14元阵列天线方向图及其MATLAB仿真
阵列天线方向图的MATLAB实现
阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱班级:04091202姓名:黄文平学号:04091158成绩:阵列天线方向图的MATLAB 实现摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。
讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。
关键词:阵列天线;;方向图;MATLAB前言:天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。
不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。
因此,对阵列天线方向性分析在天线理论研究中占有重要地位。
阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。
MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。
借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。
1 均匀直线阵方向图分析若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。
且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]:均匀直线阵归一化阵因子为[ 3 ]:Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ(m=1,2,...)都是主瓣最大值,这些重复的主瓣称为栅瓣,在实际应用中,通常希望出现一个主瓣,为避免出现栅瓣,必须把g限制在- 2π<§<2π范围内[ 4 ],其中k=λ/2π,即波数,n 表示阵元数目。
基于MATLAB的智能天线波束方向图仿真
基于 MA TL AB 的智能天线波束方向图仿真
图 2 智能天线二维原理图
在距离信号源足够远的空间里 ,可以将到达
的电磁波视为平面波[9 ,10 ] 。对于均匀直线阵 ,由
于调制在载波上的基带信号码元宽度与波束的乘
积远大于天线阵列的尺寸 ,因此到达各个天线阵
元上的信号幅度可以视为不变 ,而到达它们的载
N 个信号在 m 个阵元上的输出为 :
N- 1
∑ um =
umk
k=1
N- 1
∑ = sk ( t) ex p ( - βj m dco sΦk )
(4)
k=1
则阵列的输出可以表示为 :
M
∑ y ( t) = w m u m m =1
MN
∑∑ =
w ms k ( t) ex p ( - βj m dco sΦk )
[ 4 ] Seungwon Choi , Donghee shim. A novel adaptive beamforming algo rit hm for a smart antenna system in a CDMA mobile co mmunication environment [J ] . IEEE Transactions on Vehicular Technology ,2000 , 49 (5) :1793 - 1806.
(2)
其中 ,λ和 d 分别是入射波的波长和阵元间距 ,β=
2λл为相位传播因子 ,则阵元 m 上产生的信号是 :
umk = sk ( t) exp ( - j △φmk )
= sk ( t) exp ( - βj m dco sΦk )
(3)
为了使天线阵的输出满足需要 , 在每个阵元
matlab.方向图
概述
天线的远区场分布是一组复杂的函数,分析不同天线的辐射场可从 中得到该天线的 各种重要性能参数。方向性函数F(θ,Φ)是表 征辐射场在不同方向辐射特性的重要关系式,对它的分析和认识如 果仅仅停留在方向性函数以及公式中各参数的讨论上,很难理解天 线辐射场的空间分布以及定向天线集中辐射的概念。表征天线辐射 场空间分布的方向性函数通过二维、三维图形显示,可直观描述、 形象化展示及揭示各参量之间的内在关系,借助matlab的绘图功能 可以加深对天线辐射场空间分布理论的理解和认识,并可得到更有 效更直观的分析结果。我分别用matlab画了六元端和十四元端的方 向图,因为他们的最大辐2*pi); %生成一个等差数列 b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); subplot(221); polar(a,f.*sin(b)); %极坐标 title('14元端射式H面,d=波长/2,相位=滞后'); y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); subplot(223); surf(x1,y1,z1);特征匹配算法 axis equal %纵、横坐标采用等长刻度 title('14元端射式三维图'); a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)+1)*(6/2)*pi)./(sin((cos(a).*sin(b)+1)*pi/2)*6); subplot(222); polar(a,f.*sin(b)); title('6元端射式H面,d=波长/2,相位=超前'); y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); subplot(224); surf(x1,y1,z1); axis equal title('6元端射式三维图');
天线线列阵方向图
阵列方向图与MATLAB 仿真1、线阵的方向图2()22cos(cos )R φψπφ=+-MATLAB 程序如下〔2元〕:clear;a=0:0.1:2*pi;y=sqrt(2+2*cos(pi-pi*cos(a)));polar(a,y); 图形如下:若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g eg e φφ⋅⋅⋅加以组合的话,阵列的方向图为 [(1)cos()]1()m Mj m m m R g e ψπφφ--==∑MATLAB 程序如下〔10个阵元〕:clear;f=3e10;lamda=(3e8)/f;beta=2.*pi/lamda;n=10;t=0:0.01:2*pi;d=lamda/4;W=beta.*d.*cos(t);z1=((n/2).*W)-n/2*beta* d;z2=((1/2).*W)-1/2*beta* d;F1=sin(z1)./(n.*sin(z2));iK1=abs(F1) ;polar(t,K1);方向图如下:2、圆阵方向图程序如下:clc;clear all;close all;M = 16; % 行阵元数k = 0.8090; % k = r/lambdaDOA_theta = 90; % 方位角DOA_fi = 0; % 俯仰角% 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180));% w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置% w = chebwin(M, 20) .* w; % 行加切比雪夫权% 绘制水平面放置的均匀圆阵的方向图theta = linspace(0,180,360);fi = linspace(0,90,180);for i_theta = 1 : length(theta)for i_fi = 1 : length(fi)a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180));%a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置Y(i_theta,i_fi) = w'*a;endendY= abs(Y); Y = Y/max(max(Y));Y = 20*log10(Y);% Y = (Y+20) .* ((Y+20)>0) - 20; % 切图Z = Y + 20;Z = Z .* (Z > 0);Y = Z - 20;figure; mesh(fi, theta, Y); view([66, 33]);title('水平放置时的均匀圆阵方向图');% title('竖面放置时的均匀圆阵方向图'); % 竖直放置axis([0 90 0 180 -20 0]);xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB');figure; contour(fi, theta, Y);方向图如下:3、平面阵方向图:clc;clear all;close all;Row_N = 16; % 行阵元数Col_N = 16; % 列阵元数k = 0.5; % k = d/lambdaDOA_theta = 90; % 方位角DOA_fi = 0; % 俯仰角% 形成方位角为theta,俯仰角位fi的波束的权值Row_n = [0 : Row_N-1]; Col_n = [0 : Col_N-1];W_Row = exp(-j*2*pi*k*Row_n'*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % W_Col = exp(-j*2*pi*k*Col_n'*sin(DOA_fi*pi/180)); % 竖直放置W_Row = chebwin(Row_N, 20) .* W_Row; % 行加切比雪夫权W_Col = chebwin(Col_N, 30) .* W_Col; % 列加切比雪夫权W = kron(W_Row, W_Col); % 合成的权值N*N x 1% 绘制水平面放置的平面阵的方向图theta = linspace(0,180,180);fi = linspace(0,90,90);for i_theta = 1 : length(theta)for i_fi = 1 : length(fi)row_temp = exp(-j*2*pi*k*Row_n'*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 行导向矢量N x 1col_temp = exp(-j*2*pi*k*Col_n'*sin(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); % 列导向矢量N x 1% col_temp = exp(-j*2*pi*k*Col_n'*sin(fi(i_fi)*pi/180)); % 竖直放置Y(i_theta,i_fi) = W'*kron(row_temp, col_temp); % 合成的导向矢量N*N x 1 endendY= abs(Y); Y = Y/max(max(Y));Y = 20*log10(Y);Y = (Y+60) .* ((Y+60)>0) - 60; % 切图% Z = Y + 60;% Z = Z .* (Z > 0);% Y = Z - 60;figure; mesh(fi, theta, Y); view([66, 33]);title('水平面放置时的面阵方向图');axis([0 90 0 180 -60 0]);xlabel('俯仰角/(\circ)'); ylabel('方位角(\circ)'); zlabel('P/dB');figure; contour(fi, theta, Y);方向图如下:4、CAPON方法波束形成MATLAB程序如下〔阵元16,信号源3,快拍数1024〕:clear alli=sqrt(-1);j=i;M=16;%均匀线阵列数目P=3;%信号源数目f0=10;f1=50;f2=100;%信号频率nn=1024;%快拍数angle1=-15;angle2=15;angle3=30;%the signal angleth=[angle1;angle2;angle3]';SN1=10;SN2=10;SN3=10;%信噪比sn=[SN1;SN2;SN3];degrad=pi/180;tt=0:.001:1024;x0=exp(-j*2*pi*f0*tt);%3个信号x0、x1、x2x1=exp(-j*2*pi*f1*tt); %x2=exp(-j*2*pi*f2*tt); %t=1:nn;S=[x0(t);x1(t);x2(t)];nr=randn(M,nn);ni=randn(M,nn);u=nr+j*ni;%复高斯白噪声Ps=S*S'./nn;%信号能量ps=diag(Ps);refp=2*10.^(sn/10);tmp=sqrt(refp./ps);S2=diag(tmp)*S;%加入噪声tmp=-j*pi*sin(th*degrad);tmp2=[0:M-1]';a2=tmp2*tmp;A=exp(a2);X=A*S2+.1*u;%接收到的信号Rxx=X*X'./nn;%相关矩阵invRxx=inv(Rxx);%搜寻信号th2=[-90:90]';tmp=-j*pi*sin(th2'*degrad);tmp2=[0:M-1]';a2=tmp2*tmp;A2=exp(a2);den=A2'*invRxx*A2;doa=1./den;semilogy(th2,doa,'r');title('spectrum'); xlabel('angle'); ylabel('spectrum'); axis([-90 90 1e1 1e5]); grid;。
