工作总结范文精选:高数第一章知识点总结

合集下载

高数大一知识点总结前四章

高数大一知识点总结前四章

高数大一知识点总结前四章在大一的学习生活中,高等数学是一个非常重要的课程。

对于初学者来说,高数可能是一个挑战,因为它包含了许多新的概念和方法。

然而,只要我们掌握了一些基本的知识点,就能够更好地理解和应用高数。

下面,我将总结前四章的知识点,希望能够对大家的学习有所帮助。

第一章:数列与极限1. 数列的概念和表示方式:数列是按照一定规律排列的一组数,通常用通项公式表示。

2. 数列的分类:常数数列、等差数列、等比数列等。

常数数列的通项公式是恒等于一个常数;等差数列的通项公式是数列的第一个项加上公差与项数的乘积;等比数列的通项公式是数列的第一个项乘以公比的n-1次方。

3. 数列极限:当数列的项数逐渐增加时,数列可能会无限接近于某个数或取得无穷大的值。

这个无限接近的数被称为数列的极限。

第二章:函数与连续1. 函数的概念与性质:函数是一种描述两个变量之间关系的数学工具。

函数有定义域和值域两个重要的概念。

同时,函数有奇偶性、周期性等性质。

2. 基本初等函数:常见的基本初等函数包括常数函数、幂函数、指数函数、对数函数和三角函数等。

3. 函数的图像与性质:通过研究函数的图像,我们可以了解函数的性质,如单调性、极值点、零点、拐点等。

4. 连续性与间断点:函数在某一点处的极限等于函数在该点处的取值时,我们称该函数在该点处连续。

函数的间断点有可去间断、跳跃间断和无穷间断三种情况。

第三章:导数与微分1. 导数的概念与计算:导数描述了函数在某一点附近的变化率。

导数的计算可以使用极限的方法,也可以使用导数的基本性质进行计算。

2. 导数的性质与应用:导数有用于判断函数的增减性、求解极值和绘制函数图像的重要作用。

导数可以用于线性逼近、速度、密度和最优化等实际问题的求解。

3. 高阶导数与微分:高阶导数是导数的导数,它描述了函数在某一点处的曲率和变化率。

微分是函数值的增量与自变量的增量之间的关系。

第四章:不定积分1. 不定积分的概念与性质:不定积分是求解原函数的过程,常用的记号是∫f(x)dx。

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章1.集合的概念:集合是由确定的、互不相同的对象组成的一个整体。

集合中的对象称为元素,用大写字母A、B等表示集合,用小写字母a、b等表示元素。

集合中的元素无序,不重复。

2.集合的运算:(1)并集:表示由属于任一集合的元素组成的新集合,记作A∪B。

(2)交集:表示同时属于所有集合的元素组成的新集合,记作A∩B。

(3)差集:表示属于一个集合但不属于另一个集合的元素组成的新集合,记作A-B。

(4)互斥:两个集合的交集为空集,即A∩B=∅。

(5)补集:表示全集中不属于一些集合的所有元素的集合,记作A'。

3.集合之间的关系:(1)包含关系:若集合A的所有元素都属于集合B,则称集合A包含于集合B,记作A⊆B。

(2)相等关系:若集合A和集合B的元素完全相同,则称集合A等于集合B,记作A=B。

(3)真包含关系:若集合A包含于集合B,并且集合A不等于集合B,则称集合A真包含于集合B,记作A⊂B。

4.映射的概念:(1)映射:设有两个非空集合A和B,如果存在一种对应关系,使得A 中的每个元素对应B中的唯一元素,则称这种对应关系为映射。

(2)函数:映射的另一种称呼,表示自变量和因变量之间的关系。

通常用f(x)表示函数,其中x为自变量,f(x)为相应的因变量。

5.映射的性质:(1)定义域和值域:映射的定义域是指所有自变量的集合,值域是指所有因变量的集合。

(2)单射:每个自变量只对应唯一的因变量。

(3)满射:每个因变量都有对应的自变量。

(4)一一对应:既是单射又是满射的映射。

(5)复合映射:将两个映射结合起来形成一个新的映射,称为复合映射。

总结:本章主要阐述了集合的基本概念、集合的运算、集合之间的关系和映射的概念及其性质。

理解这些基本概念对于后续学习高等数学的内容具有重要的指导意义,也为我们建立起了抽象数学思维的基础。

在学习中,我们需要牢记集合的运算规则和映射的性质,灵活运用,为数学的进一步学习打下坚实的基础。

高等数学第一章的总结

高等数学第一章的总结

例.
01
解:
02
原式
03
例. 求
04


解法讨论
典型例题
例:
例:
函数连续的等价形式

函数间断点
第一类间断点
跳跃间断点
第二类间断点
可去间断点
无穷间断点
振荡间断点
三、连续与间断
小结:
1.函数在一点连续必须满足的三个条件;
3.间断点的分类与判别;
2.区间上的连续函数;
第一类间断点:(左右极限都存在的间断点).
例. 证明
例:
01
求极限
02
解:
03
原式
04
求极限
05
提示:
06
原式
07
左边
08
= 右边
09
故极限存在,

, 且

则由递推公式有
解:

∴数列单调递减有下界,

利用极限存在准则
例:
思考与练习
, 求 时, 设 不对! 此处
1.如何判断极限不存在?
方法1. 找一个趋于∞的子数列;
2.已知
方法2. 找两个收敛于不同极限的子数列. 下述作法是否正确? 说明理由. 由递推式两边取极限得
右极限存在,
不存在.
补充结论:
D
C
A
B
思考题解答
小结:

商的法则不能用

由无穷小与无穷大的关系,得


(消去零因子法)


(无穷小因子分出法)
结论:
无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限.

