(完整版)高考数学专题复习函数与导数(理科)练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习 《函数与导数》 练习题

1.已知函数x

b a x f ⋅=)(的图像过点)4

1,4(A 和)1,5(B .

(1)求函数)(x f 的解析式;

(2)记)(log 2n f a n =,n 是正整数,n S 是数列{}n a 的前项和,求满足0≤⋅n n S a

的n 值.

2.已知函数)(x f y =是定义在R 上的周期函数,5是)(x f 的一个周期,函数)(x f y = 在[]1,1-上是奇函数,又知)(x f y =在区间[]1,0上是一次函数,在区间[]4,1上是二次函数,且2=x 在时函数)(x f y =取得最小值-5 (1)证明:0)4()1(=+f f ;

(2)试求函数)(x f y =在[]4,1上的解析式; (3)试求函数)(x f y =在[]9,4上的解析式.

3.我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每

张球台每小时5元,乙家按月计费,一个月中30小时以内(含30小时),每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台,其活动时间不少于15小时,也不超过40小时.

(1)设在甲家租一张球台开展活动x 小时的收费为)(x f 元)4015(≤≤x ,在乙家租一张球台开展活动x 小时的收费为)4015)((≤≤x x g ,试求)(x f 和)(x g . (2)问:小张选择哪家比较合算?为什么?

4.已知a x x x a x f ),2,2((,2

1)(3

2

-∈-

=为正常数. (1)可以证明:定理“若+

∈R b a ,,则ab b a ≥+2

(当且仅当b a =时取等号)”

推广到三个正数时结论是正确的,试写出推广后的结论(无需证明); (2)若0)(>x f 在)2,0(上恒成立,且函数)(x f 的最大值大于1,求实数a 的取值范围,

并由此猜测)(x f y =的单调性(无需证明);

(3)对满足(2)的条件的一个常数a ,设1x x =时,)(x f 取得最大值.试构造一个定义

在},24,2|{N k k x x x D ∈-≠->=且上的函数)(x g ,使当)2,2(-∈x 时,

)()(x f x g =,当D x ∈时,)(x g 取得最大值的自变量的值构成以1x 首项的等差数

列.

5.设函数b a bx ax x f ,(1)(2

++=为实数),⎩⎨

⎧<->=时)(当

时)

当0)(0)(()(x x f x x f x F

(1)若0)1(=-f 且对任意实数x 均有0)(≥x f 成立,求)(x F 表达式;

(2)在(1)的条件下,当][2,2-∈x 时,kx x f x g -=)()(是单调函数,求实数k 的

取值范围;

(3)设0>m ,0,>+为偶函数,求证:0)()(>+n F m F .

6.已知定义域为[]1,0的函数同时满足以下三条:①对任意的∈x []1,0,总有0)(≥x f ;②1)1(=f ;③若,1,0,02121≤+≥≥x x x x 则有)()()(2121x f x f x x f +≥+成

立.解答下列各题: (1)求)0(f 的值;

(2)函数12)(-=x

x g 在区间[]1,0上是否同时适合①②③?并予以证明; (3)假定存在∈0x []1,0,使得∈)(0x f []1,0且()[]00x x f f =,求证00)(x x f =.

7.对于函数)(x f ,若存在,0R x ∈,使)0)(x x f =成立,则称0x 为)(0x f 的“滞点”?

已知函数2

2)(2

-=x x x f .

(1)试问)(x f 有无“滞点”?若有,求之,否则说明理由;

(2)已知数列{}n a 的各项均为负数,且满足1)1

(4=⋅n

n a f S ,求数列{}n a 的通项

公式.

8.设函数d cx bx x a x f +++=

23

3

)(的图像关于原点对称,)(x f 的图像在点),1(m P 处的切线的斜率为-6,且当2=x 时)(x f 有极值. (1)求d c b a ,,,的值;

(2)若[]1,1,21-∈x x ,求证:3

44

)()(21≤-x f x f .

9.已知函数x

x x x f 1ln )(--

=.

(1)判定函数)(x f 的单调性; (2)设1>a ,证明:

a

a a 1

1ln <-.

10.设函数)(x f 定义域为R ,对于任意实数,,y x 总有)()()(y f x f y x f ⋅=+,且当

0>x 时,1)(0<

(2)证明:当0x f ;

(3)证明:)(x f 在R 上单调递减,并举两个满足上述条件的函数)(x f ;

(4)若{}{}

,,1)1(|,)1()1()(|2

R x y x ax f y N f a f y f y M ∈=-++=≥-=且φ=N M I 试求a 的取值范围.

参考答案

1.解:(1)由题意得:45

141

a b a b ⎧⎪⋅=⎨⎪⋅=⎩ 解得:5

4a -=,4b =; (2)5

()4n f n -=,2log ()210n a f n n ==-

∵{}n a 为等差数列

∴1()(9)2

n n n

S a a n n =

+=- 由0≤⋅n n S a 得 0)9)(5(≤--n n n ∴95≤≤n ∵+

∈Z n ∴9,8,7,6,5=n .

2.解:(1)依题意有:⎩

⎨⎧+-=---=)51()1()

1()1(f f f f

∴0)1()1()2()1(=-+--=+f f f f .

(2)设kx x f =)( )11(≤≤-x 和5)2()(2

--=x a x f )41(≤≤x 由(1)知:054=-+a k ①

又5)1(-==a k f ②

由 ①②解得:2=a ,3-=k .

(3) 5)2(2)(2

--=x x f )41(≤≤x

x x f 3)(-= )11(≤≤-x ∵)5()(-=x f x f

∴当94≤≤x 时,451≤-≤-x ,

相关文档
最新文档