基于MATLAB的圆形阵列天线的仿真研究
束指向 ( 0 . 0),各 阵元 等 幅激励 ,初始 相位 差 由 ( 3) 式确
定 ,阵元 数量 分别 为N= 8 ,1 2 ,1 6 时进行 了仿 真 ,其 主平 面
的方 向图如 图3 所 示
图I N 元 圆形 阵歹 0
由N个阵 元组 成 的圆 形阵 列如 图 1 所 示 ,圆 阵放 置在x o y 平 面上 ,圆心 为 参考 点 ,圆环 的半 径 R=p 九,其 中P 是 一 个 常 数 ,A 是波 长 , 是第 i 个 阵元 的方位 角 ,各 个 阵元 均 匀 排
影响 不大 ,只 需满足设 计需求 的最 小值 即可。 关键词 :均 匀圆阵 ; 方 向图 ; 阵列 半径
引言
在雷 达和 无线通 信应 用 中 ,常 常要求 天线 具有 很强 的方 向性 ,并 且要 求波 束具 有在 一定 范 围内扫 描 的能力 ,因此实
际 中常采 用若 干天 线组 成天 线 阵 ,直 线阵 和 圆阵是 两种 常见 的组 阵方式 。直线 阵能 在 范 围内进行 波束 扫描 ,但是其 增益
厂 ( 。 , ∽= ∑, P
l =l
f 2 1
显然 ,如 果是 主瓣最 大值 指 向 ( o 0 , ( P 。 ) ,则第 n 个阵元 的激
励 电流初 始相位差 为
Ⅱ =一  ̄s i n 0 o c o s @0 一 ) f 3 、
设 元 阵 数N= l 2 , 圆的 半 径R = 1 . 5 入,若 大 辐 射方 向 为
类 风 险 ,必 须要 加强 不 同平 台之 间的建设 ,建 立统 一 的品态
四、案例分析一 阿里 巴巴与京 东商城
以 阿里 巴巴集 团 ,京 东 商城为 代表 的 电子商务 平 台 目前 是互 联 网消 费的 主流平 台 ,二者 均 为其平 台 的商家 提供 全方 位 的金融 服务 。其 中服 务于 平 台商家 的 阿里 巴 巴小 额贷 款 主 要 有 三种模 式 ,阿里小 贷 、淘宝 小贷 和 “ 合 营贷款 ” ,分别 针 对 不 同的客 户类 型 ,采取 不 同的贷 款方 式 。其 中订单 贷款 是 指卖 家凭 借卖 家 已发 货 的订单 ,就 可 以 申请 贷款 ,本 质上
手把手教你天线设计——用MATLAB仿真天线方向图
手把手教你天线设计——用MATLAB仿真天线方向图吴正琳天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。
在无线电设备中用来发射或接收电磁波的部件。
无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。
此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。
一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。
同一天线作为发射或接收的基本特性参数是相同的。
这就是天线的互易定理。
天线的基本单元就是单元天线。
1、单元天线对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。
对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。
1.1用MATLAB画半波振子天线方向图主要是说明一下以下几点:1、在Matlab中的极坐标画图的方法:polar(theta,rho,LineSpec);theta:极坐标坐标系0-2*pirho:满足极坐标的方程LineSpec:画出线的颜色2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。
也就是说这时的方向图只剩下一半。
3、半波振子天线方向图归一化方程:Matlab程序:clear alllam=1000;%波长k=2*pi./lam;L=lam/4;%天线臂长theta=0:pi/100:2*pi;f1=1./(1-cos(k*L));f2=(cos(k*L*cos(theta))-cos(k*L))./sin(theta);rho=f1*f2;polar(theta,abs(rho),'b');%极坐标系画图2、线性阵列天线2.1方向图乘积定理阵中第i 个天线单元在远区产生的电场强度为:2(,)ij i i i i ie E K If r πλθϕ-=式中,i K 为第i 个天线单元辐射场强的比例常数,i r 为第i 个天线单元至观察点的距离,(,)i f θϕ为第i 个天线单元的方向图函数,i I 为第i 个天线单元的激励电流,可以表示成为:Bji i i I a e φ-∆=式中,i a 为幅度加权系数,B φ∆为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。
MATLAB仿真在通信与电子工程中的应用第9章 天线及智能天线仿真试验
的相位差是[29]:
Ak K
2
d sin cos
第9章 天线及智能天线仿真试验 式中,λ与d分别是入射波的波长和阵元的间距, AK 亦称阵因子。计入阵因子的影响,第K号阵元的输
出是AKxK ,即uK 。为了使天线阵的输出满足需要,在
每个阵元上,用加权因子wK 进行控制。这样第K号阵 元上输出的信号为wKAKxK,即wK wK 。若到达天线阵
′;
Pmusic(n)=(A1a)′*A1a*(inv((A1a)′*Vn*(Vn) ′*A1a));%应用MUSIC法估计输出
第9章 天线及智能天线仿真试验 Pcap(n)=inv((A1a)′*ci*(A1a)); %应用Capon法估计输出 T(n)=q1a(n); P1=abs(Pmusic); P2=abs(Pcap);
的信号是N个,则天线阵的输出是N个信号在M个阵元
上的输出的叠加。将问题简化为xy平面的二维问题 (sinθ=1),并用解析式表达如下:
X(n)=[x1(n),x2(n),…,xN智能天线仿真试验
1 其中,为第1个信号的入射角。
A=[A1,A2,…,AN] (9-4)
的方向图线。MUSIC法的方向图线的幅度更大。
第9章 天线及智能天线仿真试验
9.3 天线阵的波束形成
我们以等距离圆阵为例来讨论天线阵的波束形成。 图9-10所示是等距离圆线阵的三维图。
第9章 天线及智能天线仿真试验
图9-10 等距离圆线阵的三维图
第9章 天线及智能天线仿真试验 我们把天线阵元顺序定为从OB起顺时针排列为0到 M-1。若有一平面波以θ角入射到阵列上,第K号阵元
Capon 法 亦 称 最 小 方 差 无 畸 变 响 应 MVDR
14元阵列天线方向图及其MATLAB仿真
阵列天线方向图及其MATLAB 仿真1设计目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB 仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系2设计原理阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
在本次设计中,讨论的是均匀直线阵天线。
均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。
均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。
二元阵辐射场:式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场:令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数:式中:ζφθψ+=cos sin kd均匀直线阵最大值发生在0=ψ 处。
由此可以得出这里有两种情况最为重要。
1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,])[,(212121ζθθθϕθj jkr jkr m e r e r e F E E E E --+=+=12cos ),(21jkr m e F r E E -=ψϕθθζφθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζϕθθϕθ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζϕ-=cos 2πϕ±=m各元观察点没有波程差,所以各元电流不需要有相位差。
2.端射振,计最大辐射方向在阵轴方向上,此时0=mϕ或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。
3设计过程本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。
MATLAB仿真天线阵代码
天线阵代码/downloads164/sourcecode/math/detail750575.html一、clcclear allf=3e9;N1=4;N2=8;N3=12;a=pi/2; %馈电相位差i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长d=lambda/2;beta=2.*pi/lambda;W=-2*pi:0.001:2*pi;y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子y1=abs(y1);r1=max(y1);y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子y2=abs(y2);r2=max(y2);y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序,figure(1)subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=4,d=1/2波长,a=π/2')subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=8,d=1/2波长,a=π/2')subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=12,d=1/2波长,a=π/2')%---------------------%只有参数N改变的天线方向图t=0:0.01:2*pi;W=a+(beta.*d.*cos(t));z1=(N1/2).*(W);z2=(1/2).*(W);W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1K1=abs(W1);%----------------------W=a+(beta.*d.*cos(t));z3=(N2/2).*(W);z4=(1/2).*(W);W2=sin(z3)./(N2.*sin(z4)); %非归一化的阵因子K2K2=abs(W2);%-------------------------W=a+(beta.*d.*cos(t));z5=(N3/2).*(W);z6=(1/2).*(W);W3=sin(z5)./(N3.*sin(z6)); %非归一化的阵因子K3K3=abs(W3);%--------------------绘图函数figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2波长,a=π/2'); subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2波长,a=π/2'); subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2波长,a=π/2'); %----------------------%只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta.*d1.*cos(t));x1=(N4/2).*(A);x2=(1/2).*(A);A1=sin(x1)./(N4.*sin(x2)); %非归一化的阵因子K4K4=abs(A1);%---------------------------B=a2+(beta.*d1.*cos(t));y_1=(N4/2).*(B);y_2=(1/2).*(B);B1=sin(y_1)./(N4.*sin(y_2)); %非归一化的阵因子K5K5=abs(B1);%----------------------------C=a3+(beta.*d1.*cos(t));v1=(N4/2).*(C);v2=(1/2).*(C);C1=sin(v1)./(N4.*sin(v2)); %非归一化的阵因子K6K6=abs(C1);%--------------------------绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4波长,a=0'); subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2'); subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------------%只有阵列单元间隔d改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0.7*lambda;a4=pi/2;D=a4+(beta.*d2.*cos(t));p1=(N5/2).