高数第一章知识点总结

高数第一章知识点总结

高数第一章知识点总结高数第一章知识点总结希望同学们在准备考研数学高数的复习过程中能够适当结合真题与模拟题,下面是小编精心收集的高数第一章知识点总结,希望能对你有所帮助。

篇一:高数第一章知识点总结高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

具体说来,大家需要重点掌握的知识点有几以下几点:1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

高数大一第一章知识点总结

高数大一第一章知识点总结

高数大一第一章知识点总结大一的高等数学课程是大多数理工科学生的必修课程之一。

第一章是高等数学基础知识的引入部分,通过对实数、数列、函数的介绍和探讨,为后续的学习打下了坚实的基础。

本文将对第一章的主要知识点进行总结和归纳,帮助大家更好地理解和掌握这些概念。

一、实数集在第一章的开头,我们首先学习了实数集的概念。

实数集包括有理数和无理数两个部分,有理数可以表示为两个整数的比值,而无理数则不能用有理数表示。

实数集是一个无限且连续的集合,在数轴上可以无间断地排列。

二、数列数列是指按照一定规律依次排列的一组数,其中每个数被称为数列的项。

我们学习了等差数列和等比数列两种特殊的数列。

等差数列的相邻两项之差相等,而等比数列的相邻两项之比相等。

通过数列的概念和性质,我们可以在实际问题中进行抽象和分析,进而解决问题。

三、函数函数是一个非常重要的数学概念,它描述了一种变化关系。

在第一章中,我们主要学习了常用的一元函数,即自变量只有一个的函数。

函数可以用图像、公式和数据表达,在不同的形式中都会有各自的特点和应用。

通过函数,我们可以描绘出数学模型,进行定性和定量的分析,从而更好地理解和解决实际问题。

四、数学归纳法数学归纳法是一种重要的证明方法,它常用于证明数学命题和推导结论。

归纳法分为数学归纳法的第一原理和第二原理。

第一原理是指证明基线的真实性,即当 n 取某个特定值时命题成立;第二原理是指证明当 n=k 成立时,n=k+1 也成立。

通过数学归纳法的使用,我们可以简化证明的步骤,并提高证明的准确性。

五、反证法反证法是另一种常用的证明方法。

它通过假设命题的反面是成立的,然后引出矛盾,从而推导出最初的命题是正确的。

反证法在证明某些数学规律或命题时非常有效,能够极大地提高证明的简洁性和可靠性。

六、函数的单调性和极值在学习了函数的定义和性质后,我们接着研究了函数的单调性和极值。

函数的单调性描述了函数在定义域内的增减关系,可以分为单调递增和单调递减两种情况。

《高等数学》各章知识点总结——第1章(五篇)

《高等数学》各章知识点总结——第1章(五篇)

