提拉法生长晶体

合集下载

晶体生长方法

晶体生长方法

晶体生长方法一、提拉法晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

二、热交换法热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。

晶体生长方法

晶体生长方法

晶体生长方法单晶体原则上可以由固态、液态(熔体或溶液)或气态生长而得。

实际上人工晶体多半由熔体达到一定的过冷或溶液达到一定的过饱和而得。

晶体生长是用一定的方法和技术,使单晶体由液态或气态结晶成长。

由液态结晶又可以分成熔体生长或溶液生长两大类。

熔体生长法这类方法是最常用的,主要有提拉法(又称丘克拉斯基法)、坩埚下降法、区熔法、焰熔法(又称维尔纳叶法)等。

提拉法此法是由熔体生长单晶的一项最主要的方法,被加热的坩埚中盛着熔融的料,籽晶杆带着籽晶由上而下插入熔体,由于固液界面附近的熔体维持一定的过冷度、熔体沿籽晶结晶,并随籽晶的逐渐上升而生长成棒状单晶。

坩埚可以由高频感应或电阻加热。

半导体锗、硅、氧化物单晶如钇铝石榴石、钆镓石榴石、铌酸锂等均用此方法生长而得。

应用此方法时控制晶体品质的主要因素是固液界面的温度梯度、生长速率、晶转速率以及熔体的流体效应等。

坩埚下降法将盛满材料的坩埚置放在竖直的炉内,炉分上下两部分,中间以挡板隔开,上部温度较高,能使坩埚内的材料维持熔融状态,下部则温度较低,当坩埚在炉内由上缓缓下降到炉内下部位置时,材料熔体就开始结晶。

坩埚的底部形状多半是尖锥形,或带有细颈,便于优选籽晶,也有半球形状的以便于籽晶生长。

晶体的形状与坩埚的形状是一致的,大的碱卤化合物及氟化物等光学晶体是用这种方法生长的。

区熔法将一个多晶材料棒,通过一个狭窄的高温区,使材料形成一个狭窄的熔区,移动材料棒或加热体,使熔区移动而结晶,最后材料棒就形成了单晶棒。

这方法可以使单晶材料在结晶过程中纯度提得很高,并且也能使掺质掺得很均匀。

图3为区熔法的原理图。

区熔技术有水平法和依靠表面张力的浮区熔炼两种。

焰熔法这个方法的原理是利用氢和氧燃烧的火焰产生高温,使材料粉末通过火焰撒下熔融,并落在一个结晶杆或籽晶的头部。

由于火焰在炉内形成一定的温度梯度,粉料熔体落在一个结晶杆上就能结晶。

小锤敲击料筒震动粉料,经筛网及料斗而落下,氧氢各自经入口在喷口处,混合燃烧,结晶杆上端插有籽晶,通过结晶杆下降,使落下的粉料熔体能保持同一高温水平而结晶。

提拉法

提拉法
(2)坩埚和籽晶夹
作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。
籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。
(3)传动系统
生长பைடு நூலகம்点
(1)温度控制在晶体提拉法生长过程中,熔体的温度控制是关键。要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。为了保持一定的过冷度,生长界面必须不断地向远离凝固点等温面的低温方向移动,晶体才能不断长大。另外,熔体的温度通常远远高于室温,为使熔体保持其适当的温度,还必须由加热器不断供应热量。
为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。
(4)气氛控制系统
不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。
(5)后加热器
后热器可用高熔点氧化物如氧化铝、 陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。
(2)提拉速率提拉的速率决定晶体生长速度和质量。适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。一般提拉速率为每小时6-15mm。在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

人工晶体制备方法——提拉法

人工晶体制备方法——提拉法

人工晶体制备方法——提拉法提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。

这种方法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等重要的宝石晶体。

20世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。

它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。

它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。

生长要点(1)温度控制在晶体提拉法生长过程中,熔体的温度控制是关键。

要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。

这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。

为了保持一定的过冷度,生长界面必须不断地向远离凝固点等温面的低温方向移动,晶体才能不断长大。

另外,熔体的温度通常远远高于室温,为使熔体保持其适当的温度,还必须由加热器不断供应热量。

(2)提拉速率提拉的速率决定晶体生长速度和质量。

适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。

一般提拉速率为每小时6-15mm。

在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。

这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

来源:中科院上海硅酸盐研究所。

编辑:SARS。

晶体生长

晶体生长

晶体生长----提拉法人工合成晶体的主要途径是从溶液中培养和在高温高压下通过同质多像的转变来制备(如用石墨制备金刚石)等。

具体方法很多,例如水热法,提拉法,焰熔法。

水热法这是一种在高温高压下从过饱和热水溶液中培养晶体的方法。

用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱石(祖母绿、海蓝宝石)、石榴子石及其它多种硅酸盐和钨酸盐等上百种晶体。

