变形和化简,学会运用图形解题的方法和技巧等。

还可以参考一些解题技巧的书籍或网络资料,进行学习和实践。

5. 积极参加课外辅导和训练班:可以报名参加一些数学的课外辅导和训练班,通过和其他同学一起学习和交流,提高学习动力和解题能力。

辅导班可以有针对性地进行突破和强化,同时还能接触到更多考试相关的知识和技巧。

6. 做好时间管理和复习规划:在备考过程中,要合理安排时间,制定详细的复习计划,并按计划进行复习和练习。

要保持良好的作息和饮食习惯,保证充足的睡眠和精神状态。

7. 自信和冷静应对考试:在考试中要保持自信和冷静,不因一些小错误而放弃信心,注意审题,认真答题。

若遇到难题,先尝试解决,若时间不足,也不要纠结于这道题上,及时转到下一题。

总结起来,想要在2024年高考数学考试中取得满分,关键在于打好基础,多做真题,掌握解题技巧,参加课外辅导,合理安排时间,保持自信和冷静应对考试。

这些方法和策略需要长期的积累和实践,希望你能够坚持,并且相信自己的能力。

祝你取得好成绩!。

2024年高考数学无敌答题技巧总结模版(2篇)

2024年高考数学无敌答题技巧总结模版(2篇)

2024年高考数学无敌答题技巧总结模版写作目的:为了帮助同学们在2024年高考数学考试中取得优异的成绩,我整理了一些无敌答题技巧,希望能帮助同学们顺利应对各种题型,提高答题效率。

以下是我总结的十个技巧,希望能对你有所帮助。

技巧一:熟悉考纲和教材高考数学考试的内容都是基于教材和考纲来设置的,所以熟悉考纲和教材非常重要。

仔细阅读考纲,了解每个知识点的要求及考查形式,针对性地进行复习,可以更有针对性地准备考试。

技巧二:掌握基本概念和公式数学是一个基础学科,掌握基本的概念和公式是做好数学题的基础。

在备考过程中,要逐个学习、理解和掌握各个概念和公式,并应用到解题中,培养自己的灵活性和逻辑思维能力。

技巧三:多做题,多总结做题是掌握数学知识的最佳方法之一。

通过多做题可以让同学们熟悉各种题型,加深对知识点的理解,提高自己的解题能力。

同时,做题后要及时总结,找出解题的规律和方法,并进行归纳总结,以备考时参考和巩固。

技巧四:合理安排时间高考数学考试时间紧张,因此在备考过程中要合理安排时间。

要根据自己的情况,将复习时间合理划分,将重点放在理解重点知识,掌握解题技巧和熟悉考题的分析方法上。

技巧五:掌握解题方法和技巧掌握解题方法和技巧是高考数学取得好成绩的关键之一。

要通过练习和总结,掌握各类题型的解题思路和解题方法,灵活运用到实际题目中。

同时,要善于分析题目,理清题目要求,准确把握解题方向。

技巧六:注重思维过程高考数学考试注重思维能力和解题过程,不仅要求得到正确答案,还要求清晰的逻辑推理和严密的论证过程。

因此,在解题过程中要注重思维过程,合理安排解题步骤,注意逻辑性和条理性。

技巧七:审题准确在答题过程中,要仔细审题,准确理解题意,不要随意猜测或主观臆断。

可以通过标记关键信息和关键词,分析问题的要点,帮助自己更好地理解和解答题目。

技巧八:注意单位转换和近似计算高考数学考试中,常常需要进行单位转换和近似计算。

在解题过程中要注意计算过程中的单位是否一致,并正确进行单位的转换。

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪转眼,距离高考的日子越来越近了,特为大家整理了高考数学必胜秘诀在哪相关内容,希望对大家有所帮助。

集合与简单逻辑1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

3.易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5.易错点逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