《高等数学》各章知识点总结——第1章(五篇)第一篇:《高等数学》各章知识点总结——第1章第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{xn},若存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得对于n >N 时的一切n,恒有|xn-a |<ε 则称a 是数列{xn}的极限,或者称数列{xn}收敛于a ,记为n→∞limxn=a或xn→a(n→∞).(2)函数极限的定义设函数f(x)在点x0的某一去心邻域内(或当x>M>0)有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,(或存在X)使得当x满足不等式0<|x-x0|<δ 时,(或当x>X时)恒有|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0(或x→∞)时的极限,记为x→x0limf(x)=A或f(x)→A(当x→x0).(或limf(x)=A)x→∞类似的有:如果存在常数A,对∀ε>0,∃δ>0,当x:x0-δ<x<x0(x0<x<x0-δ)时,恒有f(x)-A<ε,则称A为f(x)当x→x0时的左极限(或右极限)记作x→x0-limf(x)=A(或lim+f(x)=A)x→x0x→x0x→x0x→x0显然有limf(x)=A⇔lim-f(x)=lim+f(x)=A) 如果存在常数A,对∀ε>0,∃X>0,当x<-X(或x>X)时,恒有f(x)-A<ε,则称A为f(x)当x→-∞(或当x→+∞)时的极限记作limf(x)=A(或limf(x)=A)x→-∞x→+∞显然有limf(x)=A⇔limf(x)=limf(x)=A)x→∞x→-∞x→+∞2、极限的性质(1)唯一性若limxn=a,limxn=b,则a=bn→∞n→∞若limf(x)=Alimf(x)=B,则A=Bx→∞(x→x0)x→∞(x→x0)(2)有界性(i)若limxn=a,则∃M>0使得对∀n∈Nn→∞+,恒有xn≤M(ii)若limf(x)=A,则∃M>0当x:0<x-x0<δ时,有f(x)≤Mx→x0(iii)若limf(x)=A,则∃M>0,X>0当x>X时,有f(x)≤Mx→∞(3)局部保号性(i)若limxn=a且a>0(或a<0)则∃N∈N+,当n>N时,恒有xn>0(或xn<0)n→∞)=A,且A>0(或A<0),则∃δ>0当x:0<x-x0<δ时,有(ii)若limf(xx→x0f(x)>0(或f(x)<0)3、极限存在的准则(i)夹逼准则给定数列{xn},{yn},{zn}若①∃n0∈N,当n>n0时有yn≤xn≤zn ②limyn=limzn=a,n→∞n→∞+则limxn=an→∞ 给定函数f(x),g(x),h(x), 若①当x∈U(x0,r)(或x>X)时,有g(x)≤f(x)≤h(x)②limg(x)=limh(x)=A,x→∞(x→x0)x→∞(x→x0)0则limf(x)=A x→∞(x→x0)(ii)单调有界准则给定数列{xn},若①对∀n∈N+有xn≤xn+1(或xn≥xn+1)②∃M(m)使对∀n∈N+有xn≤M(或xn≥m)则limxn存在n→∞若f(x)在点x0的左侧邻域(或右侧邻域)单调有界,则lim-f(x)(或lim+f(x))x→x0x→x0存在4、极限的运算法则(1)若limf(x)=A,limg(x)=Bx→∞(x→x0)x→∞(x→x0)则(i)lim[f(x)±g(x)]=A±Bx→∞(x→x0)(ii)lim[f(x)⋅g(x)]=A⋅Bx→∞(x→x0)(iii)limx→∞(x→x0)f(x)A=⋅(B≠0)g(x)B0(2)设(i)u=g(x)且limg(x)=u0(ii)当x∈U(x0,δ)时g(x)≠u0x→x0(iii)limf(u)=Au→u0则limf[g(x)]=limf(u)=Ax→x0u→u05、两个重要极限(1)limsinx=1x→0xsinu(x)=1u(x)→0u(x)limlimsinx11=0,limxsin=1,limxsin=0x→∞x→∞x→0xxxxu(x)⎛1⎫1⎫⎛lim1+(2)lim 1+⎪=e ⎪u(x)→∞x→∞u(x)⎭x⎭⎝⎝=e;lim(1+x)=ex→01xv(x)→0lim(1+v(x))1v(x)=e;6、无穷小量与无穷大量的概念(1)若limα(x)=0,即对∀ε>0,∃δ>0,当x:0<x-x0<δ(或x→∞(x→x0)x>X)时有α(x)<ε,则称当x→x0(或x→∞),α(x)无穷小量(2)或X>0),若limf(x)=∞即对∀M>0,∃δ>0(当x:0<x-x0<δx→∞(x→x0)(或x>X)时有f(x)>M则称当x→x0(或x→∞),f(x)无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)limf(x)=A⇔f(x)=A+α(x),其中limx→∞(x→x0)x→∞(x→x0)α(x)=0(f(x)≠0)⇒lim(2)limf(x)=0x→∞(x→x0)x→∞(x→x0)1=∞f(x)(3)limg(x)=∞⇒limx→∞(x→x0)x→∞(x→x01=0 g(x))(4)limf(x)=∞且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)+g(x)]=∞x→∞(x→x0)(5)limf(x)=0且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)⋅g(x)]=0x→∞(x→x0)nn(6)limfk(x)=0(k=1,2,Λ,n)则limx→∞(x→x0)x→∞(x→x0)k=1∑fk(x)=0,limx→∞(x→x0)k=1∏fk(x)= 0,8、无穷小量的比较x→∞(x→x0)limf(x)=0,limg(x)=0,limα(x)=0x→∞(x→x0)x→∞(x→x0)若(1)lim小。

高数第一章知识点总结笔记

高数第一章知识点总结笔记

高数第一章知识点总结笔记高数第一章主要包括函数与极限的基本概念,函数的性质,函数的图像与性质,函数的运算,以及极限的性质和运算法则等内容。

1.函数的定义和表示方法:- 函数的定义:函数是一个具有自变量和因变量的关系,对于每一个自变量,都唯一对应一个因变量。

- 函数的表示方法:通常用函数关系式、函数图、表格和文字描述等方式来表示函数。

2. 函数的性质:- 定义域和值域:函数的自变量的取值范围称为函数的定义域,因变量的取值范围称为函数的值域。

- 奇偶性:若对于定义域内的每一个x,都有f(-x) = f(x),则函数为偶函数;若对于定义域内的每一个x,都有f(-x) = -f(x),则函数为奇函数;若不满足以上两个条件,则称函数为既不是奇函数也不是偶函数。

- 增减性:在定义域中,若有x1 < x2,有f(x1) < f(x2),则函数在这个区间内是增函数;若有x1 < x2,有f(x1) > f(x2),则函数在这个区间内是减函数。

3. 函数的图像与性质:- 概念:函数的图像是函数在平面直角坐标系中的表示,函数的图像反映了函数的性质和规律。

- 图像的平移、翻折、伸缩、可导性和连续性等。

4. 函数的运算:- 四则运算:包括加法、减法、乘法和除法。

- 复合函数:将一个函数的自变量用另一个函数表示出来,形成复合函数。

- 反函数:若两个函数f(x)和g(x)满足f(g(x)) = x和g(f(x)) = x,则称g(x)为f(x)的反函数。

5. 极限的定义和性质:- 极限的定义:设函数f(x)在x0的某一邻域内有定义,如果对于任意给定的正数ε,总存在一个正数δ,使得当0 < |x - x0| < δ时,都有|f(x) - A| < ε成立,则称A为函数f(x)当x趋于x0时的极限,记作lim f(x) = A(x→x0)。