焰熔法这是一种用氢氧火焰熔化粉料并使之结晶的方法。

下面主要介绍下提拉法。

一.提拉法的基本原理:提拉法是将构成晶体的原料压缩成圆棒,置于四个加热灯的焦点处加热熔化,在原料下面接籽晶,在受控条件下,使籽晶和熔体在交界面上不断进行原子或分子的重新排列,随着改变加热灯的焦点位置使其降温逐渐凝固而生长出单晶体。

二.生长要点(1)温度控制在晶体提拉法生长过程中是关键。

可以通过调节加热灯的功率来改变温度,保持在适合晶体生长的温度。

(2)提拉的速率决定晶体生长速度和质量。

适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。

一般提拉速率为每小时6-15mm。

在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。

这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

三.提拉法与其它晶体生长方法相比有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得所需取向的晶体;(3)晶体生长速度较快;(4)晶体位错密度低,光学均一性高。

通过参观晶体生长实验室,让我学到了很多东西,获益良多。

从原料配比,压缩成原料棒,到加热融化与籽晶连接到一起开始生长,让我看到了晶体生长实验的严谨,与艰辛。

而且整个晶体生长的过程需要很多小时甚至几天的时间,觉得科研工作者在其工作中默默地付出劳动与汗水,值得我们敬佩与学习。

几种典型的晶体生长方法.

几种典型的晶体生长方法.

遇到的主要问题是:



如何有效地控制成核数目和成核位臵; 如何提高溶质的扩散速度和晶体的生长 速度; 如何提高溶质的溶解度和加大晶体的生 长尺寸; 如何控制晶体的成分和掺质的均匀性。
⑹ 水热法 基本原理:
使用特殊设计的装臵,人为地创造一个高 温高压环境,由于高温高压下水的解离常数 增大、黏度大大降低、水分子和离子的活动 性增加,可使那些在通常条件下不溶或难溶 于水的物质溶解度、水解程度极大提高,从 而快速反应合成新的产物。 可分为温差法、等温法和降温法等。
助熔剂提拉法
自发成核的缓冷生长法
Tb3
Sm3
Nd 3
Er 3
Gd 3
Eu 3
Dy 3
Na5 RE WO4 4 系列基质发光晶体
助熔剂法的特点及不足简单,适应性强,特别适用于新材料的探 索和研究; 生长温度低,特别适宜生长难熔化合物、在熔 点处极易挥发、变价或相变的材料,以及非同 成分熔融化合物; 只要采取适当的措施,可生长比熔体法生长的 晶体热应力更小、更均匀和完整; 生长速度慢,生长周期较长,晶体尺寸较小; 助熔剂往往带有腐蚀性或毒性; 由于采用的助熔剂往往是多种组分的,各组分 间的相互干扰和污染是很难避免的。
⑸ 高温溶液法
将晶体的原成分在常压高温下溶解于低熔 点助熔剂溶液内,形成均匀的饱和溶液;然后 通过缓慢降温或其他方法,形成过饱和溶液而 使晶体析出。 良好的助熔剂需要具备下述物理化学性质: • 应具有足够强的溶解能力,在生长温度范围内, 溶解度要有足够大的变化; • 在尽可能宽的范围内,所要的晶体是唯一的稳 定相。最好选取与晶体具有相同离子的助熔剂, 而避免选取性质与晶体成分相近的其他化合物;
切割好的籽晶
籽晶培养

熔体中的晶体生长技术(提拉法)

熔体中的晶体生长技术(提拉法)

