随机过程课件-c5
107518-概率统计随机过程课件-第五章(第三,四节 )
第三节 常用随机变量的数学期望和方差数学期望和方差的定义及计算公式 (一)离散型随机变量的数学期望和方差}{iiix X P x EX ==∑,}{)()]([iiix X P x g X g E ==∑,}{)(2iiix X P EX x DX =-=∑,222)()(EX EX EX X E DX -=-=,},{),()],([jiijjiy Y x X P y x g Y X g E ===∑∑,(二) 连续型随机变量的数学期望和方差⎰+∞∞-=dx x xf EX )(,⎰+∞∞-=dx x f x g X g E )()()]([,⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([, ⎰+∞∞-=dx x xf EX X)(⎰⎰+∞∞-+∞∞-=dxdy y x xf ),(, ⎰+∞∞-=dy y yf EY Y)(⎰⎰+∞∞-+∞∞-=dxdy y x yf ),(222)()(EX EX EX X E DX -=-=,⎰+∞∞--=dx x f EX x DX )()(2,nnnR ndxdx dx x x x f x x x g X X X g E n⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⎰21212121),,,(),,,()],,,([ .(三) 数学期望和方差的性质 b EX k b X k E ini iini i+=+∑∑==11)(,若X 与Y 相互独立,则EY EX XY E ⋅=)(,DY b DX a c bY aX D 22)(+=++,若nX X X ,,,21⋅⋅⋅相互独立,则nnEX EX EX X X X E ⋅⋅⋅⋅=⋅⋅⋅2121)(,ini iin i iDX k b X k D ∑∑===+121)( ,例1 设X 服从(0—1)分布:求EX ,DX .解 p p p EX =-⨯+⨯=)1(01,p p p EX =-⨯+⨯=)1(01222, )1()(222p p p p EX EX DX -=-=-=.例2 设X 服从二项分布),(p n B , 即 kn kknp p C k X P --==)1(}{ ,n k ,,1,0⋅⋅⋅= 求EX ,DX .解 (由于直接比较繁杂,采用分解的方法)若nX X X ,,,21⋅⋅⋅相互独立, 同服从(0—1)分布,p X P p X P ii-====1}0{,}1{, n i ,,1⋅⋅⋅=,则 ),(~1p n B X X ni i∑==,p EX i=, )1(p p DX i -=.np p X E X E EX ni in i n i i====∑∑∑===111)(,∑∑====ni in i i DX X D DX 11)()1()1(1p np p p ni -=-=∑= .例 3 设X 服从泊分布)(λ∏,即!}{k e k X P kλλ-== ,⋅⋅⋅=,2,1,0k求EX ,DX .解 ∑∑∞+=∞+=----=⋅=011)!1(!k k k kk ek e k EX λλλλλλλλλ=⋅=-e e ,∑∑∞+=∞+=---=⋅=0122)!1(!k k kkk ke k e k EX λλλλ∑+∞=--+-=1)!1(]1)1[(k kk k e λλ222)!2(λλλ∑∞+=---=k k k e λλλ∑∞+=---+11)!1(k k k eλλλλλλλλ+=⋅+⋅=--22e e e e , 于是λλλλ=-+=-=2222)()(EX EX DX 。
通信原理-随机过程课件
遍历性的数学描述
对于一个随机过程,如果存在一个常 数$c$,使得对于任意的时间$t$,有 $E[X(t)]=c$,则称该随机过程具有遍 历性。其中$X(t)$表示在时刻$t$的随 机变量的取值。
标量乘法
标量乘法满足结合律和分 配律,即对于任意标量a 和任意随机过程X,有 a(X+Y)=aX+aY。
线性变换的应用
信号处理
在通信系统中,信号经常 需要进行线性变换以实现 调制、解调、滤波等操作 。
控制系统
在控制系统中,线性变换 被广泛应用于系统的分析 和设计,如传递函数、状 态方程等。