高考数学无敌答题技巧总结

高考数学无敌答题技巧总结

高考数学无敌答题技巧总结高考数学是许多考生最为头疼的科目之一,需要大量的记忆和逻辑思维能力。

然而,对于高考数学,只靠死记硬背是远远不够的。

下面将总结一些高考数学答题技巧,帮助考生在考试中表现出色。

一、充分掌握基础知识高考数学的试题都是以基础知识为基础进行的衍生和应用,所以只有掌握了基础知识才能在解题中得心应手。

因此,考生要认真学习教材,理解每一个知识点的概念和性质,熟练掌握常用公式和定理。

同时,要注重总结和归纳,做好知识点的总结笔记,方便查阅和温故知新。

二、注重思维方法高考数学中的题目种类繁多,但解题思路却有一定的共性。

因此,考生要注重培养正确的解题思维方法。

一是要善于转化问题,将题目进行分析和拆解,找出与已知知识相对应的解题途径。

二是合理使用模型和方法,特别是一些解题技巧和常见的数学模型,如等差数列、方程、不等式等。

三是要注重对问题的理解和思考,根据实际情况合理假设,采取合适的方法求解。

三、遵循考点分布高考数学题目的编排是有一定规律的,不同年份的试卷都会覆盖到一些基本的考点。

因此,考生要注意高考数学各个知识点的重要程度和分值分布,将时间和精力合理分配。

一般来说,选择题较为基础和简单,可以在较短的时间内完成。

而解答题和应用题则需要较长的时间和较高的思维能力,可以根据自己的实际水平和时间安排,合理选择答题顺序。

四、注重题目的质量而不是数量高考数学中,提供的答题时间有限,要在相对短的时间内完成足够多的题目是一项挑战。

因此,考生要注重解题的质量而不是数量。

在解题过程中,应该注重思考和理解,避免仅仅为了完成题目而匆忙答题。

如果某道题目觉得比较困难或者卡壳,就要果断放弃,不要花费过多的时间在一个题目上。

五、阅读题目要仔细高考数学试卷中的每个题目都有一定的文字描述和条件限制,而这些文字描述往往包含了解题的关键信息。

因此,考生在答题之前要先仔细阅读题目,理解题目所给的条件和要求。

可以在题目旁边标注关键词或者画出图形,有助于理解和分析。

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪

高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结§圆锥曲线1.圆锥曲线的定义:定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;b5E2RGbCAP 双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在.若去掉定义中的绝对值则轨迹仅表示双曲线的一支.p1EanqFDPw 如<1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是( > A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF<28=表示的曲线是_____ 2.圆锥曲线的标准方程<标准方程是指中心<顶点)在原点,坐标轴为对称轴时的标准位置的方程):<1)椭圆:焦点在x 轴上时12222=+by a x <0a b >>)⇔{cos sin xa yb ϕϕ==<参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1<0a b >>).方程22Ax By C +=表示椭圆的充要条件是什么?<ABC ≠0,且A ,B ,C 同号,A ≠B ).如<1)已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____<2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___<2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1<0,0a b >>).方程22Ax By C +=表示双曲线的充要条件是什么?<ABC ≠0,且A ,B 异号).如<1)双曲线的焦距与实轴长之比等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______<2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,焦距与实轴长之比2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______<3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->.3.圆锥曲线焦点位置的判断<首先化成标准方程,然后再判断): (1) 椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上.如已知方程12122=-+-my m x 表示焦点在y 轴上的椭圆,则m 的取值范围是__<2)双曲线:由x 2,y 2项系数的正负决定,焦点在系数为正的坐标轴上;<3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向.特别提醒:<1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;DXDiTa9E3d <2)在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222c a b =+. 4.圆锥曲线的几何性质:<1)椭圆<以12222=+by a x <0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心<0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;RTCrpUDGiT 如<1)若椭圆1522=+my x 的焦距与长轴之比为510=e ,则m 的值是__(2) 以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值 为__<2)双曲线<以22221x y a b-=<0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心<0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为22,0x y k k -=≠;④两条渐近线:by x a=±.5PCzVD7HxA 如<1)双曲线的渐近线方程是023=±y x ,则该双曲线的焦距与实轴长之比等于______<2)双曲线221ax by -=,则:a b =<3)设双曲线12222=-by a x <a>0,b>0)中,焦距与实轴长之比e ∈[2,2],则两条渐近线夹角θ的取值范围是________jLBHrnAILg <3)抛物线<以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点<0,0);④准线:一条准线2px =-;xHAQX74J0X 如设R a a ∈≠,0,则抛物线24ax y =的焦点坐标为________ 5、点00(,)P x y 和椭圆12222=+by a x <0a b >>)的关系:(1) 点00(,)P x y 在椭圆外⇔2200221x y a b +>;<2)点00(,)P x y 在椭圆上⇔220220by a x +=1;<3)点00(,)P x y 在椭圆内⇔2200221x y a b+< 6.直线与圆锥曲线的位置关系:<1)相交:0∆>⇔直线与椭圆相交;0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;LDAYtRyKfE 0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件.Zzz6ZB2Ltk 如<1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k 的取值范围是_______dvzfvkwMI1<2)直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_______<3)过双曲线12122=-y x 的右焦点直线交双曲线于A 、B 两点,若│AB︱=4,则这样的直线有_____条<2)相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;<3)相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离.特别提醒:<1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交.如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;rqyn14ZNXI <2)过双曲线2222by a x -=1外一点00(,)P x y 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;EmxvxOtOco ②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;SixE2yXPq5③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;<3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.如<1)过点)4,2(作直线与抛物线x y 82=只有一个公共点,这样的直线有______<2)过点(0,2>与双曲线116922=-y x 有且仅有一个公共点的直线的斜率的取值范围为______<3)过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若=AB 4,则满足条件的直线l 有____条<4)对于抛物线C :x y 42=,我们称满足0204x y <的点),(00y x M 在抛物线的内部,若点),(00y x M 在抛物线的内部,则直线l :)(200x x y y +=与抛物线C 的位置关系是_______6ewMyirQFL <5)过抛物线x y 42=的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则=+qp11_______ <6)设双曲线191622=-y x 的右焦点为F ,右准线为l ,设某直线m 交其左支、右支和右准线分别于R Q P ,,,则PFR ∠和QFR ∠的大小关系为___________(填大于、小于或等于> kavU42VRUs <7)求椭圆284722=+y x 上的点到直线01623=--y x 的最短距离. <8)直线1+=ax y 与双曲线1322=-y x 交于A 、B 两点. ①当a 为何值时,A 、B 分别在双曲线的两支上? ②当a 为何值时,以AB 为直径的圆过坐标原点? 