2020/4/5
低维半导体材料及量子器件
22
2020/4/5
天然石榴石低维半导体材料及量子器件
23
YIG
2020/4/5
低维半导体材料及量子器件
24
YIG
2020/4/5
低维半导体材料及量子器件
25
人工合成GGG
2020/4/5
低维半导体材料及量子器件
26
天然形成的石榴石主要是金属的硅酸盐
48
边界层 厚度的 起伏
温场对称 晶体旋转
温场不对称
生长层的形成
生长 速率 起伏
机械振动
43
6 提拉法生长晶体缺陷的形成与控制
晶体在生长(或降温)过程中所以会产生缺陷, 大体上是由以下几个方面的因素造成的: a 物质条件; b 热力学因素; c 分凝和组分过冷; d 温度分布和温度波动.
2020/4/5
低维半导体材料及量子器件
44
• a物质条件:
包括生长设备的稳定性,有害杂质的影响, 籽晶。
2020/4/5
低维半导体材料及量子器件
28
石榴石生长的主要方法在于原料的区别和 是否考虑掺杂问题,一般生长过程包括以 下几个方面:
a 原料准备 b 保护气氛 c 生长条件 d 掺杂生长 e 晶体的透过率与颜色
2020/4/5
低维半导体材料及量子器件
29
• a 原料准备:Ga2O3(氧化镓)Gd2O3(氧化 钆)经过焙烧,脱水,按照比例配料,混合 后经压机压紧后在1250℃进行固相反应,充 分反应后的原料可供晶体生长使用。
• e 晶体的透过率与颜色:
2020/4/5
低维半导体材料及量子器件
31
纯GGG和掺杂Cr3+

晶体提拉法

晶体提拉法
圈加热两大类。
• 采用电阻加热,方法简单,容易控制。保 温装置通常采用金属材料以及耐高温材料 等做成的热屏蔽罩和保温隔热层,如用电 阻炉生长钇铝榴石、刚玉时就采用该保温 装置。
• 控温装置主要由传感器、控制器等精密仪 器进行操作和控制。
2.后热器 3.坩锅
传动系统
气氛控制 系统
传动系统
为了获得稳定的旋转和升降,传动系 统由籽晶杆、坩埚轴和升降系统组成。
2. 提拉法含有气体包体,且气泡分布不均 匀。提拉法常可见拉长的或哑铃状气泡。
• 3. 提拉法合成的宝石是在耐高温的铱、 钨或钼金属坩埚中熔化原料的,可能含 有金属包体。
• 4. 提拉法生长的宝石晶体原料在高温下 加热熔化,偶尔可见未熔化的原料粉末。
• 5. 提拉法生长的宝石晶体时,由于采用 籽晶生长,生长成的晶体会带有籽晶的 痕迹。并且可能产生明显的界面位错。
极限生长速率fmax :
对于纯材料:
fmax

Ks
l
( T z
)s
(Ks为晶体的导热率)
对于掺质的材料
f max

D[ke
(1 ke ) exp( mcl (B) ((1 ke
f
D )

c)]
(
T z
)l
4 晶体提拉法生长宝石实例
-蓝宝石提拉晶体的放肩控制 蓝宝石单晶的应用非常广泛。以蓝宝石 单晶片作绝缘村底的集成芯片,航天工业作 红外透光材料用得最多;工业中作宝石轴承、 仪表等;人们生活中作宝石表面、装饰等。 提拉法生长的蓝宝石单晶适用于红外、半导 体发光及集成电路的大量需要。
3 晶体提拉法生长工艺
A 生长过程。 B 直径自动控制。(ADC技术) C 材料挥发的控制。 D 温场的选择与控制。 E 生长速率的控制。