图像处理
在图像处理中,线性变换 被广泛应用于图像的增强 、滤波、变换等操作。
04
CATALOGUE
随机过程的平稳性
平稳性的定义
平稳性定义
一个随机过程如果对于任何正整数n,以及任何非负整数k,其n维联合分布函 数与n+k维联合分布函数相同,则称该随机过程是严平稳的。
数学表达式
若对于任意的正整数n和任意的非负整数k,都有P(X_1, X_2, ..., X_n) = P(X_1+k, X_2+k, ..., X_n+k),则称随机过程{X_t}是严平稳的。
06
CATALOGUE
随机过程的功率谱密度
功率谱密度的定义
功率谱密度
表示随机信号的功率随频率的分布, 是描述随机信号频域特性的重要参数 。
定义方式
功率谱密度函数通常由傅里叶变换来 定义,将随机信号的时域表示转换为 频域表示。
随机过程及其统计描述ppt课件.ppt
任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ
随机过程课件
1
m X (t1 )][ x2 m X (t 2 )] f ( x1 x2 ; t1 , t 2 )dx1dx 2 f ( x1, x2 ; t1 , t 2 )dx1dx 2
x x
1 2
X(t) 协方差与相关函数的关系为 当 mx (t ) 0 时 C X (t 1 , t 2 ) R X (t 1 , t 2 ) 在协方差定义中取t1=t2=t,就有
为XT 的均值函数或数学期望。其中F(x,t)是过程 的一维分布函数。 若是连续型随机变量,有 mX (t) xf(x,t)dx 其中f(x,t)是一维分布密度。 12
2.随机过程的方差 若 DX (t) 2 (t) E[X(t) mX (t)]2 存在,t∈T, X 称为X(t)的方差。 x (t) Dx (t) 称为X(t)的标准差。 它们描绘过程的样本曲线在各个t时刻对均 值 m X ( t ) 的离散程度, 对每个t1∈T, EX (t1 ) 反映t1状态取值的概率平均。 DX (t1 ) 反映t1状态取值与 EX (t1 ) 离散程度。 在工程中随机过程的均方值具有物理意义,比 较有用。均方值定义为: E[ X 2 (t )] X (t ) DX (t ) E( X 2 (t )) E 2 ( X (t )) 有关系式: 13 Dx (t ) x (t ) [mx (t )]2 即
第一章. 随机过程的基本概念
§1.1 随机过程及其概率分布
在实际问题中,有时需要对随机现象的变化进 行研究,这时就必须考虑无穷个随机变量或一族 随机变量, 我们就称这种随机变量族为随机过程。 例1: 生物群体的增长问题。在描述群体的发展 或演变过程中, 以 Xt 表示在时刻 t 群体的个数, 则 对每一个 t ,Xt 是随机变量。假设我们从 t =0 开 始每隔24小时对群体的个数观测一次, 则{Xt , t =0, 1, 2, ...}是一个随机过程。 例2: 电话呼唤问题。某电话总机在[0,t]时间 内收到的呼唤次数用 Xt 来表示, 则对于固定的 t , 1 Xt 是随机变量。于是{Xt , t ∈[0, ∞)}是随机过程。
随机过程的基本概念ppt课件
.
2.3 平稳随机过程
三、相关系数及相关时间
也称为归一化协方差函 数或标准协方差函数。
相关系数: rX()KXX 2 ()RX()X 2mX 2
相关时间:
0
0 rX()d
rX ( )
1
rX(0) 0.05
0
0
相关时间示意图
.
2.3 平稳随机过程
三、相关系数及相关时间
为随机过程X(t)的二维概率分布。定义
fX(x1,x2,t1,t2)2FX(xx11,xx22,t1,t2)
为随机过程X(t)的二维概率密度。 注意:X(t1)及X(t2)为同一随机过程上的随机变量。
.
2.2 随机过程的统计描述
2、二维概率分布
例2、设随机相位信号
X (n )co s( n/1 0 )
.
2.2 随机过程的统计描述
二、随机过程的数字特征(连续)
• 协方差函数
K X ( t 1 , t 2 ) E { [ X ( t 1 ) m X ( t 1 ) ] [ X ( t 2 ) m X ( t 2 ) ] } (1)如果 KX(t1,t2)0,则称 X (t1 )和 X (t2 )是不相关的。
.