*(D);p2=(1/2).*(D);D1=sin(p1)./(N5.*sin(p2)); %非归一化的阵因子K7K7=abs(D1);%------------------------------E=a4+(beta.*d3.*cos(t));q1=(N5/2).*(E);q2=(1/2).*(E);E1=sin(q1)./(N5.*sin(q2)); %非归一化的阵因子K8K8=abs(E1);%-------------------------------F=a4+(beta.*d4.*cos(t));r_1=(N5/2).*(F);r_2=(1/2).*(F);F1=sin(r_1)./(N5.*sin(r_2)); %非归一化的阵因子K9K9=abs(F1);%-----------------------绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4波长,a=π/2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a=π/2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0.7波长,a=π/2');%--------------------------------------------------------------------------%---------------------------------------3D-天线方向图n_tehta = 130; %-------------------- 采样视角点的仰角n_phi = 130; %--------------------采样点的方向角[tehta,phi]=meshgrid(eps:pi./(n_tehta-1):pi,... %meshgrid函数为矩形区域的设定范围是epf<tehta<π 0<phi<2π0:2*pi./(n_phi-1):2*pi) ;t3=tehta;%-------------只有参数N改变的天线方向3D图M=a+(beta.*d.*cos(t3)); %----N1=4;N2=8;N3=12;z_1=(N1/2).*(M);z_2=(1/2).*(M);M1=sin(z_1)./(N1.*sin(z_2)); %非归一化的阵因子K1K_1=abs(M1);radio_1 =K_1;X1=radio_1.*sin(tehta).*cos(phi);Y1=radio_1.*sin(tehta).*sin(phi);Z1=radio_1.*cos(tehta);%-----------------------------------M=a+(beta.*d.*cos(t3));z_3=(N2/2).*(M);z_4=(1/2).*(M);M2=sin(z_3)./(N2.*sin(z_4)); %非归一化的阵因子K2K_2=abs(M2);radio_2 =K_2;X2=radio_2.*sin(tehta).*cos(phi);Y2=radio_2.*sin(tehta).*sin(phi);Z2=radio_2.*cos(tehta);%-------------------------------------M=a+(beta.*d.*cos(t3));z_5=(N3/2).*(M);z_6=(1/2).*(M);M3=sin(z_5)./(N3.*sin(z_6)); %非归一化的阵因子K3K_3=abs(M3);radio_3 =K_3;X3=radio_3.*sin(tehta).*cos(phi);Y3=radio_3.*sin(tehta).*sin(phi);Z3=radio_3.*cos(tehta);%------------------------------------3D绘图函数figure(5)surf(X1,Y1,Z1); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2波长,a=π/2');figure(6)surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=8,d=1/2波长,a=π/2');figure(7)surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------------------------------%--------------------只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta.*d1.*cos(t3));x_1=(N4/2).*(A_3d);x_2=(1/2).*(A_3d);A_1=sin(x_1)./(N4.*sin(x_2)); %非归一化的阵因子K4K_4=abs(A_1);radio_4 =K_4;X4=radio_4.*sin(tehta).*cos(phi);Y4=radio_4.*sin(tehta).*sin(phi);Z4=radio_4.*cos(tehta);%-----------------------------------B_3d=a2+(beta.*d1.*cos(t3));y_1_3d=(N4/2).*(B_3d);y_2_3d=(1/2).*(B_3d);B_1=sin(y_1_3d)./(N4.*sin(y_2_3d)); %非归一化的阵因子K5K_5=abs(B_1);radio_5 =K_5;X5=radio_5.*sin(tehta).*cos(phi);Y5=radio_5.*sin(tehta).*sin(phi);Z5=radio_5.*cos(tehta);%------------------------------------C_3d=a3+(beta.*d1.*cos(t3));v_1=(N4/2).*(C_3d);v_2=(1/2).*(C_3d);C_1=sin(v_1)./(N4.*sin(v_2)); %非归一化的阵因子K6K_6=abs(C_1);radio_6 =K_6;X6=radio_6.*sin(tehta).*cos(phi);Y6=radio_6.*sin(tehta).*sin(phi);Z6=radio_6.*cos(tehta);%-----------------------------------figure(8)surf(X4,Y4,Z4); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=0');figure(9)surf(X5,Y5,Z5);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2');figure(10)surf(X6,Y6,Z6)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%---------------------------------------------%-------------------只有阵列单元间隔d改变的天线方向3D图N5=20;d2=lambda/4;d3=lambda/2;d4=0.7*lambda;a4=pi/2;D_3d=a4+(beta.*d2.*cos(t3));p_1=(N5/2).*(D_3d);p_2=(1/2).*(D_3d);D_1=sin(p_1)./(N5.*sin(p_2)); %非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7.*sin(tehta).*cos(phi);Y7=radio_7.*sin(tehta).*sin(phi);Z7=radio_7.*cos(tehta);%---------------------------------------E_3d=a4+(beta.*d3.*cos(t3));q_1=(N5/2).*(E_3d);q_2=(1/2).*(E_3d);E_1=sin(q_1)./(N5.*sin(q_2)); %非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8.*sin(tehta).*cos(phi);Y8=radio_8.*sin(tehta).*sin(phi);Z8=radio_8.*cos(tehta);%------------------------------------------F_3d=a4+(beta.*d4.*cos(t3));r_1_3d=(N5/2).*(F_3d);r_2_3d=(1/2).*(F_3d);F_1=sin(r_1_3d)./(N5.*sin(r_2_3d)); %非归一化的阵因子K9 K_9=abs(F_1);radio_9 =K_9;X9=radio_9.*sin(tehta).*cos(phi);Y9=radio_9.*sin(tehta).*sin(phi);Z9=radio_9.*cos(tehta);%-----------------------------------figure(11)surf(X7,Y7,Z7); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/4波长,a=π/2');figure(12)surf(X8,Y8,Z8);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/2波长,a=π/2');figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=0.7波长,a=π/2');二、%-----------------均匀直线阵列天线的应用之一:边射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=(N/2).*W1;z2=(1/2).*W1;F1=sin(z1)./(N.*sin(z2));K1=abs(F1);d2=lambda*1.5; %有栅瓣现象的边射阵,即间隔d>波长W2=beta.*d2.*cos(t); %定义kdcos(方向角)z3=(N/2).*W2;z4=(1/2).*W2;F2=sin(z3)./(N.*sin(z4));K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('边射阵 f=30GHz,N=15,d=1/4波长'); subplot(122);polar(t,K2);title('边射阵(有栅瓣) f=30GHz,N=15,d=1.5倍波长');三、%-----------------均匀直线阵列天线的应用之二:普通端射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的普通端射阵,即间隔d<1/2波长W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=((N/2).*W1)+N/2*beta*d1;z2=((1/2).*W1)+1/2*beta*d1;F1=sin(z1)./(N.*sin(z2));K1=abs(F1);d2=lambda*0.7; %有栅瓣现象的普通端射阵,即间隔d>1/2波长W2=beta.*d2.*cos(t); %定义kdcos(方向角)z3=((N/2).*W2)+N/2*beta*d2;z4=((1/2).*W2)+1/2*beta*d2;F2=sin(z3)./(N.*sin(z4));K2=abs(F2);figure(2)subplot(121);polar(t,K1);title('普通端射阵 f=30GHz,N=15,d=1/4波长'); subplot(122);polar(t,K2);title('普通端射阵(有栅瓣) f=30GHz,N=15,d=0.7倍波长');四%-----------------均匀直线阵列天线的应用之三:强方向性端射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的强方向性端射阵,即间隔d<(1/2波长)*(1-1/N)W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=((N/2).*W1)+N/2*(beta*d1+pi/N);z2=((1/2).*W1)+1/2*(beta*d1+pi/N);F1=sin(pi/2/N).*sin(z1)./(sin(z2));K1=abs(F1);d2=lambda*0.5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) W2=beta.*d2.*cos(t); %定义kdcos(方向角)z3=((N/2).*W2)+N/2*(beta*d2+pi/N);z4=((1/2).*W2)+1/2*(beta*d2+pi/N);F2=sin(pi/2/N).*sin(z3)./(sin(z4));K2=abs(F2);figure(3)subplot(121);polar(t,K1);title('强方向性端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0.5倍波长');。
天线辐射方向图及其matlab仿真