7、焦半径<圆锥曲线上的点P 到焦点F 的距离)如<1)已知抛物线方程为x y 82=,若抛物线上一点到y 轴的距离等于5,则它到抛物线的焦点的距离等于____;<2)若该抛物线上的点M 到焦点的距离是4,则点M 的坐标为_____<3)点P 在椭圆192522=+y x 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______<4)抛物线x y 22=上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到y 轴的距离为______8、焦点三角形<椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解.设椭圆或双曲线上的一点00(,)P x y 到两焦点12,F F 的距离分别为12,r r ,焦点12F PF ∆的面积为S ,则在椭圆12222=+by a x 中, y6v3ALoS89①θ=)12arccos(212-r r b ,且当12r r =即P 为短轴端点时,θ最大为θm ax=222arccos a c b -;②20tan ||2S b c y θ==,当0||y b =即P 为短轴端点时,m ax S 的最大值为bc ;对于双曲线22221x y a b -=的焦点三角形有:①⎪⎪⎭⎫ ⎝⎛-=21221arccos r r b θ;②2cot sin 21221θθb r r S ==. 如<1)短轴长为5,焦距与长轴之比为32=e 的椭圆的两焦点为1F 、2F ,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为________M2ub6vSTnP <2)设P 是等轴双曲线)0(222>=-a a y x 右支上一点,F1、F2是左右焦点,若0212=⋅F F PF ,|PF1|=6,则该双曲线的方程为<3)椭圆22194x y +=的焦点为F1、F2,点P 为椭圆上的动点,当错误!·错误!<0时,点P 的横坐标的取值范围是0YujCfmUCw <4)双曲线的虚轴长为4,焦距与实轴之比为26,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A 、B 两点,且AB 是2AF 与2BF 等差中项,则AB =__________eUts8ZQVRd <5)已知双曲线的焦距与实轴之比为2,F1、F2是左右焦点,P 为双曲线上一点,且 6021=∠PF F ,31221=∆F PF S .求该双曲线的标准方程.sQsAEJkW5T 9、抛物线中与焦点弦有关的一些几何图形的性质: <1)以过焦点的弦为直径的圆和准线相切;<2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;<3)设AB 为焦点弦,A 、B 在准线上的射影分别为A 1,B 1,若P 为A 1B 1的中点,则PA ⊥PB ;<4)若AO 的延长线交准线于C ,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A ,O ,C 三点共线. G MsIasNXkA 10、弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则AB12x -,若12,y y 分别为A 、B 的纵坐标,则AB =21211y y k-+,TIrRGchYzg 若弦AB 所在直线方程设为x ky b =+,则AB12y y -.如<1)过抛物线y2=4x 的焦点作直线交抛物线于A<x1,y1),B<x2,y2)两点,若x1+x2=6,那么|AB|等于_______7EqZcWLZNX <2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知|AB|=10,O 为坐标原点,则ΔABC 重心的横坐标为_______lzq7IGf02E 11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率k=-22y a x b ; 在双曲线22221x y a b -=中,以00(,)P x y 为中点的弦所在直线的斜率k=0202y a x b ;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率k=py . 如<1)如果椭圆221369x y +=弦被点A<4,2)平分,那么这条弦所在的直线方程是<2)已知直线y=-x+1与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线L :x -2y=0上,则此椭圆的焦距与实轴之比为_______zvpgeqJ1hk<3)试确定m的取值范围,使得椭圆13422=+y x 上有不同的两点关于直线m x y +=4对称.特别提醒:因为0∆>是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0∆>!12.你了解下列结论吗?<1)双曲线12222=-by ax 的渐近线方程为02222=-by a x ;<2)以x a b y ±=为渐近线<即与双曲线12222=-by a x 共渐近线)的双曲线方程为λλ(2222=-by a x 为参数,λ≠0).如与双曲线116922=-y x 有共同的渐近线,且过点)32,3(-的双曲线方程为_______<3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为221mx ny +=;<4)椭圆、双曲线的通径<过焦点且垂直于对称轴的弦)为22b a,焦准距<焦点到相应准线的距离)为2b c,抛物线的通径为2p ,焦准距为p ;NrpoJac3v1<5)通径是所有焦点弦<过焦点的弦)中最短的弦;<6)若抛物线22(0)y px p =>的焦点弦为AB ,1122(,),(,)A x y B x y ,则①12||AB x x p =++;②221212,4p x x y y p ==-<7)若OA 、OB 是过抛物线22(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p .13.动点轨迹方程:<1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围; <2)求轨迹方程的常用方法:①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;如已知动点P 到定点F(1,0>和直线3=x 的距离之和等于4,求P 的轨迹方程.②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数.1nowfTG4KI 如线段AB 过x 轴正半轴上一点M<m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为fjnFLDa5Zo ③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;如(1>由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为<2)点M 与点F(4,0>的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是_______(3> 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;tfnNhnE6e5如动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→−PA 所成的比为2,则M 的轨迹方程为__________⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量<参数)表示,得参数方程,再消去参数得普通方程).HbmVN777sL 如<1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹.V7l4jRB8Hs <2)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是____<3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是________注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.83lcPA59W9如已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F1<-c ,0)、F2<c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F1Q 与该椭圆的交点,点T 在线段F2Q 上,并且满足.0||,022≠=⋅TF TF mZkklkzaaP <1)设x 为点P 的横坐标,证明x ac a F +=||1;(2) 求点T 的轨迹C 的方程;<3)试问:在点T 的轨迹C 上,是否存在点M ,使△F1MF2的面积S=.2b 若存在,求∠F1MF2的正切值;若不存在,请说明理由.AVktR43bpw ②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.ORjBnOwcEd ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式>、“方程与函数性质”化解读几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.2MiJTy0dTT ④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.14、解读几何与向量综合时可能出现的向量内容:<1) 给出直线的方向向量()k u ,1= 或()n m u ,=;<2)给出+与AB 相交,等于已知+过AB 的中点。