《2024年提拉法生长直径10英寸优质Yb∶YAG激光晶体》范文

《2024年提拉法生长直径10英寸优质Yb∶YAG激光晶体》范文

《提拉法生长直径10英寸优质Yb∶YAG激光晶体》篇一一、引言在现代激光技术中,高质量的激光晶体是实现高功率、高效率激光器的核心元件。

近年来,由于稀土掺杂的YAG(钇铝石榴石)激光晶体具有优异的光学性质和激光性能,因此被广泛地运用于各种高科技领域中。

提拉法作为晶体生长的主要方法之一,对于制备大尺寸、高质量的Yb∶YAG激光晶体至关重要。

本文旨在详细阐述利用提拉法生长直径为10英寸的优质Yb∶YAG激光晶体的研究过程及其实验结果。

二、提拉法生长技术概述提拉法,又称为Czochralski法,是一种在实验室条件下常用的晶体生长技术。

该法具有设备简单、操作方便、可制备大尺寸单晶等优点。

在Yb∶YAG激光晶体的制备过程中,提拉法主要通过在高温条件下将原料熔化,然后缓慢冷却并提取出晶体。

三、实验过程1. 原料准备:选用高纯度的Yb和YAG原料,按照一定的比例混合后进行预处理。

2. 熔炼:将预处理后的原料放入坩埚中,在高温下进行熔炼。

3. 提拉:当原料完全熔化后,通过控制提拉速度和温度梯度,将晶体从熔体中缓慢提取出来。

4. 退火处理:晶体生长完成后,进行退火处理以消除内应力。

5. 切割与抛光:将晶体切割成所需尺寸,并进行抛光处理以提高其光学质量。

四、实验结果与讨论通过提拉法成功生长出直径为10英寸的Yb∶YAG激光晶体。

经过一系列的测试和分析,该晶体的光学质量、均匀性和完整性均达到了较高的水平。

具体表现在以下几个方面:1. 光学质量:晶体的透光性能良好,无明显的散射和吸收现象。

2. 均匀性:晶体的成分分布均匀,无明显的成分偏析现象。

3. 完整性:晶体无裂纹、无气泡等缺陷,具有较高的机械强度。

在实验过程中,我们还发现了一些影响晶体质量的关键因素。

例如,提拉速度和温度梯度的控制对于晶体的形状和尺寸具有重要影响。

此外,原料的纯度和预处理过程也会对最终晶体的质量产生一定影响。

因此,在后续的研究中,我们将进一步优化这些参数以提高晶体的质量。

《2024年提拉法生长直径10英寸优质Yb∶YAG激光晶体》范文

《2024年提拉法生长直径10英寸优质Yb∶YAG激光晶体》范文

《提拉法生长直径10英寸优质Yb∶YAG激光晶体》篇一一、引言随着激光技术的快速发展,高质量的激光晶体材料在光通信、医疗、科研和工业加工等领域得到了广泛应用。

Yb∶YAG激光晶体因其良好的物理性能和光学性能,被广泛应用于高功率激光器中。

而大尺寸的激光晶体则更能满足大型设备对光束质量和输出功率的要求。

因此,采用提拉法生长直径为10英寸的优质Yb∶YAG激光晶体具有极其重要的科研和应用价值。

二、提拉法生长原理及技术要点提拉法是一种生长晶体的重要方法,通过将种子晶体的上表面缓慢降低到熔融介质中,利用晶体的熔点差异进行晶体的生长。

其关键在于对生长速率、温度梯度、杂质控制和生长气氛的精准控制。

对于生长直径为10英寸的Yb∶YAG激光晶体,首先需要选择合适的熔融介质和种子晶体,并确保其纯度和均匀性。

其次,要控制好生长速率和温度梯度,确保晶体生长的均匀性和稳定性。

此外,还需要对杂质进行严格控制,以减少晶体内部的缺陷和散射损失。

最后,要控制好生长气氛,防止晶体的氧化和污染。

三、Yb∶YAG激光晶体的性能研究Yb∶YAG激光晶体因其优良的光学性能和物理性能,在激光器中得到了广泛应用。

而大尺寸的Yb∶YAG激光晶体更能满足高功率激光器的需求。

对于直径为10英寸的Yb∶YAG激光晶体,其性能研究主要包括以下几个方面:1. 光学性能:包括透光性、折射率、光吸收系数等,这些性能决定了晶体的光学质量和激光器的输出质量。

2. 物理性能:包括热导率、热膨胀系数等,这些性能决定了晶体的热稳定性和抗损伤能力。

3. 激光性能:包括泵浦阈值、斜效率、光束质量等,这些性能决定了激光器的输出功率和光束质量。

四、实验结果与讨论通过提拉法生长得到的直径为10英寸的Yb∶YAG激光晶体具有以下优点:首先,晶体的均匀性和稳定性得到了有效保障;其次,通过严格的杂质控制和优化生长条件,减少了晶体内部的缺陷和散射损失;最后,经过精确的性能测试和分析,该晶体的光学性能、物理性能和激光性能均达到了较高的水平。