随着现代通信技术的迅猛发展,无线通讯越来越广泛,越来越多的应 用于国防建设,经济建设以及人民的生活等领域。在无线通信系统中,需 要将来自发射机的导波能量转变为无线电波,用来辐射或接受无线电波的 装置称为天线。在通信过程中,特别是点对点的通信,要求天线具有相当 强的方向性,即希望天线能将绝大部分的能量集中向某一预定方向辐射。 阵列天线就是近代天线研究的一种方向,其研究催生了包括相控阵天线, 均匀直线列天线,智能天线等在无线通信,雷达,导航领域中广泛应用的 新型天线。而天线阵列辐射场的研究是其中很重要的一部分。 本文首先介绍天线是如何产生电磁波的,并介绍辐射场的几种情况。 接下来介绍单个天线的基本参数包括主瓣宽度,增益系数,极化特性,方 向性等。然后介绍和分析了边射阵,端射阵和均匀线性阵。阵列天线的方 向相乘性原理,随后使用了 MATLAB 仿真软件分别对二项阵,三角阵和 道尔夫切比雪夫阵模型进行了仿真。在综合对比了阵元的数量,间距,排 列方式后得出天线阵列辐射场的特性。 关键词 元天线;阵列天线;MATLAB 仿真;辐射方向图
- -
I
Research on Radiation Field of Antenna Array Abstract
With the rapid development of modern communication technology, wireless communication is more and more widely, more and more applications on the national defense construction, economic construction and people’s life and other fields. In the wireless communication system, it needs guiding wave energy which will come from the transmitter to the radio .The device which is used to radiation or receiving is known as the Antenna of radio waves. Antenna is an essential part of the wireless communications system. It requests the antenna to have the quite strong directive in the communication, especially in the point-to-point communications. It hopes that the antenna is able to radios in the direction with mainly energy. Single symmetrical antenna cannot satisfy this kind of request forever. Therefore, the array antenna is an important method to realizes this request. This paper first introduces the antenna is how to generate electromagnetic wave, and introduces several cases of radiation field. The basic parameters of next introduces the single antenna comprises a main lobe width, gain, polarization, direction. Then, it introduces and analyzes the direction of multiplicative principle and mathematical model of antenna array of antenna array, then using MATLAB simulation software on simulation Binomial array, Triangular array and Dolph-Tschebyscheff array for a sidelobe through comparison and reasoning factors control antenna array performance method of control parameter, finally embarks from the reality, put forward its own on array antenna and improve some of the views of its radiation performance Keywords - element antenna;array antenna;MATLAB;antenna pattern
改进遗传算法的天线阵列方向图优化及Matlab仿真
改进遗传算法的天线阵列方向图优化及Matlab仿真作者:赵萍来源:《信息技术时代·中旬刊》2019年第02期摘要:本文提出了一种应用于阵列天线方向图优化的改进遗传算法。
该算法借鉴生物学中S型种群增长曲线模型赋予标准遗传算法中染色体被选中概率、交叉概率、遗传概率,关于进化世代数的动态取值。
用改进后的遗传算法对八单元阵列天线方向图进行了优化,并将优化结果与优前化、标准遗传算法优化结果进行了对比分析。
结果显示改进后的遗传算法能够得到更低的第一副瓣电平,优化结果更好。
文中同时给出部分matlab程序,方便读者学习。
关键词:种群增长曲线;改进遗传算法;方向图优化;matlab程序Array Antenna Pattern optimized by improved Genetic Algorithm and Matlab SimulationPing Zhao(College of Information Science and Technology,Donghua University,Shanghai 201620,China)Abstract:A improved genetic algorithm is presented for optimization of array antennapattern .In the improved genetic algorithm,being selected probability,crossover probability and inherited probability of chromosome is conferred dynamic values about evolutionary generations,leaning from the model of S-type population growth curve in biology.And the eight-cell array antenna pattern is optimized by the improved genetic pared to the un-optimized antenna pattern and the results optimized by standard genetic algorithm,optimized results show that the improved genetic algorithm can obtain a lower first side-lobe level and a better optimized results.The paper also provides some parts of the matlab procedures to allow readers to learn.Key words:population growth curve;improved genetic algorithm;optimized antenna pattern;Low side-lobe level; matlab procedures引言:在搜索雷達、通讯技术等众多领域中往往需要特殊形状的天线波束(如余割平方波束等),即天线的波束赋形。
matlab仿真天线阵代码
matlab仿真天线阵代码天线阵代码tail750575.html一、clcclear allf=3e9;N1=4;N2=8;N3=12;a=pi/2; %馈电相位差i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长d=lambda/2;beta=2.*pi/lambda;W=-2*pi:0.001:2*pi;y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子y1=abs(y1);r1=max(y1);y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子y2=abs(y2);r2=max(y2);y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序,figure(1)subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=4,d=1/2波长,a=π/2')subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=8,d=1/2波长,a=π/2')subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图t=0:0.01:2*pi;W=a+(beta.*d.*cos(t));z1=(N1/2).*(W);z2=(1/2).*(W);W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1K1=abs(W1);%---------------------- W=a+(beta.*d.*cos(t));z3=(N2/2).*(W);z4=(1/2).*(W);W2=sin(z3)./(N2.*sin(z4)); %非归一化的阵因子K2 K2=abs(W2);%------------------------- W=a+(beta.*d.*cos(t));z5=(N3/2).*(W);z6=(1/2).*(W);W3=sin(z5)./(N3.*sin(z6)); %非归一化的阵因子K3 K3=abs(W3);--------------------绘图函数 %figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2波长,a=π/2');subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2波长,a=π/2');,a=π/2'); subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2波长%---------------------- %只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta.*d1.*cos(t)); x1=(N4/2).*(A);x2=(1/2).*(A);A1=sin(x1)./(N4.*sin(x2)); %非归一化的阵因子K4 K4=abs(A1);%--------------------------- B=a2+(beta.*d1.*cos(t));y_1=(N4/2).*(B);y_2=(1/2).*(B);B1=sin(y_1)./(N4.*sin(y_2)); %非归一化的阵因子K5 K5=abs(B1);%---------------------------- C=a3+(beta.*d1.*cos(t));v1=(N4/2).*(C);v2=(1/2).*(C);C1=sin(v1)./(N4.*sin(v2)); %非归一化的阵因子K6 K6=abs(C1);%--------------------------绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4波长,a=0');subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2');subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------------%只有阵列单元间隔d改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0.7*lambda;a4=pi/2;D=a4+(beta.*d2.*cos(t));p1=(N5/2).*(D);p2=(1/2).*(D);D1=sin(p1)./(N5.*sin(p2)); %非归一化的阵因子K7K7=abs(D1);%------------------------------ E=a4+(beta.*d3.*cos(t));q1=(N5/2).*(E);q2=(1/2).*(E);E1=sin(q1)./(N5.*sin(q2)); %非归一化的阵因子K8K8=abs(E1);%------------------------------- F=a4+(beta.*d4.*cos(t));r_1=(N5/2).*(F);r_2=(1/2).*(F);F1=sin(r_1)./(N5.