- 极限的性质:唯一性、局部有界性、保号性、夹逼准则、迫敛和夹蔽准则等。

高数第一章小结

高数第一章小结
恒成立,则称f(x)为周期函数,l 称为 f(x) 的周期.(通 常说周期函数的周期是指其最小正周期).
T 1
y
y x [x]
1
o
1
x
西藏大学理学院数学系
高等数学
第一章 小 结
3、反函数
由y f ( x)确定的y f 1( x)称为反函数.
y sinh x
4、隐函数
y f 1( x) arsinh x
西藏大学理学院数学系
高等数学
第一章 小 结
5、判定极限存在的准则
准则Ⅰ′ 如果当x U 0 ( x0 , r )(或 x M )时,有 (1) g( x) f ( x) h( x),
(2) lim g( x) A, lim h( x) A,
x x0
x x0
( x)
( x)
记作 lim f ( x) 0 (或 lim f ( x) 0).
x x0
x
无穷大: 绝对值无限增大的变量称为无穷大.
记作 lim f ( x) (或 lim f ( x) ).
x x0
x
无穷小与无穷大的关系
在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大.
y
y 1 x
在(,0)及(0,)上无界; 在(,1]及[1,)上有界.
1 o 1
x
西藏大学理学院数学系
高等数学
第一章 小 结
(5) 函数的周期性:
设函数 f(x) 的定义域为D,如果存在一个不为零的
数l,使得对于任一 x D,有 ( x l) D.且 f(x+l)=f(x)
高等数学
1、函数的定义

大一高数知识点总结第一章

大一高数知识点总结第一章

大一高数知识点总结第一章在大一的高数课程中,第一章是非常关键的一章,它涵盖了许多基础知识和概念,为后续学习奠定了坚实的基础。

本文将对第一章的重要知识点进行总结,并探讨其在实际应用中的意义。

1. 实数与复数在高数中,我们首先学习了实数和复数的概念。

实数包括有理数和无理数,而复数是由实数和虚数单位i(满足i²=-1)构成的数。

实数可以用来表示我们平常生活中的各种量,而复数则在电路分析、信号处理等领域中起到了重要作用。

2. 平面直角坐标系在平面直角坐标系中,我们学习了点、坐标、距离等基本概念。

平面直角坐标系是研究平面上几何性质和方程的重要工具。

在实际应用中,我们可以利用坐标系对地理位置、图像等进行描述和分析。

3. 函数与极限函数是数学中一个非常重要的概念,它描述了两个变量之间的关系。

我们学习了函数的定义、性质以及各种常见函数的图像和性质。

极限则是函数中的关键概念,它描述了函数在某个点附近的变化趋势。

极限的概念在微积分等高阶数学中起到了重要的作用。

4. 数列与级数在数列与级数的学习中,我们探讨了数列的定义和特性,以及级数的收敛与发散。

数列与级数的研究对于分析各种数学和物理问题的趋势以及计算问题的数值解具有重要作用。

5. 导数与微分导数是高数中的重要概念,它描述了函数在某一点的变化速率。

我们学习了导数的定义和性质,以及导数的几何和物理意义。

微分则是导数的一种应用,它在物理、经济学等领域中广泛应用。

6. 不定积分与定积分在不定积分与定积分的学习中,我们学习了不定积分的定义和基本性质,以及定积分的几何和物理意义。

不定积分和定积分为我们解决各种问题提供了强有力的工具,如求曲线下的面积、求函数的平均值等。

以上只是第一章高数知识点的一部分,通过对这些知识点的学习和理解,我们可以为进一步学习数学提供坚实的基础。

不仅如此,这些知识点在实际应用中也发挥着重要的作用。

例如,在物理学中,我们需要利用导数来描述物体的运动状态、力的大小等。

高等数学第一章总结

高等数学第一章总结

高等数学第一章总结高等数学第一章总结高等数学是大学数学的重要组成部分,是培养学生数学思维和解决实际问题能力的重要课程之一。

第一章主要介绍了函数概念、极限与连续等内容。

下面将对第一章的内容进行总结。

函数是高等数学的基础概念之一。

函数是一种量与量之间的对应关系,常表示为y = f(x)。

其中,x是自变量,y是因变量,f表示函数的规则。

函数的定义域是自变量可能取值的集合,值域是因变量取值的集合。

在实际问题中,函数可以用来描述各种关系,如物体的运动、电路中的电流等。

函数可以分为代数函数、初等函数、三角函数等不同类型。

极限是数列和函数在某一点(或正无穷大、负无穷大)趋于的值。

数列的极限是其无穷项的极限,即数列的趋势或估计值。

而函数的极限是其自变量无限接近某一点时的极限值。

极限的概念与数学证明相关,对于计算极限需要掌握一些极限定理和运算法则。

常见的极限运算法则有四则运算法则、复合函数极限的运算法则、三角函数的极限运算法则、常数的极限运算法则等。

连续是函数在一定区间上无间断的性质。

对于某一点x=a来说,如果在x=a处函数f(x)的极限存在且等于f(a),则称函数在x=a处连续。

连续函数具有许多有用的性质,如介值定理、零点定理、最值定理等。

这些性质在实际问题中有广泛的应用,能够帮助我们解决实际问题。

在高等数学的学习过程中,我们还需要掌握一些重要的基本技巧和方法。

求导是一种重要的计算技巧,用于求函数的导数。

导数是函数在某一点上的变化率,也可以理解为函数曲线在该点处的切线斜率。

求导的方法主要有基本求导法则和常见函数的导数运算法则。

导数在物理、工程和经济学等领域中有广泛的应用,如求速度、加速度、成本函数、效益函数等。

本章的内容比较基础,但为后续的学习打下了坚实的基础。

通过学习第一章的内容,我们了解了函数的概念和性质,掌握了求函数极限和连续的方法和技巧,熟悉了常见函数的导数运算法则。

这些知识和技能是我们进一步学习高等数学的基础,也是我们解决实际问题的必备工具。

高等数学第一章总结

高等数学第一章总结

高等数学第一章总结
高等数学是理工科学生必修的一门重要课程,它是建立在初等数学基础之上的
一门高等数学课程,包括微积分、多元函数微积分、无穷级数、常微分方程等内容。