提拉生长单晶体工艺流程

提拉生长单晶体工艺流程

提拉生长单晶体工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classicarticles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!提拉生长单晶体是一种用于生产高纯度晶体材料的工艺流程,主要应用于半导体材料制备、激光晶体生长等领域。

最全的材料晶体生长工艺汇总

最全的材料晶体生长工艺汇总

最全的材料晶体生长工艺汇总提拉法提拉法又称直拉法,丘克拉斯基(Czochralski)法,简称CZ法。

它是一种直接从熔体中拉制出晶体的生长技术。

用提拉法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等多种重要的人工宝石晶体。

提拉法的原理:首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶下降至接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,并在不断提拉和旋转过程中,最终生长出圆柱状的大块单晶体。

提拉法的工艺步骤可以分为原料熔化、引晶、颈缩、放肩、等径生长、收尾等几个阶段。

具体过程如示意图。

提拉法晶体生长工艺有两大应用难点:一是温度场的设置和优化;二是熔体的流动和缺陷分析。

下图为提拉法基本的温度场设置以及五种基本的熔体对流模式。

在复杂的工艺条件下,实际生产需要调整的参数很多,例如坩埚和晶体的旋转速率,提拉速率等。

因此实际中熔体的温度场和流动模式也更复杂。

下图是不同的坩埚和晶体旋转速率下产生的复杂流动示意图。

这两大应用难点对晶体生长的质量和效率都有很大影响,是应用和科研领域中最关心的两个问题。

通常情况下为了减弱熔体对流,人为地引入外部磁场是一种有效办法,利用导电流体在磁场中感生的洛伦兹力可以抑制熔体的对流。

常用的磁场有横向磁场、尖端磁场等。

下图是几种不同的引入磁场类型示意图。

引入磁场可以在一定程度上减弱对流,但同时磁场的引入也加大了仿真模拟的难度,使得生长质量预测变的更难,因此需要专业的晶体生长软件才能提供可靠的仿真数据。

晶体提拉法有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得优质取向的单晶;(3)晶体生长速度较快;(4)晶体光学均一性高。