2.3 平稳随机过程
一、定义
(1)严格平稳随机过程
f X ( x 1 , ,x n ,t 1 , ,t n ) f X ( x 1 , ,x n ,t 1 , ,t n )
一维概率密度: fX(x,t)fX(x)
二维概率密度: fX (x 1 ,x 2 ,t1 ,t2 ) fX (x 1 ,x 2 ,) t1 t2
接收机噪声
5
x1(t) 0
随机过程课件PPT资料(正式版)
☞随机事件:样本空间的子集,常记为 A ,B ,…它是满足某些条件的样本点所组成的集合.
排队和服务系统 ◙A∩勤B 奋⇔、A刻B :苦A、与合➢B作的、积探事索件;; 更新过程 为从事科学研究打下坚实的基础;
☞抽取的是精装中➢文版数学书 ⇒
➢ 时间序列分析
➢ 鞅过程
绪论
《随机过程》基础
概率(或然率或几率) ——随机事件出现的可能 性的量度;
概率论其起源与博弈、 、天气预报等问题有 关
⊕16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;
⊕17世纪中叶,「现有两个赌徒相约赌若干 局,谁先赢S局就算赢了,当赌徒A赢K局(K<S), 而赌徒B赢L局(L<S)时,赌博中止,赌资应怎 样分才合理呢?」
随机过程课件
《随机过程》
➢ 教材: ◙ 张卓奎,陈慧婵,随机过程.西安电子科技大 学.2003.
➢ 主要参考文献: ◙ 胡奇英编著,随机过程.西安电子科技大学.1998. ◙ 周荫清 ,随机过程习题集. 清华大学出版社, 2004. ◙ 林元纟金烈 ,应用随机过程. 清华大学出版社, 2002.
……
➢ 随机过程理论在社会科学中例如在社会统计, 学、经 济、金融工程、管理中也得到极其广泛的应用。
➢ 为从事科学研究打下坚实的基础;
绪论
教学目标
➢ 充分理解、熟练掌握教材的内容 ◙ 熟练掌握基本的数学概念和定理;
◙ 熟练掌握随机过程研究对象的数学描述;
Hale Waihona Puke ➢ 通过学习和练习,具备一定的分析、解决本专业具体 问题的能力;
☞拉普拉斯曾说:“生活中最重要的问题,其中 绝大多数在实质上只是概率的问题”。
☞概率论是研究随机现象数量规律的数学分支。 在实际中,人们往往还需要研究在时间推进中某 一特定随机现象的演变情况,描述这种演变的就 是概率论中的随机过程。
随机过程课件.ppt
随机过程的统计描述 二 有限维分布族
两种描述
分布函数 特征数
设随机过程X (t),t T,对每一固定的t T ,随机变量X (t)的分布函数与t有关, 记为FX (x,t) PX (t) x,x R,称它为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
为了描述随机过程在不同时刻状态之间的统计联系, 一般地,对任意n(n 2,3,L )个不同的时刻,t1,t2,L tn T
研究生课程
随机过程
汪荣鑫编 主讲教师:田ቤተ መጻሕፍቲ ባይዱ俊
2013年9月
第一章 随机过程基本概念
第1节 随机过程及其概率分布
1)随机过程概念 随机过程被认为是概率论的“动力学”部分,即
它的研究对象是随时间演变的随机现象,它是从 多维随机变量向一族(无限多个)随机变量的推广。
自然界中事物的变化过程可以大致分成为两类: 确定性过程:事物变化的过程可用时间的确定函数表示;
4
x1 (t )
3
2
1
t1' t1 t2 t2' t3 t3' t4' t4
t
4
例5:考虑抛掷一颗骰子的试验:
(1) 设X n是第n次(n 1)抛掷的点数,对于n 1, 2,L 的不同值,
X n是随机变量,服从相同的分布,P( X n