*sin(r_2)); %非归一化的阵因子K9K9=abs(F1);%-----------------------绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4波长,a=π/2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a=π/2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0.7波长,a=π/2');%--------------------------------------------------------------------------%---------------------------------------3D-天线方向图n_tehta = 130; %-------------------- 采样视角点的仰角n_phi = 130; %--------------------采样点的方向角[tehta,phi]=meshgrid(eps:pi./(n_tehta-1):pi,... %meshgrid函数为矩形区域的设定范围是epf<tehta<π 0<phi<2π0:2*pi./(n_phi-1):2*pi) ;t3=tehta;%-------------只有参数N改变的天线方向3D图M=a+(beta.*d.*cos(t3)); %----N1=4;N2=8;N3=12;z_1=(N1/2).*(M);z_2=(1/2).*(M);M1=sin(z_1)./(N1.*sin(z_2)); %非归一化的阵因子K1K_1=abs(M1);radio_1 =K_1;X1=radio_1.*sin(tehta).*cos(phi);Y1=radio_1.*sin(tehta).*sin(phi);Z1=radio_1.*cos(tehta); %-----------------------------------M=a+(beta.*d.*cos(t3));z_3=(N2/2).*(M);z_4=(1/2).*(M);M2=sin(z_3)./(N2.*sin(z_4)); %非归一化的阵因子K2 K_2=abs(M2);radio_2 =K_2;X2=radio_2.*sin(tehta).*cos(phi);Y2=radio_2.*sin(tehta).*sin(phi);Z2=radio_2.*cos(tehta); ------------------------------------- %M=a+(beta.*d.*cos(t3));z_5=(N3/2).*(M);z_6=(1/2).*(M);M3=sin(z_5)./(N3.*sin(z_6)); %非归一化的阵因子K3 K_3=abs(M3);radio_3 =K_3;X3=radio_3.*sin(tehta).*cos(phi);Y3=radio_3.*sin(tehta).*sin(phi);Z3=radio_3.*cos(tehta); %------------------------------------3D绘图函数 figure(5)surf(X1,Y1,Z1); %三维绘图函数surf,采用伪彩色表示曲面的高度 camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2波长,a=π/2'); figure(6)surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=8,d=1/2波长,a=π/2'); fi gure(7)surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------------------------------%--------------------只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta.*d1.*cos(t3));x_1=(N4/2).*(A_3d);x_2=(1/2).*(A_3d);A_1=sin(x_1)./(N4.*sin(x_2)); %非归一化的阵因子K4K_4=abs(A_1);radio_4 =K_4;X4=radio_4.*sin(tehta).*cos(phi); Y4=radio_4.*sin(tehta).*sin(phi); Z4=radio_4.*cos(tehta);%----------------------------------- B_3d=a2+(beta.*d1.*cos(t3));y_1_3d=(N4/2).*(B_3d);y_2_3d=(1/2).*(B_3d);B_1=sin(y_1_3d)./(N4.*sin(y_2_3d)); %非归一化的阵因子K5 K_5=abs(B_1);radio_5 =K_5;X5=radio_5.*sin(tehta).*cos(phi); Y5=radio_5.*sin(tehta).*sin(phi);Z5=radio_5.*cos(tehta);%------------------------------------ C_3d=a3+(beta.*d1.*cos(t3));v_1=(N4/2).*(C_3d);v_2=(1/2).*(C_3d);C_1=sin(v_1)./(N4.*sin(v_2)); %非归一化的阵因子K6K_6=abs(C_1);radio_6 =K_6;X6=radio_6.*sin(tehta).*cos(phi); Y6=radio_6.*sin(tehta).*sin(phi);Z6=radio_6.*cos(tehta);%----------------------------------- figure(8)surf(X4,Y4,Z4); %三维绘图函数surf,采用伪彩色表示曲面的高度 camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=0');figure(9)surf(X5,Y5,Z5);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2');figure(10)surf(X6,Y6,Z6)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------只有阵列单元间隔d改变的天线方向3D图 % N5=20;d2=lambda/4;d3=lambda/2;d4=0.7*lambda;a4=pi/2;D_3d=a4+(beta.*d2.*cos(t3)); p_1=(N5/2).*(D_3d);p_2=(1/2).*(D_3d);D_1=sin(p_1)./(N5.*sin(p_2)); %非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7.*sin(tehta).*cos(phi); Y7=radio_7.*sin(tehta).*sin(phi);Z7=radio_7.*cos(tehta);%--------------------------------------- E_3d=a4+(beta.*d3.*cos(t3)); q_1=(N5/2).*(E_3d);q_2=(1/2).*(E_3d);E_1=sin(q_1)./(N5.*sin(q_2)); %非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8.*sin(tehta).*cos(phi); Y8=radio_8.*sin(tehta).*sin(phi);Z8=radio_8.*cos(tehta);%------------------------------------------F_3d=a4+(beta.*d4.*cos(t3)); r_1_3d=(N5/2).*(F_3d);r_2_3d=(1/2).*(F_3d);F_1=sin(r_1_3d)./(N5.*sin(r_2_3d)); %非归一化的阵因子K9 K_9=abs(F_1);radio_9 =K_9;X9=radio_9.*sin(tehta).*cos(phi);Y9=radio_9.*sin(tehta).*sin(phi);Z9=radio_9.*cos(tehta); %-----------------------------------figure(11)surf(X7,Y7,Z7); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D on,a=π/2'); title('f=3GHz,N=20,d=1/4波长figure(12)surf(X8,Y8,Z8); camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/2波长,a=π/2'); figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=0.7波长,a=π/2');二、%-----------------均匀直线阵列天线的应用之一:边射阵 clc clear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长 W1=beta.*d1.*cos(t); %定义kdcos(方向角) z1=(N/2).*W1;z2=(1/2).*W1;F1=sin(z1)./(N.*sin(z2)); K1=abs(F1);d2=lambda*1.5; %有栅瓣现象的边射阵,即间隔d>波长 W2=beta.*d2.*cos(t); %定义kdcos(方向角) z3=(N/2).*W2;z4=(1/2).*W2;F2=sin(z3)./(N.*sin(z4)); K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('边射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('边射阵(有栅瓣) f=30GHz,N=15,d=1.5倍波长');三、%-----------------均匀直线阵列天线的应用之二:普通端射阵 clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的普通端射阵,即间隔d<1/2波长W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=((N/2).*W1)+N/2*beta*d1; z2=((1/2).*W1)+1/2*beta*d1;F1=sin(z1)./(N.*sin(z2)); K1=abs(F1);d2=lambda*0.7; %有栅瓣现象的普通端射阵,即间隔d>1/2波长W2=beta.*d2.*cos(t); %定义kdcos(方向角)z3=((N/2).*W2)+N/2*beta*d2; z4=((1/2).*W2)+1/2*beta*d2;F2=sin(z3)./(N.*sin(z4)); K2=abs(F2);figure(2)subplot(121);polar(t,K1);title('普通端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('普通端射阵(有栅瓣)f=30GHz,N=15,d=0.7倍波长');四%-----------------均匀直线阵列天线的应用之三:强方向性端射阵 clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2.*pi/lambda;N=15;t=0:0.01:2*pi;d1=lambda/4; %没有栅瓣效应的强方向性端射阵,即间隔d<(1/2波长)*(1-1/N)W1=beta.*d1.*cos(t); %定义kdcos(方向角)z1=((N/2).*W1)+N/2*(beta*d1+pi/N); z2=((1/2).*W1)+1/2*(beta*d1+pi/N); F1=sin(pi/2/N).*sin(z1)./(sin(z2)); K1=abs(F1);d2=lambda*0.5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) 方向角) W2=beta.*d2.*cos(t); %定义kdcos(z3=((N/2).*W2)+N/2*(beta*d2+pi/N); z4=((1/2).*W2)+1/2*(beta*d2+pi/N); F2=sin(pi/2/N).*sin(z3)./(sin(z4)); K2=abs(F2);figure(3)subplot(121);polar(t,K1);title('强方向性端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0.5倍波长');。
MATLAB在天线方向图中的应用与研究(1)
半波对称振子的 ? 所示 B 2 面方向图如图 @ : ; A 为全波振子 8 归一化方向性函数 #< ) * + : > ) * + 1 ;C @ : -# < ; . + 3 4 1 全波对称振子的 ? 所示 B 2 面方向图如图 @ : ; D 9 : 1 ;#