第一章主要介绍了极限与连续的概念,这些概念是后续学习微积分的基础,对于理解数学的发展历程和思维方式也具有重要的意义。

首先,我们来谈谈极限的概念。

在数学中,极限是一种重要的概念,它描述了
一个函数在某一点附近的表现,也可以理解为自变量无限接近某个值时,函数的取值趋于的一个确定的值。

极限的概念是微积分的基础,它在现实生活中也有着广泛的应用,比如在物理学、工程学等领域。

通过学习极限的概念,我们可以更好地理解函数的变化规律,为后续的微积分学习打下坚实的基础。

其次,连续的概念也是高等数学中的重要内容。

在数学中,连续是一种基本的
性质,它描述了函数图像的连贯性和平滑性。

一个函数在某一点连续意味着在这一点附近函数值的变化趋于连续,没有突变的现象。

通过学习连续的概念,我们可以更好地理解函数的性质,为后续的微积分学习提供基础。

总的来说,高等数学第一章主要介绍了极限与连续的概念,这些概念是微积分
学习的基础,也是数学发展的重要内容。

通过学习这些内容,我们可以更好地理解数学的发展历程和思维方式,也可以更好地应用数学知识解决实际问题。

因此,我们应该认真对待高等数学这门课程,努力学习,掌握其中的基本原理和方法,为将来的学习和工作打下坚实的数学基础。

高等数学第一章复习总结

高等数学第一章复习总结

第一讲函数、极限与连续一、函数的概念与性质1、领域:设是一个正数,称开区间为点的领域,记作,即:2、函数:设x,y是两个变量,D是一个数集,如果对于每个x∈D,按照某一对应法则f,变量y均有唯一确定的值与x对应,则称y为x的函数,记作y=f(x),称x为自变量,y为应变量,数集D称为函数的定义域,数集R={y|y=f(x),x∈D}称为函数的值域。

函数的两个要素:对应关系f;定义域D。

3、函数的四种特性(1)有界性:则称函数f(x)在D上有界。

无界:(2)奇偶性:设函数y=f(x)的定义域D关于原点对称,若对于任意的x∈D,有:①若f(-x)=-f(x),则称函数f(x)为奇函数;②若f(-x)=f(x),则称函数f(x)为偶函数。

注:①f(x)=1/2[f(x)+f(-x)]+1/2[f(x)-f(-x)]=g(x)+h(x),其中g(x)=1/2[f(x)+f(-x)]为偶函数,h(x)=1/2[f(x)-f(-x)]为奇函数。

②若奇函数f(x)在x=0处有定义,则f(0)=0;若偶函数f(x)在x=0处可导,则f’(0)=0.(3)单调性:设函数y=f(x)在D上有定义,对于任意的x1,x2∈D,当x1<x2时,①若f(x1)<f(x2),则称f(x)在D上单调增加;②若f(x1)>f(x2),则称f(x)在D上单调减少。

(4)周期性:若函数y=f(x)满足f(x+T)=f(x),则称函数y=f(x)是以T为周期的周期函数。

4、反函数:设函数y=f(x)是定义域为D,值域为R,如果对于每一个y∈R,必存在唯一的x∈D,使得y=f(x)成立,则由此定义了一个新的函数,这个函数就称为函数y=f(x)的反函数,记作x=,通常写成y=,它的定义域为R,值域为D。

注:①函数y=f(x)存在反函数的充要条件是y=f(x)一一对应(y=f(x)严格单调)。

②若函数y=f(x)单调增加(减少),则其反函数y=也单调增加(减少)。

高数大一知识点总结第一章

高数大一知识点总结第一章

高数大一知识点总结第一章在大一的数学课程中,高等数学(简称高数)是一门重要的基础课程。

在高等数学的学习中,第一章涵盖了很多基础知识点,包括数列与极限、函数与极限以及连续性等内容。

接下来,我将对这些知识点进行总结和概述。

1. 数列与极限数列是由一系列有序的数所组成的序列。

在数列的学习中,我们需要了解等差数列和等比数列两种基本类型。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