高考数学突破90分的提分技巧(六篇)

高考数学突破90分的提分技巧(六篇)

高考数学突破90分的提分技巧(六篇)高考数学突破90分的提分技巧 11、简单题确保得高分得满分,不出现低级失误许多人对数学都有这种体会,“大题不会做,小题不愿做”。

大家做题都有这种想法,如果做一道题要三十分钟,大家很可能愿意做一道十二分的`大题,也不愿做一道选择题。

诚然,高考,分数就是最好的证明,能在有限的时间,做到得分的最大化,就是一次成功的高考。

但是大题都带有一定的区分性,这样,对于大多数同学来说,答题拿满分并不是很容易。

那么,怎样能让你在考试中“超常发挥”呢?其实只要你拿全自己能力之内的分,你就已经“超常发挥”了!简单题、基础题很多人都能掌握。

但是,学霸之所以能比你优秀,除了平时掌握更多,还在于他们在做题策略上的不同。

简单题保证拿全分,这在平时是训练的要求,但是因为考试时间有限,百分百的正确无误可能极为少见,重视简单题,也需要一种勇气,毕竟这将意味着,你要舍弃难题,可是,经验告诉我们这也是聪明的决定。

2、同类题练熟练透,会做的题保证不丢分高三是同学们孤注一掷,备战高考的最后一站,许多人都为此恨不能将__小时翻一倍用,每天的时间都被作业填满,除了老师要求的作业之外,自觉的同学,还要额外再为自己买多种资料,并自我要求每天必须要做完多少题,但是作业一多,大家都想着按时按点完成,所以忽略做题总结,即使遇到同一题型,做题还是在凭感觉,毫无章法可言。

这时,同学们可以这样做,准备一本题集,同一类型题总结在一起,并对照作答,区分异同所在,这对高考数学的提升效果显著,通过同一类题多次重复变换,可以加深记忆,同时刺激思考,从多角度切入解题,试图寻找最优解。

等到再遇到该类题时,我们就会有自己的解题思路,并能快速找到优化解题步骤的方法,会做的题不丢分,精简答案拿全分,会为之后的题目省下大量时间。

3、典型错题反复研究高考数学复习到最后,大多数人都要计算自己在考场上能答多少分。

这样的计算包括,基础题要拿多少分,最多错几道题;中等难度题要得多少分,最多可得多少分;难题能争取到多少分,必须舍弃哪些题。

高考数学快速提高成绩的十种方法

高考数学快速提高成绩的十种方法

高考数学快速提高成绩的十种方法介绍一:直选法——简单直观这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

二:比较排除法——排除异己这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。

如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

三:特殊值法、极值法——投机取巧对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。

这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。

四:极限思维法——无所不极物理中体现的极限思维常见方法有极端思维法、微元法。

当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。

微元法是把物理过程或研究对象分解为众多细小的“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。

五:代入法——事半功倍对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数学运算量。

六:对比归谬法——去伪存真对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。

七:整体、隔离法——双管齐下研究对象为多个时,首先要想到利用整体、隔离法去求解。

常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。

八:对称分析法——左右开弓对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题九:图像图解法——立竿见影根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找答案,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的答案。