晶体提拉法的不足之处在于:(1)坩埚材料对晶体可能产生污染;(2)熔体的液流作用、传动装置的振动和温度的波动都会对晶体的质量产生影响。

晶体提拉生长法流程

晶体提拉生长法流程

晶体提拉生长法流程晶体提拉生长法呀,可有趣啦。

一、准备工作。

这晶体提拉生长法呢,开始之前要把好多东西都准备好。

咱得有个合适的坩埚,这个坩埚就像是晶体的小窝一样,要能承受高温,还得对晶体生长有好处呢。

比如说用石英坩埚就挺不错的,它干净又能耐高温。

然后呢,还得有籽晶,这籽晶就像是一颗小种子,晶体就是从它这儿开始慢慢长大的。

籽晶得选好,要符合咱们想要生长的晶体的特性哦。

还有原料,原料的纯度那可得高,要是原料不纯,那长出来的晶体就像个小歪瓜裂枣似的,不完美啦。

把原料放进坩埚里,就好像给小种子准备好了肥沃的土壤一样。

二、加热过程。

接下来就开始加热啦。

把放了原料的坩埚放到加热设备里,然后就开始升温。

这个温度升得可讲究了,要慢慢地升,不能一下子就把温度弄得很高,就像咱们做饭一样,火不能一下子开太大。

温度慢慢升高的时候,原料就开始慢慢熔化了。

看着原料从固体变成液体,就感觉像是在看一场魔法一样。

这时候的温度要控制得特别精准,要是温度不对,那晶体可能就长不好啦。

三、提拉过程。

等原料都熔化得差不多了,就该提拉籽晶了。

把籽晶慢慢放到熔化的原料里面,然后开始往上提拉。

提拉的速度也是个大学问哦。

提拉得太快,晶体可能就会有裂纹,就像拉得太快的面条容易断一样。

提拉得太慢呢,晶体又可能会长得很粗,就不是咱们想要的那种漂亮形状啦。

在提拉的过程中,还要不断地旋转籽晶,就像跳舞一样,这样能让晶体长得更均匀。

一边提拉一边旋转,晶体就一点点地长大了。

四、冷却过程。

晶体长到合适的大小之后呢,就开始冷却啦。

这个冷却也不能太快,要是太快的话,晶体内部可能会产生应力,就像突然给一个热的东西泼冷水一样,它可能就会裂开。

要慢慢地冷却,让晶体能够适应温度的变化。

这个过程就像是让晶体慢慢地从热闹的生长环境中安静下来一样。

晶体提拉生长法就是这么一个充满乐趣又很讲究的过程。

每一个步骤都像是在精心呵护一个小生命一样,需要咱们特别细心地去对待。

只有这样,才能长出漂亮又高质量的晶体呢。

晶体生长方法(新)

晶体生长方法(新)

晶体生长方法1) 提拉法(Czochralski,Cz )晶体提拉法的创始人是J. Czochralski ,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC ),如图1,能够顺利地生长某些易挥发的化合物(GaP 等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

图1 提拉法晶体生长装置结构示意图2)热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有图2HEM晶体生长装置结构示意图特定形状要求的晶体。

提拉法晶体生长资料收集

提拉法晶体生长资料收集

1、温场设计温场设计对晶体生长产生直接的影响,在晶体生长过程中,径向和纵向温度分布是温场设计的重点。

直接调整相对于感应线圈的柑竭位臵的高低(锅位),就可以调整纵向温度分布。

底盘的厚度、下保温系统的厚度、保温砂的粒度主要影响熔体表面对流和径向温度分布。

上保温系统的高度、观察窗口的大小、高低将影响作为热传输介质的保护气体的对流状态。

温场设计时既要考虑热量的导出,又要保证热场的均匀性和稳定性。

纵向温度分布、径向温度分布和保护气体的传热对流这三者是密切联系的。

根据柑祸的纵横比、感应线圈的尺寸、线圈中增锅的位臵来改进和优化温场。

2、保护气氛根据热传递原理,在高温生长室腔体中,因为较高气压的氮气氛必然加速气体对流,并易于把热是从腔体内传递到腔体外,从而有利于建立大温度梯度的沮场分布,保证了晶体正常生长,如果对生长室进行抽气,使之变成真空状态,此时在腔体内对流传热消失,而由于;胜体内壁的辐射,促使了腔体内温度更快趋于平衡。

这些都有利于在腔体内建立小梯度的温场分布,从而满足了晶体生长后冷却退火时对温场的要求。

3、晶体生长提拉法生长热量是由增祸传到熔体中的,因此在增祸壁附近的熔体温度较高、熔体密度较小,而远离祸壁的熔体中心则温度相对较低、熔体密度较大,在这种密度差造成的浮力差的作用下,熔体就会从祸壁处向中心处流动,形成自然对流。

另一方面,在实际的晶体生长过程中,生长的晶体不停的旋转(有时增祸也同时旋转),从而对熔体产生搅拌作用。

在这种搅拌力的作用下,熔体内会形成一股与自然对流近乎相反的液流,这就是强迫对流。

因此在晶体生长过程中,增锅内的熔体液流便有了三种状态,即自然对流占主导的状态(凸界面),自然对流与强迫对流平衡的状态(平界面)和强迫对流占主导的状态(凹界面),如下图所示。

坩锅内熔体的对流状态,直接决定着晶体生长过程中固液界面的形状:对于凹界面状态,由于固液界面处于凹界面时,晶体生长处于一种极不稳定的状态,生长出的晶体散射严重,缺陷密度大,因此是晶体生长过程中必须尽量避免的。

晶体生长方法(新)

晶体生长方法(新)

晶体生长方法(新)晶体生长方法1) 提拉法(Czochralski,Cz)晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),如图1,能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生图1 提拉法晶体生长装置结构示意图长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