i)
1 6
,i
1, 2,3, 4,5, 6
因而X n , n 1构成一随机过程,称为伯努利过程或伯努利随机序列,
它的状态空间为1,2,3,4,5,6。
(2) 设Yn是前n次抛掷中出现的最大点数,Yn , n 1也是
一随机过程,它的状态空间仍是1, 2,3, 4,5, 6。
随机过程的基本概念以统计特性.ppt
《随机信号分析》教学组
8
3 、随机过程的定义
定义1:设随机试验E的样本空间为S={ξ},对其每一个元素 i (i 1,2都,3以)某种法则确定一个样本函数 ,X由(t,全i )部元素{ξ}
样本函数集合
X (t, ) = X (t,i ), i 1, 2,
为了简便起见,随机过程常省略代表试验结果的参
量ξ。随机过程常用大写字母 X (表t)示,Y,(t样) 本函数常
用小写字母
x (表t),示x,(tk)表, 示, 第x (kt个) 样本函数。
1
2
k
随机过程 =
样本变量集合
X (t, )
由随机过程的定义可知,在确定t值上,随机过程变为随 机变量,仪器记录的结果是n维随机变量X(t1),X(t2),…,X(tn), 如果说记录时间间隔△t= ti-ti-1相当小(n足够大)时,多维随 机变量 X(t1), X(t2) ,…, X(tn) 可以足够完整表示出随机过程 X(t)。
《随机信号分析》教学组
4
一 定义
1.接收机噪声电压观测方式:对相同接收机同时观测
从试验可知,每次得到的结果不同,且变化的规律 不能用一个确定的函数来描述
5
0
-5
0
50
100
150
200
5
0
-5
0
50
100
150
200
5
0
-5
0
50
100
150
200
《数学随机过程》PPT课件
几何直观意义
3.3 随机分析初步
附注C—关于赋范线性空间概念的回顾
设V是一个线性空间,若 V,存在一个实数|| ||与
之对应,且具有下列性质:
(1) || ||0 , 且|| ||=0 =0 ; (2) ||c· ||= |c|·|| || , 特别 ||- ||= || ||; c R (3) || + || || ||+ || ||; V 则称|| || 为V中元素 的范数(norm)(模、长度),此时线
CXX (t1, t2 ) cov{ X (t1), X (t2 )} E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} | CXX (t1, t2 ) |2 | cov{ X (t1), X (t2 )} |2 | E{[ X (t1) mX (t1)][ X (t2 ) mX (t2 )]} |2 {E | [ X (t1) mX (t1)][ X (t2 ) mX (t2 )] |}2 E | X (t1) mX (t1) |2 E | X (t2 ) mX (t2 ) |2 D[ X (t1)]D[ X (t2 )]
3.3 随机分析初步
附注A—关于线性空间概念的回顾
设V是一个非空的集合,K是一个数域,又设
(a)在V中定义加法: , V : + V ; (b)在V中定义数乘: V, k K: k · V ; 且 , , V , k,l K , 满足 (1) k ,l K, , V : (2) +( +)= ( + )+ ; (3) + = + ; (4)0V, V: +0= ; (5) V, V: +=0 (6) 1 K: 1· = ; (7) k ,l K, V: (kl)· =k·(l) ; (8)k ,l K, V: (k+l) = k +l ; (9) k K, , V : k( + )= k + k .