高考数学大招秒杀

高考数学大招秒杀

高考数学大招秒杀高考,是每一位学子人生的重要里程碑,而数学,作为高考中的重要科目,更是让无数考生头疼的难题。

然而,今天我要分享的,是关于如何在高考数学中快速解决问题,以“秒杀”姿态轻松应对高考数学的方法。

秒杀,顾名思义,就是在极短的时间内完成对问题的解答。

而这种能力的锻炼,需要我们在平时的学习和练习中不断积累。

以下是我为你们总结的几个大招:1、基础知识必须扎实:数学,就像一座金字塔,每一个公式、每一个概念都是金字塔的一块砖。

没有坚实的基础知识,我们无法在考试中做到秒杀。

因此,牢记公式、理解概念,是秒杀数学题的基础。

2、大量练习提高熟练度:只有通过大量的练习,我们才能对各种题型有深入的理解和掌握。

这样,在考试中遇到相似的题目时,我们可以迅速找到解题思路,从而快速解答。

3、学会利用图像解决问题:数学中有很多问题可以通过图像来解决。

例如,解析几何问题可以通过绘制图形,更直观地找到解题思路。

所以,学会利用图像解决问题,可以让我们更快速地找到答案。

4、灵活运用解题方法:高中数学有很多通用的解题方法,如赋值法、反证法、数形结合等。

在解题时,灵活运用这些方法可以大大简化解题过程。

5、培养自己的逻辑思维:数学,更像是一门逻辑科学。

所以,培养自己的逻辑思维,学会推理和分析,可以使我们在解答问题时更有条理和效率。

我想说的是,高考数学虽然有一定难度,但只要我们平时认真学习、大量练习,考试时保持冷静、自信,就一定能够取得好的成绩。

希望我的这些大招能对大家有所帮助。

加油!高考,是每一位学子人生的重要里程碑,其中数学作为三巨头之一,无疑占据了举足轻重的地位。

对于许多考生来说,数学既是机遇也是挑战。

而在这个充满竞争的时代,掌握高效、实用的解题技巧是至关重要的。

本文将介绍“秒杀”系列,帮助大家在高考数学中取得更好的成绩。

一、秒杀之“快速解题法”在数学考试中,时间是非常宝贵的。

为了节省时间,我们需要掌握一些快速解题的方法。

其中,“快速解题法”是一种非常实用的技巧,它可以帮助我们快速找到解题思路,减少思考时间。

2024年高考数学的提分方法总结

2024年高考数学的提分方法总结

2024年高考数学的提分方法总结
1. 提前准备:在高三前期,可以集中时间复习高中数学知识,将基础知识逐一强化。

建议系统地复习教材内容,多做相关的习题和历年高考真题,掌握题型的解答思路和方法。

2. 定期复习:每周进行定期复习,将之前学过的知识进行回顾和巩固。

可以选择一些重要的章节或知识点进行集中复习,确保自己的基础知识牢固。

3. 做题技巧:熟悉高考数学题型的解答方法和技巧,学会运用数学工具和公式。

例如,对于几何题,可以学会使用平面几何的相关定理和判别方法;对于函数题,要熟悉函数性质和图像变换等。

4. 提高解题速度:高考数学试卷时间紧迫,提高解题速度至关重要。

可以通过做题训练来提高解题的速度和准确率,掌握抓住关键信息和一步到位解决问题的能力。

5. 注意错题:每次做题后,及时汇总整理错题,分析错误原因,并进行针对性的补充学习。

通过解决错误习题,找出自己的薄弱点,有针对性地进行复习和强化。

6. 适度刷题:多做一些高质量的题目,并及时检查答案。

刷题可以帮助巩固知识,提高答题技巧和思维能力。

7. 多做模拟考试:在高考前,多参加模拟考试,模拟真实考试环境,加强应试能力。

通过模拟考试可以熟悉考点、掌握时间分配,提高答题效率和解题能力。

8. 备考规划:制定合理的备考计划和规划,合理安排时间,坚持进行高效的学习。

同时,保持良好的作息习惯和饮食习惯,保持身体和心理的健康。

总之,提分方法的关键在于多做题、多复习、多总结和不断调整学习策略。

通过坚持和努力,相信你一定可以在2024年高考数学中取得好成绩。

高考数学保分绝招真题

高考数学保分绝招真题

高考数学保分绝招真题
高考数学作为高考科目中的一大难点,常常让许多学生望而却步。

但是,只要有正确的学习方法和足够的练习,高考数学也能够拿到不
错的分数。

下面就为大家分享一些高考数学保分绝招,并提供一些真
题供大家练习,希望能够帮助到大家。

一、掌握基础知识
在备战高考数学的过程中,首先要扎实掌握基础知识。

高考数学的
考察范围虽然广泛,但基础知识是最为重要的。

要牢固掌握各种公式、定理和方法,做到能够熟练运用。

只有基础扎实,才能在高考数学中
游刃有余。

二、刷题是硬道理
在备考过程中,刷题是不可或缺的一部分。

通过大量的练习可以熟
悉题型,掌握解题思路。

在解题过程中,要注意查漏补缺,总结规律,找出解题的关键点。

通过反复练习,才能夯实基础,增强解题能力。

下面提供几道高考数学真题,供大家练习:
1. 已知函数$f(x)=3x^2-5ax+2a^2$的图像过点$(1,0)$,则$a$的取值
范围是多少?
2. 在△ABC中,点D是边AC的中点,点E是边BC的中点,若$DE\parallel AB$,求证△ABC是等腰三角形。

3. 已知数列$\{a_n\}$满足递推式$a_{n+2}=3a_{n+1}-2a_n$,且$a_1=1, a_2=2$,求$a_{2022}$的值。

以上就是关于高考数学保分绝招及真题的内容,希望对大家备战高考数学有所帮助。

记得扎实基础,多加练习,相信大家一定能够取得理想的成绩!祝愿大家都能在高考数学中取得好成绩!。

高考前数学偷分技巧,白拿40分

高考前数学偷分技巧,白拿40分

在高考数学中,有一些拿分技巧,可以帮助你提高分数。

以下是一些实用的技巧:1.熟悉基本概念和公式:在解答数学题之前,确保你已经掌握了基本的数学概念和公
式。

这些是解决问题的关键,也是你能够正确解答问题的前提。

2.仔细审题:在开始解答问题之前,一定要仔细审题。

理解题目的要求和意图,弄清
楚需要求解的是什么,避免因为误解题目而失分。

3.制定解题计划:在审题之后,你需要制定一个明确的解题计划。

确定解题步骤和方
法,以及如何利用已知条件来求解未知数。

4.细心计算:数学考试中,计算是必不可少的部分。

在进行计算时,一定要细心,避
免因为计算错误而导致失分。

5.检查答案:在完成解答之后,一定要检查答案是否符合题目的要求。

检查解答过程
是否有误,以及答案是否准确无误。

以上这些技巧能够帮助你提高数学分数,但需要注意的是,这些技巧并不能保证你一定能够拿到满分。

要想在高考数学中取得好成绩,还需要在平时的学习中多加练习和积累经验。

同时,保持积极的心态和良好的应试心态也是非常重要的。

2024年高考数学解题技巧

2024年高考数学解题技巧

2024年高考数学解题技巧数学是高考中最重要的科目之一,也是许多考生感到头疼的科目。

在2024年高考中,想要取得理想的成绩,掌握一些解题技巧是非常必要的。

本文将介绍一些在高考数学考试中实用的解题技巧,希望能帮助考生们取得好成绩。

一、选择题解题技巧选择题在高考数学试卷中占据了很大的比重,熟练掌握解题技巧可以提高解题效率,减少解题错误。

以下是几个常用的选择题解题技巧:1. 看清题目要求:仔细阅读题目,理清题目要求,避免遗漏或错误理解。

2. 排除法:对于选项中明显不符合题目要求的选项,可以先排除,缩小答案范围。

3. 代入法:对于涉及计算的选择题,可以尝试代入答案来验证选项的可行性,排除错误选项。

4. 类比法:对于一些形式相近的题目,可以借鉴已有解题思路和方法。

二、填空题解题技巧填空题需要考生自己计算得出结果,但并不代表没有解题技巧可循。

以下是几个常用的填空题解题技巧:1. 空格顺序:填空题有时给出了必要的计算步骤和顺序,按照题目要求的顺序进行计算,避免漏填或填错。

2. 空间利用:填空题答题空间有限,需要合理分配计算步骤和计算结果。

可以使用草稿纸辅助计算,减少纸张使用量。

3. 注意单位:填空题中的计算过程中需要注意单位的转换,确保答案的准确性。

三、解答题解题技巧解答题是考生展现数学运算能力和解题能力的重点。

以下是几个常用的解答题解题技巧:1. 阅读题目:仔细阅读题目,理解题目要求和限制条件,明确解答的重点和目标。

2. 设定变量:对于涉及未知数的问题,可以适当设定变量,简化解题过程。

3. 画图分析:对于几何类题目,可以画出相应的图形,通过直观的图形分析来解题。

4. 逻辑推理:对于一些涉及逻辑关系的题目,可以通过逻辑推理推导出答案,提高解题效率。

总结:在2024年的高考数学考试中,掌握一些解题技巧可以帮助考生们在有限的时间里更好地完成试题。

选择题的排除法和代入法,填空题的空格顺序和空间利用,解答题的阅读题目和逻辑推理等技巧都对于解题过程有着积极的作用。

关于高考数学15天快速提分秘籍

关于高考数学15天快速提分秘籍

关于高考数学15天快速提分秘籍高考数学15天快速提分秘籍高考数学15天快速提分秘籍1:做题心态高考数学做题时心态是非常重要的,小编建议同学们在高考数学压轴题上训练自己的心态,即使做不出来也要冷静、淡定,另外要注意好时间的控制。