2) 热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。

提拉法生产单晶的工艺过程

提拉法生产单晶的工艺过程

提拉法生产单晶的工艺过程
提拉法是一种常用的单晶生长工艺,主要用于生产硅单晶。

以下是提拉法生产单晶的工艺过程:
1. 原料准备:将高纯度的硅原料加入石英坩埚中并加热熔化,得到硅熔体。

2. 晶体种植:在石英坩埚内放入种子晶体,使其与硅熔体接触,形成晶体的初步生长。

3. 晶体提拉:将种子晶体与坩埚底部相连的拉杆慢慢向上拉升,使硅熔体慢慢提拉,晶体就会逐渐延伸。

4. 形成单晶棒:通过适当的控制拉杆的上升速度和熔体的温度,使得晶体在提拉的过程中逐渐形成单晶。

5. 控制温度和速度:在整个提拉过程中,需要严格控制熔体的温度和晶体提拉速度,以保证单晶的质量和尺寸。

6. 切割和修整:当单晶棒的长度达到一定要求后,将其切割成单个硅片,并进行修整和打磨,以得到最终的单晶硅片。

需要注意的是,提拉法生产单晶的过程需要在高真空环境下进行,以避免杂质的
污染。

此外,提拉法虽是一种常用的单晶生长工艺,但其过程控制较为复杂,需要经验丰富的技术人员进行操作。

熔体中的晶体生长技术(提拉法)

熔体中的晶体生长技术(提拉法)
化合物半导体材料在光电子、电子器 件和集成电路等领域具有广泛应用。
提拉法也被用于制备化合物半导体材料 ,如GaAs、InP等,通过控制熔体中的 成分和晶体生长条件,可以制备出高质 量、性能优异的化合物半导体材料。
在功能陶瓷材料制备中的应用
功能陶瓷材料在电子、能源、环保等领域具有广泛应用,如压电陶瓷、热敏陶瓷 等。
提拉法也被用于制备功能陶瓷材料,通过控制熔体中的成分和晶体生长条件,可 以制备出具有优异性能的功能陶瓷材料,提高其应用性能。
在其他领域的应用实例
提拉法还被应用于制备其他材料,如金属单晶、宝石等。
通过提拉法可以制备出高质量、性能优异的晶体材料,满足不同领域的需求。
05 提拉法的挑战与未来发展
面临的挑战
晶体质量与纯度控制
提拉法在生长过程中难以完全消除杂质和缺陷,影响晶体质量。
生长速度与尺寸限制
提拉法生长速度较慢,且难以生长大尺寸晶体。
成本与效率
提拉法需要高纯度原料和精密设备,导致成本较高,效率较低。
未来发展方向与趋势
新型晶体生长技术
研究和发展新型晶体生长技术,以提高晶体质量和纯度,降低成 本和能耗。
优点 可生长大尺寸单晶体 晶体质量高,缺陷少
提拉法的优缺点
• 可通过优化生长条件获得高纯度晶体
提拉法的优缺点
缺点
对温度控制要求严格,操 作难度较大
对设备要求高,成本较高
对于某些材料,提拉法可 能不是最佳的晶体生长技 术
02 提拉法的基本流程
熔体制备
原料选择
根据所需生长的晶体种 类,选择合适的原料, 确保纯度高、杂质少。
配料与混合
将原料按照一定的比例混 合,并进行充分的搅拌, 以保证原料的均匀性。

提拉法生长晶体

提拉法生长晶体

LiNbO晶体提拉法生长3材料物理 0910278 吴纯治一、实验目的(1) 了解提拉法生长单晶的生长机制;(2) 学习LiNbO晶体的生长特性及生产工艺,熟悉设备结构与功能。