随机过程 北京理工课件
π
2 2
2
3 2 2
P
π F (x; ) = 4
1 3
0, 1 , 3 2 , 3 1,
1 3
x < 2 2
1 3
∴
2 ≤ x < 2 2 ≤ x < x ≥ 3 2 2 3
2 2 2
X(
π
2
) = A cos π
∴
0, π F ( x, ) = 2 1,
4
随机过程 的有限维分布族
对任意固定的t∈ , 是一维随机变量, 对任意固定的 ∈T,X(t)是一维随机变量 其分 是一维随机变量 布函数是P{X(t)≤x}, 记为 记为F(x; t), 即 布函数是 F(x; t)= P{X(t)≤x}, 为随机过程X(t)的一维分布函数。 的一维分布函数。 称F(x; t)为随机过程 为随机过程 的一维分布函数 如对任意两个固定t 是二个随 如对任意两个固定 1 , t2∈T , X(t1) , X(t2)是二个随 机变量, 机变量,称 F(x1, x2 ; t1, t2) = P{X(t1)≤x1, X(t2) ≤x2} 为随机过程X(t) 的二维分布函数; 的二维分布函数; 为随机过程 一般地,对任意固定的t 一般地,对任意固定的 1, t2, … , tn∈T。X(t1), 。 个随机变量, X(t2) , … , X(tn)是n个随机变量,称 是 个随机变量 F(x1, …, xn ; t1, …, tn) = P{X(t1)≤x1, …, X(tn)≤xn} 5 为随机过程X(t) 的n 维分布函数 维分布函数. 为随机过程
= 0 取值仅一个0,且知 P ( X ( ) = 0) = 1 取值仅一个0 2 2
《随机过程》课件
马尔可夫过程的定义与性质
马尔可夫过程是一种重要的随机过程,具有马尔可夫性质,即未来状态只与当前状态有关。本部分将详 细介绍马尔可夫过程的定义和特性。
马尔可夫过程的应用
马尔可夫过程在很多领域都有广泛的应用,如金融风险评估、自然语言处理和社交网络分析等。我们将 义与性质
《随机过程》PPT课件
随机过程是一个重要的数学概念,本课件将深入介绍随机过程的定义、分类 以及常见例子,帮助您全面理解随机过程的本质。
随机过程的定义与随机变量的区别
了解随机过程和随机变量的不同之处对于理解随机过程的基本概念至关重要,本部分将详细讨论它们的 区别及其意义。
随机过程的分类及常见例子
随机过程可以根据其性质和特征进行分类,例如马尔可夫过程、泊松过程、布朗运动等。我们将介绍每 种类型的定义和常见应用。
布朗运动在金融和物理领域的 应用
布朗运动在金融领域和物理领域有着广泛的应用,如金融市场模型和粒子扩 散模型。我们将介绍一些相关的应用场景。
随机过程在数据分析中的应用
频率分析
利用随机过程的特性进行频率域信号分析, 如功率谱估计和频谱分析。
信号处理
利用随机过程的随机性和噪声模型进行信号 处理和滤波。
泊松过程是一种重要的随机过程,具有独立增量和平稳增量的特性。本部分 将详细介绍泊松过程的定义以及其它一些重要的性质。
泊松过程的应用
泊松过程在很多实际问题中具有重要的应用,如事件发生的模拟、人流和交通流量的预测等。我们将分 享一些实际案例。
布朗运动的定义与性质
布朗运动是一种连续时间的随机过程,具有随机漂移和随机扩散的特性。本部分将详细探讨布朗运动的 定义和一些重要的性质。
时域分析
通过对随机过程的统计特性进行分析,如均 值、方差和自相关函数。
《随机过程》课件
泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。
随机过程课件
3.2 随机过程的数字特征
为Ft x ,密度函数为t x , f 则
t T,随机过程 X t , t T 的一维分布函数
2 Xt
二、方差函数
Var X t E X t EX t
称为随机过程X t , t T 的方差函数 .
若E X t x dFt x , 则称随机
5
1 e 2
2 t
1 e 2
2 t
e
2 t
P X P X P X P X
3.3 离散事件和离散型随机过程
P X t1 X t 2 1
t1
t1
t1 t1
1, X 1 P X 1, X 1 1, X 1 P X 1, X 1 1P X 1 P X 1P X 1
3.3 离散事件和离散型随机过程
E X i p 1 p 2 p 1
E X i p 1 p 1
2
Var X i E X i EX i 1 2 p 1
2 2
2
E Yn E
n2 p 1
Ft1 ,,tn x1 ,, xn P X t1 x1 ,, X t n xn
称为随机过程X t , t T n维分布函数 的 .
4 Ft1 ,,tn x1 , , xn : n 1, t1 , , t n T
0
称为X t , t T 的有穷维分布函数族.
3.3 离散事件和离散型随机过程
Y Y P X t 1 P t 1 t 3
随机过程课件
解得实值连续函数
x( t ) = x0e , t ≥ 0.