在做高考数学压轴题时已经是一场考试的最后阶段,疲劳、紧张不可避免,做题时要谨慎,控制好时间的同时,心态也要平稳,避免出现小差错。

高考数学15天快速提分秘籍2:小窍门通常情况下,一道大题中第一题的答案是下一题的条件。

很多同学在做高考数学题时都忽略了一个重要条件,所以耗时很久也解答不出来。

小编建议考生有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。

高考数学15天快速提分秘籍2:平日多练习平日练习时一定要注意方法,重视数学解题思路,实在解答不出来时可以参考答案或者询问老师同学,在这上面耗费太多时间得不偿失。

对于高考考生来讲,在不到一个月的时间里最好不要把时间浪费在压轴题目上,基础巩固与考试技巧训练更加重要。

高中数学答题注意事项越是容易的题要越小心,因为这样的题很可能有陷阱。

出现怪异的答案的题要小心,因为很有可能计算错误。

任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。

最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。

高考数学快速提分的学习方法一、回归基础查缺漏高考数学快速提分考生应当结合数学课本,把高考数学知识点从整体上再理一遍,要特别重视新课程新增的内容,看看有无知识缺漏,若有就应围绕该知识点再做小范围的高考复习,消灭知识死角。

二、重点知识再强化高考数学以三角、概率、立体几何、数列、函数与导数、解析几何、解三角形、选做题为主,也是数学大题必考内容,这些板块应在老师指导下做一次小专题的强化训练,熟悉不同题型的解法。

如果学校没有专门安排,考生可以把最近做过的综合试卷选五六份分类整理,把这些高考数学重点知识涉及的不同题型、解法较系统地温习一遍,快速提分就有望实现。

2024年高考数学提高分数的攻略总结(二篇)

2024年高考数学提高分数的攻略总结(二篇)