极限是数列中的一个重要概念。

如果一个数列的前n项无限接近于某个常数a,那么我们称这个常数a为该数列的极限,记作lim(n→∞)an=a。

通过计算数列的极限,我们可以探讨数列的性质、趋势以及收敛性。

2. 函数与极限函数是一种关系,将一个自变量映射到一个因变量。

数学中有多种类型的函数,如线性函数、二次函数、指数函数和对数函数等。

函数的图像反映了自变量和因变量之间的关系。

函数的极限是研究函数性质的重要内容。

如果一个函数在某个点处的自变量无限接近于某个常数x0时,其因变量也无限接近于某个常数a,我们称这个常数a为该函数在点x0处的极限。

记作lim(x→x0)f(x)=a。

通过研究函数的极限,我们可以了解函数在不同自变量值下的表现和趋势。

3. 连续性连续性是函数的一种性质,反映了函数在一定区间内的光滑程度。

如果一个函数在某个点处的极限等于该点处的函数值,那么我们称这个函数在该点处连续。

函数的连续性可以分为左连续、右连续和间断。

我们可以利用函数的连续性来探讨函数的变化情况和特性。

通过分析函数的连续性,可以判断函数是否在某一区间内单调增加或者单调减少。

4. 极大值与极小值极大值和极小值是函数图像上的特殊点。

对于定义在某个区间的函数,如果存在一个点x0使得在该点的某个领域内,函数值都小于等于f(x0),那么我们称该点x0为函数的极大值点。

大一高数第一章知识点总结

大一高数第一章知识点总结

大一高数第一章知识点总结导言:大一高数作为大学数学的入门课程,对于大多数理工科专业的学生来说,是一门重要且必修的课程。

在大一高数中,第一章是基础知识的引入和应用部分。

本文将对大一高数第一章的知识点进行总结和概述,以帮助同学们更好地掌握这一章的内容。

一、数集与区间在大一高数中,我们首先需要了解数集和区间的概念。

数集是由一堆数构成的集合,可以是有限个数,也可以是无限多个数。

数集的分类有有理数集、无理数集、整数集等等,每个数集都有其特定的性质和表示方法。

而区间可以看作是一个连续的数集,常见的包括开区间、闭区间和无穷区间等。

掌握数集与区间的概念对于理解后续章节的内容具有重要的意义。

二、实数与数轴实数是数学中一个重要的基础概念,是有理数和无理数的统称。

大一高数中,我们需要了解实数的性质及其在数轴上的表示。

数轴可以看作是一个直线上的点与实数的对应关系,在数轴上,我们可以通过点的位置来表示实数的大小关系,掌握实数的概念和在数轴上的表示能够帮助我们更好地理解实数的性质。

三、集合在大一高数的第一章中,集合是一个必不可少的概念。

集合是指具有某种特定性质的对象的总体,它由元素组成。

大一高数中,我们需要掌握集合的表示方法、集合的运算、常见的集合运算律以及集合之间的关系等。

掌握集合的知识对于理解后续章节的内容非常重要。

四、函数函数是数学中一个重要的概念,也是大一高数中的重点内容。

函数可以看作是一个输入与输出的对应关系,通常用字母表示。

大一高数中,我们需要了解函数的定义、函数的性质以及函数的图像表示等。

函数的概念在工程和科学领域中具有广泛的应用,掌握函数的知识对于解决实际问题至关重要。

五、极限与连续极限和连续是大一高数中的核心概念,也是数学分析的基础。

在大一高数中,我们需要了解极限的定义、极限的性质以及常见的极限计算方法。

而连续则是指函数在某一点附近的值与该点处函数值之间的无缝连接。

了解极限和连续的概念能够帮助我们更好地理解函数的性质和行为。

高等数学-上册-第一章总结

高等数学-上册-第一章总结

第一章 函数极限与连续(一) 本章重点(important points ):1. 了解极限的定义(重点是理解极限定义中的“任意”和“存在”,以及N 与ε的相关性;动态变化性)及求法,定义要从代数及几何两方面进行理解。

2. 理解以及运用两个重要的极限公式(及其拓展形式)。

3. 无穷小理论及其运用(主要是等价无穷小代换,在求极限以及一些证明题中会经常用到,so it is also important!)。

4. 函数的连续(这是以后很多公式定理运用的条件,所以必须掌握地very good !)。

5. 分段函数的连续性,可导性,及其极限值的求法。

(二) 知识点分析(analysis ):常用不等式1) 绝对值不等式: ||x |−|y ||≤|x ±y |≤|x |+|y | 2) 三角不等式: |x −z |=|x −y +y −z |≤|xy |+|yz | 3) Bernoulli Inequality(贝努力不等式):若 x>-1, n ∈z, 且n>=2 则(1+x )n ≥1+nx 4) Cauchy Inequality (柯西不等式):(∑x i y i )n i=12≤(∑x i 2n i=1)∙(∑y i 2n i=1)5) e x ≥1+x 6) ln(1+n)≤x 7) (1+1n )n<(1+1n+1)n+1&& (1+1n)n+1>(1+1n)n+2即:数列{(1+1n )n } 单调递增, 数列{(1+1n )n+1} 单调递减。

8) 设 x ∈z +, 则 1x+1<ln (1+1n )<1x9) 设 x ∈z +, 则2√n<1∗3∗5∗...∗(2n−1)2∗4∗6∗.. (2)<√2n+1二. 不等式的运用案例eg1. 证明柯西不等式 (∑x i y i )n i=12≤(∑x i 2n i=1)∙(∑y i 2n i=1)证法一:(构造一个关于t 的二次方程,并利用其判别式)因为 x i, y i ∈R, i =1,2,3…..,n. 所以 ∀t ∈R , 有(x i +ty i )2≥0.→f (t )=∑(x i +ty i )2n i=1=∑x i 2+(2∑x i y i n i=1)t +(∑y i 2n i=1)n i=1t 2≥0若∑y i 2=0,则。