2)随机性方法 设时刻t 细菌数为随机变量X(t),设(t, t+Δt)内 增加的细菌数与Δt 有关而与t无关, 在X(t)=x条件下,X(t+Δt)变为x+1个的概率为
λt
P{X ( t + ∆t ) = x + 1 X ( t ) = x} = λx∆t + o(∆t )
X(t) p
2cost 2/3
-2cost 1/3
特别
X(0) 2
p 2/3
1
-2 1/3
X(
π
4 p
)
2
− 2
2/3
1/3
2) 分析
2
x(t,ω1)=2cost
-1
− 2
x(t,ω2)=-2cost
有
(X(0),X(π/4)) ( −2,− 2 ) ( 2, 2 )
p
1/3
2/3
服从二维两点分布 问题: 随机变量X(0)和X(π/4)是否相互独立?
称F为XT 的有限维分布函数族.
XT的任意有 限维分布函 数的全体构 成的集合
定义3 过程{ X ( t ), t ∈ T } 的n 维特征函数定义为
φ (t1 , t 2 ,L , t n ; θ1 ,θ 2 ,L ,θ n )
= E {e
i [θ 1 X ( t 1 ) + L+θ n X ( t n )]
Tt1 ,L , Tt n 相互独立.
3) 独立增量过程
, 对任一正整数n及任意 t i ∈ T , t1 < t 2 < L < t n 随 机变量
《概率论与数理统计》课件-随机过程
06
随机过程的未来发展与挑战
随机过程理论的发展趋势
随机过程与大数据的结合
随着大数据技术的快速发展,如何将随机过程与大数据分 析相结合,挖掘出更多有价值的信息和模式,是未来的一 个重要研究方向。
复杂系统中的随机过程
研究复杂系统中的随机过程,如金融市场、生态系统、社 交网络等,以揭示其内在的运行规律和动态特性。
02
随机过程的基本ቤተ መጻሕፍቲ ባይዱ型
独立增量过程
总结词
描述随机过程中事件发生次数随时间变化的过程,其中每次事件的发生都是独立 的。
详细描述
独立增量过程是指随机过程中事件发生次数在不相重叠的时间区间内相互独立, 即每次事件的发生与其他时间点的事件无关。这种过程在保险、金融等领域有广 泛应用。
马尔科夫过程
总结词
描述一个随机系统在给定当前状态的情况下,未来状态只依 赖于当前状态的过程。
详细描述
马尔科夫过程是一种特殊的随机过程,其中下一个状态只与 当前状态有关,而与过去状态无关。这种过程在自然现象、 社会现象和工程领域中都有广泛的应用,如天气预报、股票 价格波动等。
泊松过程
总结词
描述随机事件在单位时间内按照恒定速率独立发生的随机过程。
该方法通过大量随机抽样,得到概率分布的近似结果,具有简单、灵活和通用性强 的特点。
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,适用于 描述离散状态变化的过程。
该方法通过跟踪系统中的事件 发生和状态变化,来模拟系统 的动态行为。
离散事件模拟方法在交通运输 、生产制造、通信网络等领域 有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎧1 , i = j lim pij (t ) = ⎨ t →0 ⎩0 , i ≠ j
5 连续时间的马尔可夫链
12
转移速率
5 连续时间的马尔可夫链
13
Q矩阵
若连续时间齐次马尔可夫链具有有限状态空间I={0,1,2,…,n}
λ
λ
26
求其平稳分布。
pij(t)极限存在且与i无关,存在平稳分布
5 连续时间的马尔可夫链
27
或者
此Markov链是不可约的
5 连续时间的马尔可夫链
28
5 连续时间的马尔可夫链
29
5.3 生灭过程
5 连续时间的马尔可夫链
30
Q矩阵
I = {0,1,2,3,...}
⎛ − λ0 ⎜ ⎜ μ1 ⎜ Q=⎜ ⎜ ⎜ ⎜ ⎜ ⎝