2024年高考数学提高分数的攻略总结高考数学对于很多学生来说是一门难以逾越的坎。

提高高考数学分数不仅需要对数学知识的掌握,还需要一定的策略和方法。

下面是一些提高高考数学分数的攻略总结。

首先,要系统地学好数学基础知识。

高考数学考试的内容主要包括数与代数、函数与方程、几何与向量、概率与统计等方面的知识。

在学习这些知识点时,要注重理解概念,掌握基本的计算方法,并能够灵活运用到解题中。

此外,要注重巩固和扩大知识面,了解和学习一些高中数学的拓展内容,这样可以在应对高考中的变化题型时更加得心应手。

其次,要注重做题训练和模拟考试。

高考数学的考察重点是对知识点的应用能力,所以在提高分数方面,做题训练是最为有效的方法之一。

可以选择一些难度适中的题目进行练习,理解题目的解题思路和解题方法,并多做一些真题和模拟试卷,模拟考试的时间和环境,提高自己的应试能力。

第三,要注重解题方法和思维的培养。

高考数学的解题方法和思维往往是决定分数高低的关键。

解题时要注重思路的拓展和灵活运用,要学会分析题目的要求和条件,找到解题的关键点。

可以通过学习一些解题技巧和思维方法,如画图法、分析法、反证法等,提高解题的效率和准确度。

第四,要注重知识点之间的联系和综合运用。

高考数学试题往往是将多个知识点融合在一起进行考察的,所以要注重知识点之间的联系和综合运用。

在学习过程中,要注意将各个知识点相互联系起来,理解它们之间的逻辑关系,这样在解题时就能够更好地进行综合运用,提高解题的能力。

第五,要注重举一反三和拓展思维。

高考数学试题的考察往往是以变化题型为主,所以在学习过程中要注重拓展思维,培养灵活转化和应变能力。

学会从一个具体的问题中理解和推广出一般性的结论,从而能够更好地应对各种题型的考察要求。

最后,要注重复习和反思。

高考数学的复习和反思是提高分数的重要环节。

复习时要注重细节,巩固基础知识,做到知识点的熟练掌握。

同时,要不断反思自己在做题过程中的不足之处,总结经验,找到提高的方法和策略。

数学必胜秘诀高考数学技巧总结

数学必胜秘诀高考数学技巧总结

数学必胜秘诀高考数学技巧总结数学必胜秘诀:高考数学技巧总结在高考中,数学是很多学生头疼的科目之一。

但是,只要我们熟悉一些高考数学的技巧和方法,就能够更加游刃有余地应对各种数学题型。

本文将总结一些数学必胜秘诀,帮助考生在高考中取得好成绩。

一、理清思路,弄清题意在做数学题目时,首先要理清思路,弄清题意,准确理解题目所要求的内容。

有时候,题目中会有一些复杂的描述,我们需要通过仔细阅读和思考来抓住题目的关键信息,帮助我们解决问题。

在理解题目的基础上,我们可以尝试画图、列式子等方式来辅助解题,提高解题效率。

二、熟练掌握基本公式和定理在高考数学中,有一些基本的公式和定理是经常会用到的,考生需要熟练掌握它们。

比如,勾股定理、同角三角函数的基本关系等。

熟练掌握这些公式和定理,可以在解题过程中快速应用,节省时间,提高准确性。

三、借助图形解题图形在解决数学问题中起着重要作用。

在解题过程中,我们可以尝试将问题转化为几何图形,利用几何性质来帮助解题。

例如,在解决几何问题时,可以根据图形的特点,利用相似三角形的性质推导出所需的结果。

借助图形解题不仅能够提高我们的直观理解能力,还能够降低解题的难度。

四、灵活运用代数方法代数方法在解决数学问题中也是非常重要的。

通过将问题转化为代数表达式,我们可以应用代数运算的规律和性质来解题。

例如,在解决函数方程的问题时,我们可以通过构造函数式,运用函数的性质得出答案。

运用代数方法,我们可以将复杂的数学问题简化,提高解题的效率。

五、注意关键概念和特殊点在高考数学中,有一些关键概念和特殊点是经常会涉及到的。

考生需要特别关注这些内容,理解其定义和性质,掌握其应用方法。

例如,对于一元二次方程,我们应该熟悉其中的顶点、判别式等概念,了解其与方程解的关系。

掌握这些关键概念和特殊点,可以帮助我们更好地理解和解决数学题目。

六、刻意练习,提高技巧在数学学习过程中,刻意练习是非常重要的一环。

通过反复做题,我们可以熟悉题目的解法和思路,提高解题的技巧和速度。

高考数学的提分方法总结

高考数学的提分方法总结

高考数学的提分方法总结高考数学是高中阶段的最后一门考试科目,对于大部分学生来说都是非常重要的一科,也是最难攻克的一科。

因此,提高数学成绩是学生们非常关注的问题。

以下是我总结的一些提分方法,希望对广大考生有所帮助。

一、掌握基础知识要想在高考数学中取得好成绩,首先必须掌握扎实的基础知识。

高考数学的试题是建立在基础知识之上的,缺乏基础知识的学生无法正确解答试题。

所以,要多下功夫学习基础知识,如函数、导数、积分、解析几何等。

二、合理管理时间高考数学的考试时间较为紧张,所以合理管理时间非常重要。

在平时的练习中,可以预留一定的时间给自己,对每个知识点都进行适当的复习和巩固,提高自己的反应速度和解题速度。

在考试过程中,可以先快速浏览试卷,先做自己熟悉和擅长的题型,然后再解答其它题目。

三、强化解题思维能力高考数学注重考查学生的解题思维能力和应用能力。

所以,要想在高考数学中取得高分,必须提高解题思维能力。

在平时的学习中,可以多做一些拓展题和应用题,培养自己的数学思维习惯。

另外,还可以多做一些真题和模拟题,不断提升自己的解题能力。

四、合理备考复习内容备考复习内容的选择是非常重要的。

高考数学的试题种类繁多,考点也比较多。

所以,在备考阶段,要合理安排复习内容,重点复习重要的知识点和题型。

可以根据历年试题和高考大纲确定备考的内容,有针对性地进行复习。

五、勤于做题,积累经验做题是提高数学成绩的最有效方法之一。

在备考阶段,要勤于做题,多做一些真题和模拟题,积累解题经验。

在做题过程中,要注意归纳总结,掌握一些解题的技巧和方法,提高解题效率。

六、注意错题的复习在做题过程中,难免会遇到一些难题或者做错的题目。

这时,要注意总结归纳,找出自己的错误原因,并及时进行复习和弥补。

尤其是一些易错的知识点和易混淆的题型,要多加注意,强化复习和巩固。

七、适当利用辅助工具和资源在备考阶段,可以适当利用一些辅助工具和资源,如数学参考书、习题集、教学视频等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学必胜秘诀在哪?概念、方法、题型、易误点及应试技巧总结十四、高考数学选择题的解题策略数学选择题在当今高考试卷中,不但题目多,而且占分比例高,即使今年江苏试 题的题量发生了一些变化,选择题由原来的 12题改为10题,但其分值仍占到试卷 总分的三分之一。

数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定 的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高 考成功的关键。

解答选择题的基本策略是准确、迅速。

准确是解答选择题的先决条件,选择题 不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确 推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的 答题时间,应该控制在不超过 40分钟左右,速度越快越好,高考要求每道选择题在 1〜3分钟内解完,要避免“超时失分”现象的发生。

高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多 数题的解答可用特殊的方法快速选择。

解选择题的基本思想是既要看到各类常规题 的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一 个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要 充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快 速地选择解法,以便快速智取,这是解选择题的基本策略。

A . 0B . 1C . 2D . 3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得 都是正确的,故选 D o2 2例3、已知F 2是椭圆 —+ ^ =1的两焦点,经点F 2的的直线交椭圆于点 A 、169B,若 |AB|=5,则 |AF 1|+|BF 1| 等于( )(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结 论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学 基础。

例1某人射击一次击中目标的概率为 0.6, 目中 ( )A 邑 125B.邑 125 经过3次射击,此人至少有 概率D 竺 1252次击为C 些 125 0.6, 3次射击至少射中两次属独立重复实验。

27 解析:某人每次射中的概率为 2 6? 4 3 6 3C 32 (三)2 — C 3 (丄)310 10 10 125例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面 斜线I 有且仅有一个平面与 a 垂直;③异面直线 面与b 都不垂直。

其中正确命题的个数为(故选A 。

的一条b 不垂直,那么过 a 的任一个平 ) a 、A . 11B . 10 C. 9 D . 16解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF 2I+IBF2I代入,得|AF1|+|BF1|= 11,故选A。

例4、已知y=log a(2—ax)在[0,1]上是x的减函数,则a的取值范围是()A. (0, 1)B. (1 , 2)C.( 0, 2)D. [2 , +s)解析:••• a>0, ••• y1=2-ax 是减函数,T y = log a (2 一ax)在[0 , 1]上是减函数。