9 : 1 8 U ; A 图形的大波瓣反映了阵函数图的 : ; YW : @ ; W 9 A 主 瓣8 其最大值 9 就是阵函数的 : ; Z #4 #\@ 8 W [ A W 最大 值 8 而与 W [相 对 应 的 1 (#4 ( 即为阵函数的最 大辐射方向 B : . ; : ; YW图形的小波瓣反映了阵函数图的 9 W A 所对应的 旁 瓣8 极 值 等 于 旁 瓣 峰 值8 出现极值的 W 3 (
第( B卷 第 C期 ( + + C年 =月
电气电子教学学报 E FGH <8: FIJ J J
K/ 2 c ( B </ c C 85 9 c( + + C
!" # $ " %在天线方向图中的应用与研究
王曼珠 & 张繬民 & 崔红跃 ( ’ ’
) & *北京电子科技学院
摘
0 通信工程系 ’北京 & + + + , + ( *中国民用航空大学 ’天津 . + + . + + /
假 定 天 线 元 为 相 同 对 称 阵 子8 且为等间距 I #4 5 4 等相位差 S 等 幅 五 元 直 线 阵8 总辐射场 8 #4 5S 8 I 4 为 % & ’ T + 3 4 : OW ; & $ : O2 @ ; W L : 1 8 U ;V 6 V !# $ 6 7 OV + 3 4 : W ; & @ X I ) * + 1 + 3 4 U CS ; W# : . 天线阵辐射场大小与方向之间关系的阵函数为 + 3 4 OW : W ;# 9 # A O+ 3 4 W : X I ) * + 1 + 3 4 U CS ; . # : X I ) * + 1 + 3 4 U CS ; O+ 3 4 . + 3 4 O
阵列天线方向图及其MATLAB仿真
阵列天线方向图及其MATLAB仿真一.实验目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系二.实验原理1.阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
^2.方向图原理:对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。
假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元阵列天线天线阵的方向图。
这就是方向图相乘原理。
一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。
这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
三.源程序及相应的仿真图1.方向图随n变化的源程序clear;sita=-pi/2::pi/2;lamda=;]d=lamda/4;n1=20;beta=2*pi*d*sin(sita)/lamda;z11=(n1/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n1*sin(z21));F1=abs(f1);figure(1);plot(sita,F1,'b');hold on;n2=25;:beta=2*pi*d*sin(sita)/lamda;z12=(n2/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n2*sin(z22));F2=abs(f2);plot(sita,F2,'r');hold on;n3=30;beta=2*pi*d*sin(sita)/lamda;z13=(n3/2)*beta;z23=(1/2)*beta;>f3=sin(z13)./(n3*sin(z23));F3=abs(f3);plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与阵列个数的关系'); legend('n=20','n=25','n=30');·结果分析:随着阵列个数n的增加,方向图衰减越快,效果越好;2.方向图随lamda变化的源程序clear;sita=-pi/2::pi/2;n=20;d=;lamda1=;beta=2*pi*d*sin(sita)/lamda1;z11=(n/2)*beta;z21=(1/2)*beta;f1=sin(z11)./(n*sin(z21));~F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);lamda2=;beta=2*pi*d*sin(sita)/lamda2;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);lamda3=;beta=2*pi*d*sin(sita)/lamda3;z13=(n/2)*beta;,z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');grid on;xlabel('theta/radian');ylabel('amplitude');title('方向图与波长的关系');legend('lamda=','lamda=','lamda=');四.,随着波长lamda的增大,方向图衰减越慢,收敛性越五.结果分析:不是很好;3.方向图随d变化的源程序clear;sita=-pi/2::pi/2;n=20;lamda=;d1=;beta=2*pi*d1*sin(sita)/lamda;z11=(n/2)*beta;z21=(1/2)*beta;【f1=sin(z11)./(n*sin(z21));F1=abs(f1);%·½ÏòͼÇúÏßfigure(1);plot(sita,F1,'b');hold on;d2=;beta=2*pi*d2*sin(sita)/lamda;z12=(n/2)*beta;z22=(1/2)*beta;f2=sin(z12)./(n*sin(z22));F2=abs(f2);-plot(sita,F2,'r');hold on;d3=;beta=2*pi*d3*sin(sita)/lamda;z13=(n/2)*beta;z23=(1/2)*beta;f3=sin(z13)./(n*sin(z23));F3=abs(f3)plot(sita,F3,'k')hold off;grid on;xlabel('theta/radian');ylabel('amplitude');title('·½ÏòͼÓëÌìÏßÕóÁмä¸ôdµÄ¹Øϵ'); legend('d1=','d=','d=');结果分析;随着阵元之间间隔的增加,方向图衰减越快,主次瓣的差距越大,次瓣衰减越快,效果越好。
基于MATLAB的智能天线及仿真
基于MATLAB的智能天线及仿真摘要随着移动通信技术的发展,与日俱增的移动用户数量和日趋丰富的移动增值服务,使无线通信的业务量迅速增加,无限电波有限的带宽远远满足不了通信业务需求的增长。
另一方面,由于移动通信系统中的同频干扰和多址干扰的影响严重,更影响了无线电波带宽的利用率。
并且无线环境的多变性和复杂性,使信号在无线传输过程中产生多径衰落和损耗。
这些因素严重地限制了移动通信系统的容量和性能。
因此为了适应通信技术的发展,迫切需要新技术的出现来解决这些问题。
这样智能天线技术就应运而生。
智能天线是近年来移动通信领域中的研究热点之一,应用智能天线技术可以很好地解决频率资源匮乏问题,可以有效地提高移动通信系统容量和服务质量。
开展智能天线技术以及其中的一些关键技术研究对于智能天线在移动通信中的应用有着重要的理论和实际意义。
论文的研究工作是在MATLAB软件平台上实现的。
首先介绍了智能天线技术的背景;其次介绍了智能天线的原理和相关概念,并对智能天线实现中的若干问题,包括:实现方式、性能度量准则、智能自适应算法等进行了分析和总结。
着重探讨了基于MATLAB的智能天线的波达方向以及波束形成,阐述了music和capon两种求来波方向估计的方法,并对这两种算法进行了计算机仿真和算法性能分析;关键字:智能天线;移动通信;自适应算法;来波方向; MUSIC算法AbstractWith development of mobile communication technology,mobile users and communication,increment service are increasing,this make wireless services increase so that bandwidth of wireless wave is unfit for development of communication,On the other hand,much serious Co-Channel Interruption and the Multiple Address interruption effect utilize rate of wireless wave’s bandwidth,so the transported signals are declined and wear down,All this has strong bad effect on the capacity and performance of question and be fit for the development of communication,so smart antenna arise Smart Antenna,which is considered to be a solution to the problem of lacking frequency, becomes a hotspot in the Mobile Communication area.With this technology, Capacity of Mobile Communication system can be increased effectively and the quality of service can be improved at the same time. To study Smart Antenna and its key technologies is important both in theory and in practice。
基于MATLAB的智能天线波束方向图仿真
基于MATLAB的智能天线波束方向图仿真
汪睿;王振宫;曾庆栋
【期刊名称】《湖北工程学院学报》
【年(卷),期】2009(029)006
【摘要】结合一种直线阵智能天线模型,对其工作原理进行了研究,并在MATLAB 软件下对其波束方向图进行了仿真,结果表明,通过调整加权因子,可以使天线主波束在平面内指向任何用户方向.
【总页数】3页(P56-58)
【作者】汪睿;王振宫;曾庆栋
【作者单位】孝感学院,物理与电子信息工程学院,湖北,孝感,432000;成宁职业技术学院,电子信息工程系,湖北,成宁,437100;孝感学院,物理与电子信息工程学院,湖北,孝感,432000;湖北职业技术学院,应用技术分院,湖北,孝感,432000;孝感学院,物理与电子信息工程学院,湖北,孝感,432000
【正文语种】中文
【中图分类】TN911.72
【相关文献】
1.基于LMS算法的天线波束方向图仿真研究 [J], 杨帆
2.一种均匀直线阵智能天线波束方向图仿真 [J], 曾庆栋;肖永军;童菊芳
3.基于LMS算法的智能天线波束方向图仿真 [J], 杨尚贤;王明皓
4.基于MATLAB的LTE智能天线广播波束仿真与权值优化 [J], 汪鹏;张德树;吉洪武;
5.基于MATLAB的LTE智能天线广播波束仿真与权值优化 [J], 汪鹏;张德树;吉洪武
因版权原因,仅展示原文概要,查看原文内容请购买。
MATLAB仿真天线阵代码