⎛ − q00 ⎜ ⎜ q10 Q =⎜ ⎜ ⎜ q ⎝ n0 q01 − q11 qn1 q0 n ⎞ ⎟ q1n ⎟ ⎟ ⎟ − qnn ⎟ ⎠
Q= P′ (0)
利用Q可以推出任意时间间隔的转移概率所满足的方程组,从 而求解转移概率。
5 连续时间的马尔可夫链
14
微分方程
P′(t)=QP(t) 定理5.5 (科尔莫戈罗夫向前方程) 在适当的正则条件下有
5 连续时间的马尔可夫链
22
渐近性质
5 连续时间的马尔可夫链
23
5 连续时间的马尔可夫链
24
回顾
转移概率: pij(s,t)= P{X(s+t)=j|X(s)=i} P(s+t)=P(s)P(t) 转移速率 Q= P′ (0) 科尔莫戈罗夫微分方程 向后方程:P′(t)=QP(t) 向前方程:P′(t)=P(t)Q
⎧1 , i = j 初始条件: pij (0) = ⎨0 , i ≠ j ⎩
⎛ dpij (t ) ⎞ ′ P′(t ) = ( pij (t ) ) = ⎜ ⎟ ⎝ dt ⎠
若Q是一个有限矩阵,则有
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
⎛ p00 (t ) ⎜ ⎜ p10 (t ) P= ⎜ p20 (t ) ⎜ ⎜ ⎝
例
5 连续时间的马尔可夫链
33
应用:排队系统
5 连续时间的马尔可夫链
34
本章小结
有关连续时间Markov链的 定义和转移概率 转移速率矩阵Q 科尔莫戈罗夫微分方程 渐近性质 生灭过程
5 连续时间的马尔可夫链
35
练习题
P113 2,4,6
5 连续时间的马尔可夫链
36
结束 !
5 连续时间的马尔可夫链
5 连续时间的马尔可夫链
10
应用
连续时间Markov链的构造
(1)状态i的停留时间τi~E(vi)
1 U i ∼ U (0,1) τ i = − InU i vi
τ i ∼ E ( vi )
(2)过程离开状态i时,以概率Pij进入状态j
∑
j∈I
pij = 1
5 连续时间的马尔可夫链
11
5.2 科尔莫戈罗夫微分方程
∞ ∞ 1 [−(λ + μ )t ]n Q 1 ⎡ e − ( λ + μ )t − 1⎤ Q =I+ =I− ∑ ⎦ −(λ + μ ) n =1 λ+μ ⎣ n!
解法2:
∞
⎛ −λ Q=⎜ ⎝ μ
λ ⎞ ⎟ −μ ⎠
Q n = [−(λ + μ )]n −1 Q
λ ⎛ μ e −( λ + μ ) t + ⎜ λ+μ λ+μ =⎜ μ ⎜ μ e −( λ + μ ) t − ⎜λ +μ λ +μ ⎝
向前方程: P′(t)=P(t)Q, P(+0)=I
⎛ −λ Q=⎜ ⎝ μ
λ ⎞ ⎟ −μ ⎠
5 连续时间的马尔可夫链
17
解法1:
5 连续时间的马尔可夫链
18
(Qt ) n P (t ) = eQt = ∑ n! n =0
[−(λ + μ ) n −1 ]Qt n P (t ) = I + ∑ n! n =1
j j
5 连续时间的马尔可夫链
6
定理5.2
Hale Waihona Puke 有限维概率分布5 连续时间的马尔可夫链
7
5.1.4 停留时间的概率
记τi为过程在状态转移之前停留在状态i的时 间,则对s,t≥0有 (1) P{τ i > s + t | τ i > s} = P{τ i > t} (2) τi 服从参数为vi指数分布: Fτ(x)=1-e-vx (3) 当过程离开状态i时,接着以概率pij进入状态j
i 0
i s
t
i s+t
i j
τi
注:在状态i过程停留的时间与下一个到达的状态 必须是相互独立的随机变量。
5 连续时间的马尔可夫链
8
证明
P{τ i > s + t | τ i > s} = P{τ i > t}
i
i
t
i s+t
i