••• a>1,且2-a>0 ,• 1<a<2,故选B。

2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。

用特例法解选择题时,特例取得愈简单、愈特殊愈好。

(1)特殊值例5、若s in a >tan a>cot a (兀—<0t <-),则a€()42Ji JI) D.A.(——, )B.(- 一,0)C.(0,一)2444 4 2解析:因JI<ot <Jt,取a =n代入sin a>ta n a>cot a ,满足条件式,则426排除A C D,故选Bo例6、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( ) A . - 24 B . 84 C . 72 D . 36解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2- S=12, a3=a1+2d= —24,所以前3n 项和为36,故选D。

(2)特殊函数例7、如果奇函数f(x)是[3 , 7]上是增函数且最小值为5,那么f(x)在区间[—7, —3]上是()A.增函数且最小值为- 5B.减函数且最小值是- 5C.增函数且最大值为- 5D.减函数且最大值疋- 5解析:构造特殊函数f(x)=55 %,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C o例8定义在R上的奇函数f(x)为减函数,设a+b w 0,给出下列不等式:①f(a) ••(—a)w 0;② f(b) - f( —b)>0;③ f(a)+f(b) w f( —a)+f( —b);④ f(a)+f(b) >f( —a)+f( —b)。

其中正确的不等式序号是( )解析:取f(x)= —x,逐项检查可知①④正确。

故选B。

(3)特殊数列例9、已知等差数列{a n}满足q • a2 * - - a001,二则有( )A、a1 a101 0 B a2 a10^ ■■■ 0 C、a3 ' a?9 = 0 D a51 = 51解析:取满足题意的特殊数列a n=0,则a3• a99=0,故选C。

A .①②④B .①④C .②④D .①③(4)特殊位置例10、过2(y 二ax (a0)的焦点F作直线i交抛物线与P、C两点,若PF与FQ的长分别是P、q则1 1 +——P q ( )1B、A、、2a C、4a D、42a a解析:考虑特殊位置PC!丄OP时,IP F|IFC』所以1 1=2a 2a =4a,故选c。

p q2 2(5)特殊点例12、设函数f(x) = 2 X(x _ 0),则其反函数f ‘(x)的图像是解析:由函数f (X)= 2亠X(X _ 0),可令x=0,得y=2 ;令x=4,得y=4,则特殊点(2,0)及(4,4)都应在反函数厂1(x)的图像上,观察得A、C。

又因反函数厂1(x) 的定义域为{x|x 一2},故选C。

(6)特殊方程例13、双曲线b2x2—a2y2=a2b2(a>b>0)的渐近线夹角为aa,离心率为e则cos —2等于()A . e 21B. eC. 一 1 D•飞e e解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程例11、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系2 2疋少来考察。

取双曲线方程为 X ------ =1,易得离心率e= —,cos —=,故选C 。

41 22<5(7)特殊模型例14、如果实数x,y 满足等式(x — 2)2+y 2=3,那么上的最大值是(XB .三3C .吕解析:题中y 可写成 匕I 0。

联想数学模型:过两点的直线的斜率公式xx —0k=y2一*,可将问题看成圆(x — 2)2+y 2=3上的点与坐标原点 O 连线的斜率的最大X 2 —'Xi值,即得D 。

3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题 解不等式、求最值,求取值范围等 )与某些图形结合起来,利用直 观几性,再辅以简单计算,确定正确答案的方法。

这种解法贯穿数 形结合思想,每年高考均有很多选择题 (也有填空题、解答题)都可 以用数形结合思想解决,既简捷又迅速。

例15、已知a 、3都是第二象限角, 且COS a >COS 3,则()A . a <3B . sin a >sin 3C . tan a >tan 3D . cot a <cot 3 解析:在第二象限角内通过余弦函数线 cos a >cos 3找出a 、(如解方程、3的终边位置关系,再作出判断,得 B 。

例16、已知a 、b 均为单位向量,它们的夹角为 60°,那么丨 a + 3 b |=()A . .7B .J. 10 *_C. 13 D . 4J 军析:如图,a + 3 b = OB ,在 AOAB 中, :| OA |= 1,|AB F 3, OAB 二 120 .由余弦定理得丨+ 3b |= I OB I = ■. 13 ,故选C o例17、已知{a n }是等差数列,a 1=-9,S 3=S,那么使其前n 项和S 最小的门是()A . 4B . 5 C. 6 D. 7解析:等差数列的前n 项和S=d n 2+(a 仁d )n 可表示2 2为过原点的抛物线,又本题中a 1=-9<0, S 3=S 7,可表示如图,3十7由图可知,n=3 7 =5,是抛物线的对称轴,所以n=5是抛2物线的对称轴,所以 n=5时S n 最小,故选B o4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否 满足题设条件,然后选择符合题设条件的选择支的一种方法。

在运用验证法解题时, 若能据题意确定代入顺序,则能较大提高解题速度。

3b AOa + 3 bB例18、计算机常用的十六进制是逢16进1的计数制,米用数字0—9和字母A—F共16个计数符号,这些符号与十进制的数的对应关系如下表:十八进制0123456789A B C D E F 十进制0123456789101112131415例如:用十六进制表示E+D=1B,则 A B=()A.6EB.72C.5FD.BO解析:采用代入检验法,A X B用十进制数表示为1X 1仁110,而6E用十进制数表示为6 X 16+ 14=110; 72用十进制数表示为7X 16+ 2=1145F用十进制数表示为5X 16+ 15=105; B0用十进制数表示为11 X 16+ 0=176,故选A例19、方程x lg x = 3的解x0-()A. (0, 1)B. (1 , 2)C. (2, 3)D. (3, + m)解析:若x:(Q1),则lgxc0,x lg x :1 ;若x=(12), 则0 ::: lg x d , 则1cx+lgxc3 ;若x^(2,3,)贝U 0 c 丨gc v 1 贝U 2vx+lgw 4 若x 3 , l xg ,则x lg x 3,故选Co5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。

相关文档
最新文档