天线阵代码一、clcclear allf=3e9;N1=4;N2=8;N3=12;a=pi/2; %馈电相位差i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长d=lambda/2;beta=2、*pi/lambda;W=-2*pi:0、001:2*pi;y1=sin((N1、*W、/2))、/(N1、*(sin(W、/2))); %归一化阵因子y1=abs(y1);r1=max(y1);y2=sin((N2、*W、/2))、/(N2、*(sin(W、/2))); %归一化阵因子y2=abs(y2);r2=max(y2);y3=sin((N3、*W、/2))、/(N3、*(sin(W、/2))); %归一化阵因子y3=abs(y3);r3=max(y3);%归一化阵因子绘图程序,figure(1)subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=4,d=1/2波长,a=π/2')subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=8,d=1/2波长,a=π/2')subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子xlabel('f=3GHz,N=12,d=1/2波长,a=π/2')%---------------------%只有参数N改变的天线方向图t=0:0、01:2*pi;W=a+(beta、*d、*cos(t));z1=(N1/2)、*(W);z2=(1/2)、*(W);W1=sin(z1)、/(N1、*sin(z2)); %非归一化的阵因子K1K1=abs(W1);%----------------------W=a+(beta、*d、*cos(t));z3=(N2/2)、*(W);z4=(1/2)、*(W);W2=sin(z3)、/(N2、*sin(z4)); %非归一化的阵因子K2K2=abs(W2);%-------------------------W=a+(beta、*d、*cos(t));z5=(N3/2)、*(W);z6=(1/2)、*(W);W3=sin(z5)、/(N3、*sin(z6)); %非归一化的阵因子K3K3=abs(W3);%--------------------绘图函数figure(2)subplot(131);polar(t,K1);xlabel('f=3GHz,N=4,d=1/2波长,a=π/2'); subplot(132);polar(t,K2);xlabel('f=3GHz,N=8,d=1/2波长,a=π/2'); subplot(133);polar(t,K3);xlabel('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------%只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A=a1+(beta、*d1、*cos(t));x1=(N4/2)、*(A);x2=(1/2)、*(A);A1=sin(x1)、/(N4、*sin(x2)); %非归一化的阵因子K4K4=abs(A1);%---------------------------B=a2+(beta、*d1、*cos(t));y_1=(N4/2)、*(B);y_2=(1/2)、*(B);B1=sin(y_1)、/(N4、*sin(y_2)); %非归一化的阵因子K5K5=abs(B1);%----------------------------C=a3+(beta、*d1、*cos(t));v1=(N4/2)、*(C);v2=(1/2)、*(C);C1=sin(v1)、/(N4、*sin(v2)); %非归一化的阵因子K6K6=abs(C1);%--------------------------绘图函数figure(3)subplot(131);polar(t,K4);xlabel('f=3GHz,N=10,d=1/4波长,a=0'); subplot(132);polar(t,K5);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2'); subplot(133);polar(t,K6);xlabel('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%----------------------------------------------------------------------%只有阵列单元间隔d改变的天线方向图N5=20;d2=lambda/4;d3=lambda/2;d4=0、7*lambda;a4=pi/2;D=a4+(beta、*d2、*cos(t));p1=(N5/2)、*(D);p2=(1/2)、*(D);D1=sin(p1)、/(N5、*sin(p2)); %非归一化的阵因子K7K7=abs(D1);%------------------------------E=a4+(beta、*d3、*cos(t));q1=(N5/2)、*(E);q2=(1/2)、*(E);E1=sin(q1)、/(N5、*sin(q2)); %非归一化的阵因子K8K8=abs(E1);%-------------------------------F=a4+(beta、*d4、*cos(t));r_1=(N5/2)、*(F);r_2=(1/2)、*(F);F1=sin(r_1)、/(N5、*sin(r_2)); %非归一化的阵因子K9K9=abs(F1);%-----------------------绘图函数figure(4)subplot(131);polar(t,K7);xlabel('f=3GHz,N=20,d=1/4波长,a=π/2'); subplot(132);polar(t,K8);xlabel('f=3GHz,N=20,d=1/2波长,a=π/2'); subplot(133);polar(t,K9);xlabel('f=3GHz,N=20,d=0、7波长,a=π/2');%--------------------------------------------------------------------------%---------------------------------------3D-天线方向图n_tehta = 130; %-------------------- 采样视角点的仰角n_phi = 130; %--------------------采样点的方向角[tehta,phi]=meshgrid(eps:pi、/(n_tehta-1):pi,、、、 %meshgrid函数为矩形区域的设定范围就是epf<tehta<π 0<phi<2π0:2*pi、/(n_phi-1):2*pi) ;t3=tehta;%-------------只有参数N改变的天线方向3D图M=a+(beta、*d、*cos(t3)); %----N1=4;N2=8;N3=12;z_1=(N1/2)、*(M);z_2=(1/2)、*(M);M1=sin(z_1)、/(N1、*sin(z_2)); %非归一化的阵因子K1K_1=abs(M1);radio_1 =K_1;X1=radio_1、*sin(tehta)、*cos(phi);Y1=radio_1、*sin(tehta)、*sin(phi);Z1=radio_1、*cos(tehta);%-----------------------------------M=a+(beta、*d、*cos(t3));z_3=(N2/2)、*(M);z_4=(1/2)、*(M);M2=sin(z_3)、/(N2、*sin(z_4)); %非归一化的阵因子K2K_2=abs(M2);radio_2 =K_2;X2=radio_2、*sin(tehta)、*cos(phi);Y2=radio_2、*sin(tehta)、*sin(phi);Z2=radio_2、*cos(tehta);%-------------------------------------M=a+(beta、*d、*cos(t3));z_5=(N3/2)、*(M);z_6=(1/2)、*(M);M3=sin(z_5)、/(N3、*sin(z_6)); %非归一化的阵因子K3K_3=abs(M3);radio_3 =K_3;X3=radio_3、*sin(tehta)、*cos(phi);Y3=radio_3、*sin(tehta)、*sin(phi);Z3=radio_3、*cos(tehta);%------------------------------------3D绘图函数figure(5)surf(X1,Y1,Z1); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=4,d=1/2波长,a=π/2');figure(6)surf(X2,Y2,Z2);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=8,d=1/2波长,a=π/2');figure(7)surf(X3,Y3,Z3)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=12,d=1/2波长,a=π/2');%----------------------------------------------%--------------------只有阵列单元方向角a改变的天线方向图N4=10;d1=lambda/4;a1=0;a2=pi/2;a3=pi/2+pi/10;A_3d=a1+(beta、*d1、*cos(t3));x_1=(N4/2)、*(A_3d);x_2=(1/2)、*(A_3d);A_1=sin(x_1)、/(N4、*sin(x_2)); %非归一化的阵因子K4K_4=abs(A_1);radio_4 =K_4;X4=radio_4、*sin(tehta)、*cos(phi);Y4=radio_4、*sin(tehta)、*sin(phi);Z4=radio_4、*cos(tehta);%-----------------------------------B_3d=a2+(beta、*d1、*cos(t3));y_1_3d=(N4/2)、*(B_3d);y_2_3d=(1/2)、*(B_3d);B_1=sin(y_1_3d)、/(N4、*sin(y_2_3d)); %非归一化的阵因子K5 K_5=abs(B_1);radio_5 =K_5;X5=radio_5、*sin(tehta)、*cos(phi);Y5=radio_5、*sin(tehta)、*sin(phi);Z5=radio_5、*cos(tehta);%------------------------------------C_3d=a3+(beta、*d1、*cos(t3));v_1=(N4/2)、*(C_3d);v_2=(1/2)、*(C_3d);C_1=sin(v_1)、/(N4、*sin(v_2)); %非归一化的阵因子K6K_6=abs(C_1);radio_6 =K_6;X6=radio_6、*sin(tehta)、*cos(phi);Y6=radio_6、*sin(tehta)、*sin(phi);Z6=radio_6、*cos(tehta);%-----------------------------------figure(8)surf(X4,Y4,Z4); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=0');figure(9)surf(X5,Y5,Z5);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2');figure(10)surf(X6,Y6,Z6)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=10,d=1/4波长,a=π/2+π/10');%---------------------------------------------%-------------------只有阵列单元间隔d改变的天线方向3D图N5=20;d2=lambda/4;d3=lambda/2;d4=0、7*lambda;a4=pi/2;D_3d=a4+(beta、*d2、*cos(t3));p_1=(N5/2)、*(D_3d);p_2=(1/2)、*(D_3d);D_1=sin(p_1)、/(N5、*sin(p_2)); %非归一化的阵因子K7K_7=abs(D_1);radio_7 =K_7;X7=radio_7、*sin(tehta)、*cos(phi);Y7=radio_7、*sin(tehta)、*sin(phi);Z7=radio_7、*cos(tehta);%---------------------------------------E_3d=a4+(beta、*d3、*cos(t3));q_1=(N5/2)、*(E_3d);q_2=(1/2)、*(E_3d);E_1=sin(q_1)、/(N5、*sin(q_2)); %非归一化的阵因子K8K_8=abs(E_1);radio_8 =K_8;X8=radio_8、*sin(tehta)、*cos(phi);Y8=radio_8、*sin(tehta)、*sin(phi);Z8=radio_8、*cos(tehta);%------------------------------------------F_3d=a4+(beta、*d4、*cos(t3));r_1_3d=(N5/2)、*(F_3d);r_2_3d=(1/2)、*(F_3d);F_1=sin(r_1_3d)、/(N5、*sin(r_2_3d)); %非归一化的阵因子K9 K_9=abs(F_1);radio_9 =K_9;X9=radio_9、*sin(tehta)、*cos(phi);Y9=radio_9、*sin(tehta)、*sin(phi);Z9=radio_9、*cos(tehta);%-----------------------------------figure(11)surf(X7,Y7,Z7); %三维绘图函数surf,采用伪彩色表示曲面的高度camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/4波长,a=π/2');figure(12)surf(X8,Y8,Z8);camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=1/2波长,a=π/2');figure(13)surf(X9,Y9,Z9)camlight rightlightcolorbaraxis imagerotate3D ontitle('f=3GHz,N=20,d=0、7波长,a=π/2');二、%-----------------均匀直线阵列天线的应用之一:边射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0、01:2*pi;d1=lambda/4; %没有栅瓣效应的边射阵,即间隔d<波长W1=beta、*d1、*cos(t); %定义kdcos(方向角)z1=(N/2)、*W1;z2=(1/2)、*W1;F1=sin(z1)、/(N、*sin(z2));K1=abs(F1);d2=lambda*1、5; %有栅瓣现象的边射阵,即间隔d>波长W2=beta、*d2、*cos(t); %定义kdcos(方向角)z3=(N/2)、*W2;z4=(1/2)、*W2;F2=sin(z3)、/(N、*sin(z4));K2=abs(F2);figure(1)subplot(121);polar(t,K1);title('边射阵 