s 0 {τ i > s} ⇔ { X (u ) = i, 0 < u ≤ s | X (0) = i} {τ i > s + t} ⇔ { X (u) = i ,0 < u ≤ s,
37
5 连续时间的马尔可夫链
38
遗传算法
5 连续时间的马尔可夫链
39
遗传算法的Markov描述
状态转移矩阵 • • •
P=CMS
某状态经过交叉后转移到另一种状态,Σcij=1 ,C是随机矩阵 状态以一个严格正的概率经变异转移到另一状态,mij>0 选择S每一列中至少存在一个正数,S是随机列容 SGA是遍历马尔可夫链,存在与初值无关的极限分布
5 连续时间的马尔可夫链
5
5.1.3 初始概率和绝对概率
定义:
(1)初始概率 p j = p j (0) = P{ X (0) = j}, j ∈ I (2)绝对概率 p j (t ) = P{ X (t ) = j}, j ∈ I , t ≥ 0 (3)初始分布 (4)绝对分布
{p , j ∈ I } {p (t ) , j ∈ I }, t ≥ 0
解:
⎛ −λ λ ⎞ Q=⎜ μ −μ ⎟ ⎝ ⎠ 向前方程: P′(t)=P(t)Q, P(+0)=I
λ − ( λ + μ )t ⎛ μ ⎜λ+μ +λ+μ e P(t ) = ⎜ μ − (λ + μ )t ⎜ μ ⎜λ+μ −λ+μ e ⎝
5 连续时间的马尔可夫链
⎞ e− ( λ + μ )t ⎟ λ+μ λ+μ ⎟ λ μ − (λ + μ )t ⎟ e + ⎟ λ+μ λ+μ ⎠ −
例:某时刻电话呼叫次数X(t) 可维修系统在某时刻系统所处的状态X(t)
5 连续时间的马尔可夫链
2
n维分布函数
马尔可夫过程的任意有限维分布函数均可用它的初 始分布和二维条件分布函数来确定。
5 连续时间的马尔可夫链
3
5.1.2 转移概率
转移概率:在s时刻处于状态i,经过时间t后转移到状态j的概率 pij(s,t)= P{X(s+t)=j|X(s)=i} 齐次转移概率:pij(s,t)=pij(t) (转移概率与起始时刻s无关,只与时间间隔t有关) 转移概率矩阵: P(t)=(pij(t)) ,i,j∈I,t ≥0 性 质: P(s+t)=P(s)P(t)
求P(t)和平稳分布
⎧ p01 (h) = λ h + o( h) ⎨ ⎩ p10 (h) = μ h + o(h)
思路:P(t)—方程—Q
解 :
1 − p00 (h) p01 (h) = lim = λ = q01 q00 = lim h →0 h →0 h h p10 (h) 1 − p11 (h) = lim = μ = q10 q11 = lim h →0 h →0 h h
T = [0, ∞}
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
λ0 λ1 − ( μ1 + λ1 ) μ2 λ2 − ( μ 2 + λ2 ) μ3 − ( μ3 + λ3 ) λ3
5 连续时间的马尔可夫链
31
平稳分布
⎧Π Q = 0 ⎪ ⎨ ⎪∑ Π = 1 ⎩
平稳分布:
5 连续时间的马尔可夫链
32
5 连续时间的马尔可夫链
40
p′j (t ) = ∑ pk (t )qkj − p j (t )q jj
k≠ j
p j (t ) = ∑ pi pij (t )
i∈I
p′ (t ) = ∑ pik (t )qkj − pij (t )q jj ij
k≠ j
5 连续时间的马尔可夫链
21
互通
定义5.4 设pij(t)是连续时间马尔可夫链的转移概率,若存在时刻t1 和t2,使得pij(t1)>0, pji(t2)>0,则称状态i与j是互通的。 若所有状态都是互通的,则称此马尔可夫链为不可约的。
5 连续时间的马尔可夫链
⎞ e − ⎟ λ +μ λ +μ ⎟ λ μ ⎟ e −( λ + μ ) t ⎟ + λ +μ λ +μ ⎠
−( λ + μ ) t
λ