高等数学第一章总结

高等数学第一章总结

高等数学第一章总结高等数学是大学数学课程中的一门基础课程,它涉及到了数学的许多重要概念和工具,为后续更深入的学习打下了坚实的基础。

在第一章中,我们主要学习了一元函数的一些基本概念和性质,包括函数、极限、连续性和导数等内容。

本文将对这些知识进行总结和回顾。

函数是数学中的重要概念,它描述了两个变量之间的依赖关系。

在第一章中,我们学习了如何定义和表示函数,并学习了一些常见的函数类型,比如多项式函数、指数函数和三角函数等。

通过研究不同类型的函数性质,我们可以更好地理解和应用函数。

极限是数学分析的核心概念之一,它描述了函数在某一点附近的行为。

我们通过学习极限的定义和性质,掌握了计算极限的方法和技巧。

在计算极限时,我们可以运用代数运算、洛必达法则和泰勒展开等工具,来简化问题和求解极限值。

通过深入研究极限,我们可以了解函数的增长趋势、奇点和收敛性等重要性质。

连续性是函数在某一区间上的平滑性描述。

我们学习了连续函数的定义和性质,并通过判断函数的间断点和导数来研究函数的连续性。

在实际应用中,连续函数的性质给了我们很多便利,比如可以通过极限求和、积分和微分等方法求解问题。

而不连续函数则有其独特的特点,比如在某些点处不满足函数定义,或者在某些点处存在跳跃性的变化。

导数是微积分的重要工具,它描述了函数的变化率和斜率。

我们通过学习导数的定义和性质,理解了导数与函数的关系,并研究了函数的极值、拐点和凹凸性等重要问题。

利用导数我们可以求解函数的最值,优化问题和刻画曲线的特征。

在应用中,导数还可以用于解决变化率、速度、加速度等实际问题。

除了以上几个重要的概念和工具,高等数学的第一章还涉及到了一些相关的定理和公式。

比如罗尔定理、拉格朗日中值定理和泰勒中值定理等,它们是我们理解和应用函数的重要工具。

此外,还学习了求导公式、积分公式和导数表等常用的数学工具。

总之,高等数学是一门既有理论又有实际应用的学科,它为我们提供了一种理解和分析世界的数学语言和工具。

知识点总结高数一

知识点总结高数一

知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。

数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。

函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。

极限的性质包括唯一性、有界性、局部性、夹逼性等。

2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。

3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。

无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。

在极限运算中,无穷小和无穷大的性质十分重要。

4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。

连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。

二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。

求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。

2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。

3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。

微分公式包括基本微分公式、换元法、分部积分法等。

4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。

三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。

高中数学知识点总结第一章

高中数学知识点总结第一章

高中数学知识点总结第一章高中数学是中学数学教育的重要阶段,它在初中数学的基础上进行了深化和拓展,为学生提供了更为丰富和抽象的数学概念、理论和方法。

本章将对高中数学的主要知识点进行总结,以帮助学生更好地理解和掌握这些知识。

一、集合与函数的概念集合是高中数学的基础概念之一,它描述了一组明确的、互不相同的对象的全体。

集合的表示方法有列举法和描述法。

集合之间存在着多种关系,如子集、并集、交集和补集等。

理解集合的概念和运算对于后续函数学习至关重要。

函数是高中数学的核心内容,它描述了两个变量之间的一种特定关系,其中一个变量的值依赖于另一个变量的值。

函数的表示通常使用公式y=f(x),其中x称为自变量,y称为因变量。

函数的性质包括定义域、值域、单调性、奇偶性等,这些性质对于分析函数的行为和解决实际问题具有重要意义。

二、数列的基本知识数列是由按照一定顺序排列的一列数构成的,根据数列的项与序号之间的关系,数列可以分为等差数列、等比数列、递推数列等。

等差数列和等比数列是最基本的数列类型,它们的通项公式和求和公式是解决相关问题的关键。

数列的极限概念也是高中数学中的一个重要内容,它涉及到数列趋向于某个固定值的性质。

三、解析几何的基础解析几何是高中数学中研究几何图形的代数性质的分支。

通过坐标系,可以将几何问题转化为代数问题进行求解。

直线和圆是解析几何中最基本的图形,它们的方程形式和性质是解决相关问题的基础。

此外,椭圆、双曲线和抛物线等二次曲线的方程和性质也在高中数学中有所涉及。

四、三角函数及其应用三角函数是研究三角形边长和角度之间关系的数学工具,包括正弦、余弦、正切等基本三角函数。

高中数学中,除了学习这些基本三角函数的性质和公式外,还需要掌握三角恒等变换、三角函数的图像和性质、以及解三角形问题的方法。

三角函数在解决实际问题,特别是在物理和工程领域中有着广泛的应用。

五、概率与统计的基础概率论是研究随机事件的数学分支,它通过概率来描述事件发生的可能性。

高等数学第一章第二章总结

高等数学第一章第二章总结

高等数学第一章第二章总结1 第一章:绪论第一章是高等数学的绪论,其中介绍了数学的定义、作用、历史及其发展等。

在第一章中,数学是定量和定性研究物质及其结构、关系及运动规律的科学。

它由实数、整数、有理数、分数和平面几何等基本概念组成,用各种计算、逻辑推理及分析等方法来描述客观的现象或思想的抽象模型,从而得出准确的结果。

另外,数学涉及到它在科学、技术、社会、文化等方面的应用,它是社会发展的基础。

数学发展史从古代有算术、代数、几何等学科,逐渐发展至近代以及现代,学科不断壮大,研究的领域越来越广泛,涉及到人类生活的方方面。

2 第二章:初等数学第二章主要介绍初等数学,包括数论、向量运算、数列和统计等。

数论是计算数值的研究,它涉及到质数分解、最大公约数、最小公倍数、随机数等概念,数论在正文、加密等方面有广泛的应用。

向量运算是向量和向量、向量和物体之间的运算关系,它包括线性组合、内积、外积等,向量运算在物理、声学、飞行、机器人等领域有着重要的用途。

数列是按数次递增或递减的数值序列,它包括等差数列和等比数列,比如阶乘及斐波那契数列,它们能够描述物理几何尺寸及次序关系,有着极为广泛的应用。

最后,统计是从测量、计数、比较等不同数据中抽象出的概念,它包括平均数、标准差、概率分布等,是综合应用概率论、数理逻辑及数学知识。

统计学主要用来分析和预测人们的意见、举措等,对于改进社会的规划、预防未来的决策都有着重要意义。