f=30GHz,N=15,d=1/4波长'); subplot(122);polar(t,K2);title('边射阵(有栅瓣) f=30GHz,N=15,d=1、5倍波长');三、%-----------------均匀直线阵列天线的应用之二:普通端射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0、01:2*pi;d1=lambda/4; %没有栅瓣效应的普通端射阵,即间隔d<1/2波长W1=beta、*d1、*cos(t); %定义kdcos(方向角)z1=((N/2)、*W1)+N/2*beta*d1;z2=((1/2)、*W1)+1/2*beta*d1;F1=sin(z1)、/(N、*sin(z2));K1=abs(F1);d2=lambda*0、7; %有栅瓣现象的普通端射阵,即间隔d>1/2波长W2=beta、*d2、*cos(t); %定义kdcos(方向角)z3=((N/2)、*W2)+N/2*beta*d2;z4=((1/2)、*W2)+1/2*beta*d2;F2=sin(z3)、/(N、*sin(z4));K2=abs(F2);figure(2)subplot(121);polar(t,K1);title('普通端射阵 f=30GHz,N=15,d=1/4波长'); subplot(122);polar(t,K2);title('普通端射阵(有栅瓣) f=30GHz,N=15,d=0、7倍波长');四%-----------------均匀直线阵列天线的应用之三:强方向性端射阵clcclear allf=3e10; %30GHz,厘米波i=1; %天线电流值lambda=(3e8)/f; %lambda=c/f 波长beta=2、*pi/lambda;N=15;t=0:0、01:2*pi;d1=lambda/4; %没有栅瓣效应的强方向性端射阵,即间隔d<(1/2波长)*(1-1/N)W1=beta、*d1、*cos(t); %定义kdcos(方向角)z1=((N/2)、*W1)+N/2*(beta*d1+pi/N);z2=((1/2)、*W1)+1/2*(beta*d1+pi/N);F1=sin(pi/2/N)、*sin(z1)、/(sin(z2));K1=abs(F1);d2=lambda*0、5; %有栅瓣现象的强方向性端射阵,即间隔d>1/2波长*(1-1/N) W2=beta、*d2、*cos(t); %定义kdcos(方向角)z3=((N/2)、*W2)+N/2*(beta*d2+pi/N);z4=((1/2)、*W2)+1/2*(beta*d2+pi/N);F2=sin(pi/2/N)、*sin(z3)、/(sin(z4));K2=abs(F2);figure(3)subplot(121);polar(t,K1);title('强方向性端射阵 f=30GHz,N=15,d=1/4波长');subplot(122);polar(t,K2);title('强方向性端射阵(有栅瓣)f=30GHz,N=15,d=0、5倍波长');。
14元阵列天线方向图及其MATLAB仿真
阵列天线方向图及其MATLAB 仿真1设计目的1.了解阵列天线的波束形成原理写出方向图函数2.运用MATLAB 仿真阵列天线的方向图曲线3.变换各参量观察曲线变化并分析参量间的关系2设计原理阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
在本次设计中,讨论的是均匀直线阵天线。
均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。
均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。
二元阵辐射场:式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场:令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数:式中:ζφθψ+=cos sin kd均匀直线阵最大值发生在0=ψ 处。
由此可以得出])[,(212121ζθθθϕθj jkr jkr m e r e r e F E E E E --+=+=12cos ),(21jkrm e F r E E -=ψϕθθζφθψ+=cos sin kd ∑-=+-=1)cos sin (),(N i kd ji jkrme erF E E ζϕθθϕθ2πθ=)2/sin()2/sin(1)(ψψψN N A =kdm ζϕ-=cos这里有两种情况最为重要。
1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。
2.端射振,计最大辐射方向在阵轴方向上,此时0=mϕ或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。
3设计过程本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。
基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。
阵列的方向图
阵列的方向图阵列输出的绝对值与来波方向图之间的关系称为天线的方向图。
方向图一般有两类:一类是阵列输出的直接相加(不考虑信号及其来向),即静态方向图;另一类是带指向的方向图(考虑信号指向),信号指向是通过控制加权的相位来实现的。
由信号模型可知,对于某一确定的m 元空间阵列,在忽略噪声的条件下,第l 个阵元的振幅为:l j l e g x ωτ-=0 (1)式中0g 为来波的复振幅l τ为第l 个阵元与参考点之间的延迟。
设第l 个阵元的权值为l w ,那么所有阵元加权的输出相加得到阵列输出为:∑=-=ml j l l e g w Y 100ωτ (2)对上式取绝对值并归一化后可得到空间阵列的方向图)(θG :}max{)(00Y Y G =θ (3)如果式中1=l w ,式(3)即是静态方向图。
1. 均匀线列阵假设均匀线阵间距为d ,以左边的阵元为参考点,另假设入射方位角为θ,图1 均匀线列阵其中方位角表示与阵列法线方向的夹角,则有:d l cx c k l )1(1sin 1-==θτ (4)式(3)可以化简为:∑=--=ml l j l e g w Y 1)1(00β (5)式中λθπβ/sin 2=,当1=l w 时又可以进一步化简为:)2/sin()2/sin(2/)(00βββm m e mg Y l m j -= (6)可得均匀线阵静态方向图图:)2/sin()2/sin()(0ββθm m G =(7)当d l j l e w β)1(-=,λθπβdd d sin 2=的式(6)可以简化为:)2/)sin(()2/)(sin(2/)(00d d l m j m m e mg Y βββββ--=- (8)于是可得指向为d θ的阵列指向图:)2/)sin(()2/)(sin()(0d d m m G ββββθ--=(9)MATLAB 仿真图方位角/度G (θ)/d B2700阵元M=8,thetad=0,均匀线阵方向图图2 指向0°时,均匀线列阵的方向图方位角/度G (θ)/d B2700阵元M=8,thetad=30,均匀线阵方向图图3 指向30°时,均匀线列阵的方向图2. 均匀平面阵假设有一个n m ⨯的均匀面阵,其几何关系如图(3),以阵列左上角的阵元为参考点,x 轴上有n 个间距为d 的阵元,y 轴上有m 个间距为d 的阵元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阵列天线方向图及其MATLAB 仿真
1设计目的
1.了解阵列天线的波束形成原理写出方向图函数
2.运用MATLAB 仿真阵列天线的方向图曲线
3.变换各参量观察曲线变化并分析参量间的关系
2设计原理
阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。
阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
在本次设计中,讨论的是均匀直线阵天线。
均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。
均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。
二元阵辐射场:
式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场:
令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数:
式中:ζφθψ+=cos sin kd
均匀直线阵最大值发生在0=ψ 处。
由此可以得出
])[,(212121ζθθθϕθj jkr jkr m e r e r e F E E E E --+=+=12
cos ),(21jkr m e F r E E -=ψϕθθζ
φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζϕθθϕθ2
πθ=)2/sin()
2/sin(1)(ψψψN N A =kd
m ζ
ϕ-=cos
这里有两种情况最为重要。
1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴
的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。
2.端射振,计最大辐射方向在阵轴方向上,此时0=m ϕ或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。
3设计过程
本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。
基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。
14元端射振天线H 面方向图的源程序为:
a=linspace(0,2*pi);
b=linspace(0,pi);
f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14);
polar(a,f.*sin(b));
title('14元端射振的H 面方向图 ,d=/2,相位=滞后');
得到的仿真结果如图所示:
14元端射振天线三维方向图的源程序为:
y1=(f.*sin(a))'*cos(b);
z1=(f.*sin(a))'*sin(b);
x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1);
2
πϕ±=m
axis equal
title('14元端设式三维图');
得到的仿真结果如图:
14元阵列天线的方向图随相位的衰减的代码为:clear;
sita=-pi/2:0.01:pi/2;
lamda=0.03;
d=lamda/2;
n1=14;
beta=2*pi*d*sin(sita)/lamda;
z11=(n1/2)*beta;
z21=(1/2)*beta;
f1=sin(z11)./(n1*sin(z21));
F1=abs(f1);
figure(1);
plot(sita,F1,'b');
hold on;
grid on;
xlabel('theta/radian');
ylabel('amplitude');
title('方向图的衰减');
得到的方向图和相位之间的关系图如图所示:
当天线各个阵元之间的间隔d=0.001m时,波长和方向图之间有一定的关系,其中程序代码如下:
clear;
sita=-pi/2:0.01:pi/2;
n=14;
d=0.001;
lamda1=0.002;
beta=2*pi*d*sin(sita)/lamda1;
z11=(n/2)*beta;
z21=(1/2)*beta;
f1=sin(z11)./(n*sin(z21));
F1=abs(f1);
figure(1);
lamda2=0.005;
beta=2*pi*d*sin(sita)/lamda2;
z12=(n/2)*beta;
z22=(1/2)*beta;
f2=sin(z12)./(n*sin(z22));
F2=abs(f2);
lamda3=0.01;
beta=2*pi*d*sin(sita)/lamda3;
z13=(n/2)*beta;
z23=(1/2)*beta;
f3=sin(z13)./(n*sin(z23));
F3=abs(f3)
plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');
grid on;
xlabel('theta/radian');
ylabel('amplitude');
title('方向图与波长的关系');
legend('lamda=0.002','lamda=0.005','lamda=0.01');
得到的方向图和波长的关系如图所示;
从图中可以得到:随着波长lamda的增大,方向图衰减越慢,收敛性越不是很好。