3二、实验原理当一个结晶固体的温度高于熔点时,固体就熔化为熔体,当熔体的温度低于凝固点时,熔体就凝固为固体。

单晶的生长涉及到固液相变,这个过程中,原子(或分子)的随机堆积的阵列转变为有序阵列,即结晶。

提拉法生长单晶:,将制备好的原料放进坩埚,然后把坩埚放入盛有绝热材料Al O泡沫颗粒)的加热炉中,加热炉采用中频感应线圈加热法或是电阻加热(23法。

原材料在高温下转变为熔体,提拉杆上放置一个单晶核,然后将晶核下端部分浸入熔体中。

在晶核和熔体的交界面上不断地进行分子与原子的有序排列,这样提拉杆旋转着往上提拉,单晶体就缓慢的生长出来了。

温度场:因为熔体温度高于材料熔点,而要生长单晶,籽晶浸入部分又不能融化(只能软化),所以要求温度满足低于材料熔点。

这势必要在熔体与晶核之间界面处形成一定的温度梯度,从熔体到晶体,温度以一定趋势降低。

引颈:缓慢向熔体下降,避免热冲击,降至离熔体0.5~1mm处,等待1小时,待籽晶与熔体温度相近时,开始引颈。

引颈的过程必须要进行“缩颈”,以减少籽晶的位错向晶体的扩展。

放肩:经“缩颈”一定长度后,开始缓慢放肩,要获得高品质的单晶,放肩的角度一定要小,肩型要缓,放肩角小于60度为好。

实验步骤:原料处理,装料,抽真空(对于LiNbO晶体不需要),升温,熔料,3引颈,放肩,等径,提拉。

三、实验内容(1)认知学习:学习了解晶体生长的各个设备及流程。

四、思考题1.什么叫晶体的同成分配比生长,有那些因素会影响晶体的组分?同成分配比:满足生长出的单晶成分与熔体中成分比例一致的配比。

影响因素有温度,过冷度等。

2.为防止晶体开裂,应当注意什么事项?应保证同成分,即熔体与生长出的晶体成分比例是相同的,而且要保证温度梯度要合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LiNbO晶体
提拉法生长
3
材料物理 0910278 吴纯治
一、实验目的
(1) 了解提拉法生长单晶的生长机制;
(2) 学习
LiNbO晶体的生长特性及生产工艺,熟悉设备结构与功能。

3
二、实验原理
当一个结晶固体的温度高于熔点时,固体就熔化为熔体,当熔体的温度低于凝固点时,熔体就凝固为固体。

单晶的生长涉及到固液相变,这个过程中,原子(或分子)的随机堆积的阵列转变为有序阵列,即结晶。

提拉法生长单晶:,将制备好的原料放进坩埚,然后把坩埚放入盛有绝热材料Al O泡沫颗粒)的加热炉中,加热炉采用中频感应线圈加热法或是电阻加热(
23
法。

原材料在高温下转变为熔体,提拉杆上放置一个单晶核,然后将晶核下端部分浸入熔体中。

在晶核和熔体的交界面上不断地进行分子与原子的有序排列,这样提拉杆旋转着往上提拉,单晶体就缓慢的生长出来了。

温度场:因为熔体温度高于材料熔点,而要生长单晶,籽晶浸入部分又不能融化(只能软化),所以要求温度满足低于材料熔点。

这势必要在熔体与晶核之间界面处形成一定的温度梯度,从熔体到晶体,温度以一定趋势降低。

引颈:缓慢向熔体下降,避免热冲击,降至离熔体0.5~1mm处,等待1小时,待籽晶与熔体温度相近时,开始引颈。

引颈的过程必须要进行“缩颈”,以减少籽晶的位错向晶体的扩展。

放肩:经“缩颈”一定长度后,开始缓慢放肩,要获得高品质的单晶,放肩的角度一定要小,肩型要缓,放肩角小于60度为好。

实验步骤:原料处理,装料,抽真空(对于
LiNbO晶体不需要),升温,熔料,
3
引颈,放肩,等径,提拉。

三、实验内容
(1)认知学习:学习了解晶体生长的各个设备及流程。

四、思考题
1.什么叫晶体的同成分配比生长,有那些因素会影响晶体的组分?
同成分配比:满足生长出的单晶成分与熔体中成分比例一致的配比。

影响因素有温度,过冷度等。

2.为防止晶体开裂,应当注意什么事项?
应保证同成分,即熔体与生长出的晶体成分比例是相同的,而且要保证温度梯度
要合适。

3.通过什么办法控制铌酸锂单晶的等径生长?
通过热量输运和提拉速率来控制晶体的半径,主要是使从晶体表面散失的热量恒定。

4. 提拉法生长晶体,晶体为什么要旋转?
(1)旋转可以抑制不规则的对流,改变了由于径向温场的不均匀性,并且降低生长表面的温度波动的振幅;
(2)搅拌可以使组分更加均匀;
(3)可以通过旋转控制生长界面的凹凸,使得生长表面平滑。

相关文档
最新文档