综上所述,第一章绪论介绍了数学的定义、作用、历史及其发展,第二章介绍了初等数学,包括数论、向量运算、数列和统计等,它们都是数学学科中非常重要的知识。

高数知识点总结大一第一章

高数知识点总结大一第一章

高数知识点总结大一第一章高数(高等数学)是大学阶段的一门重要学科,对于理工科和经济管理类专业的学生来说,学好高数是非常重要的。

本文将对大一第一章的高数知识点进行总结,帮助读者回顾和加深理解。

1. 集合与函数集合是高数的基础,是由一些确定的、互不相同的元素构成的整体。

常用的集合有自然数集、整数集、有理数集和实数集等。

函数是集合之间的一种特殊关系,可以理解为一种“映射”。

函数的定义域、值域和对应关系是函数的重要概念。

2. 极限与连续极限是高数中的重要概念之一,通过研究函数在某一点附近的性质来描述函数的局部行为。

极限的定义分为数列极限和函数极限两种情况。

连续是函数在某一区间内无间断点,即函数图像是连续的。

连续函数的性质包括介值定理、最值定理等。

3. 导数与微分导数是函数在某一点的变化率,也可以理解为函数的斜率。

微分是导数的微小变化量,可以用来求函数在某一点的近似值。

导数和微分在物理、经济等领域有着重要的应用,如速度、利润等概念。

4. 微分中值定理与泰勒公式微分中值定理是高数中的重要定理之一,包括拉格朗日中值定理和柯西中值定理。

这些定理通过函数连续和可导的性质,推导出函数在某个区间内某些点的特定性质。

泰勒公式是将函数在某点附近展开成一系列项的和,用于函数的近似计算。

5. 简单的微分方程微分方程是描述自变量和未知函数以及它们的导数之间关系的方程。

简单的微分方程有一阶常微分方程和二阶常微分方程,可以通过直接分离变量、利用已知解形式等方法进行求解。

微分方程在物理、化学等学科中广泛应用。

6. 不定积分与定积分不定积分是求解导数反函数的过程,也可以理解为积分函数的逆运算。

定积分是将函数在某一区间内的面积进行计算的过程,代表了函数的累积变化量。

积分的性质包括线性性、分部积分、换元积分等。

7. 其他重要概念与公式在第一章的学习中,还涉及到一些其他的重要概念和公式,如导数的四则运算、基本初等函数的导数与不定积分、反函数与复合函数的导数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数第一章知识点总结
篇一:
高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

具体说来,大家需要重点掌握的知识点有几以下几点:
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法
由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。

最后凯程考研名师预祝大家都能取得好成绩。

凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。

总之,考研是一场“时间战”,谁懂得抓紧时间,利用好时间,谁就是最后的胜利者。

1.制定详细周密的学习计划。

这里所说的计划,不仅仅包括总的复习计划,还应该包括月计划、周计划,甚至是日计划。

努力做到这一点是十分困难的,但却是非常必要的。

我们要把学习计划精确到每一天,这样才能利用好每一天的时间。

当然,总复习计划是从备考的第一天就应该指定的;月计划可以在每一轮复习开始之前,制定未来三个月的学习计划。

以此类推,具体到周计划就是要在每个月的月初安排一月四周的学习进程。

那么,具体到每一天,可以在每周的星期一安排好周一到周五的学习内容,或者是在每一天晚上做好第二天的学习计划。

并且,要在每一天睡觉之前检查一下是否完成当日的学习任务,时时刻刻督促自己按时完成计划。

方法一:规划进度。

分别制定总计划、月计划、周计划、日计划学习时间表,并把它们
贴在最显眼的地方,时刻提醒自己按计划进行。

方法二:互相监督。

和身边的同学一起安排计划复习,互相监督,共同进步。

方法三:定期考核。

定期对自己复习情况进行考察,灵活运用笔试、背诵等多种形式。

2.分配好各门课程的复习时间。

一天的时间是有限的,同学们应该按照一定的规律安排每天的学习,使时间得到最佳利用。

一般来说上午的头脑清醒、状态良好,有利于背诵记忆。

除去午休时间,下午的时间相对会少一些,并且下午人的精神状态会相对低落。

晚上相对安静的外部环境和较好的大脑记忆状态,将更有利于知识的理解和记忆。

据科学证明,晚上特别是九点左右是一个人记忆力最好的时刻,演员们往往利用这段时间来记忆
方法二:按学习进度分配。

考生可以根据个人成绩安排学习,把复习时间向比较欠缺的科目上倾斜,有计划地重点复习某一课程。

方法三:交叉分配。

在各门课程学习之间可以相互穿插别的科目的学习,因为长时间接受一种知识信息,容易使大脑产生疲劳。

另外,也可以把一周每一天的同一时段安排不同的学习内容。

篇二:
历史悠久,专注考研,科学应试,严格管理,成就学员!
考研数学:高数重要知识点总结
考研日一天天近了,要求各位考研生必须要高效率进行考研复习,在扎实基础知识的基础上,注重总结答题思路及方法。

为帮助各位考研生复习的更加全面,凯程考研小编对高数部分中的重要考点进行了整理,如下:
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次
序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法
打有准备之战,胜算才能更大。

希望各____考研生抓紧时间复习,在考研中取得好成绩。

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提
供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
凯程考研:
凯程考研成立于____年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。

凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

特别说明:凯程学员经验谈视频在凯程有公布,同学们和家长可以查看。

扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。

如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。

判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。

还要深入了解教师的学术背景、资料著述成就、辅导成就等。

凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。

而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下____五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。

在凯程的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。

对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

最好的办法是直接和凯程老师详细沟通一下就清楚了。

凯程考研历年战绩辉煌,成就显著!
【本文档仅供学习,欢迎大家分享交流!】。

相关文档
最新文档