第2章 液态金属的充型能力

合集下载

液态金属的充型能力1

液态金属的充型能力1





形状曲折而不规则,裂纹表面 呈氧化色,无金属光泽;裂口 沿晶粒边界通过。 一般分布在铸件易产生应力集
外形呈连续直线状(没有分叉)
或圆滑曲线,裂纹表面干净,具 有金属光泽,有时呈轻微氧化色;
穿过晶粒。
常出现在铸件表面


中的部位或铸件最后凝固部位 的内部
上一页 下一页
退出
2、防止措施 ⑴设计上:合理设计铸件结构,以减少铸造内应力 ⑵工艺上 a.降低磷、硫含量 b.改善型(芯)砂的退让性 c.控制打箱时间
上一页 下一页
退出
充型能力的前提下,尽可能采用“高温出炉,低温浇注”的原则。
◆ 浇注系统的结构
浇注系统的结构越复杂,流动的阻力就越大,流动性就越差。
故在设计浇注系统时,要合理布置内浇口在铸件上的位置,选择
恰当的浇注系统结构和各部分的断面积。 ⑶充填条件 铸型中凡能增加金属流动阻力、降低流速和增加冷却速度的 因素,均会降低合金的充型能力。诸如:型腔过窄、型砂含水分 或透气性不足、铸型排气不畅和铸型材料导热性过大等,均能降 低充型能力,使铸件易于产生浇不足、冷隔等缺陷。
P S
尺寸变化
固态
K
Q 产生应力、变形、裂 产生缩孔、缩松 0 0.02 0.77 2.11 4.3 纹的基本原因 ω c ,% 的基本原因
6.69

上一页 下一页
ቤተ መጻሕፍቲ ባይዱ退出
2、影响因素 ①化学成分
凡是促进石墨化的元素增加,收缩减少,否则收缩增大
②浇注温度 T浇↑→过热度↑→液 态收缩↑→总收缩↑ ③铸件结构和铸型条件 A
等固相法
内切圆法 特 征:形状不规则,表面不光滑,可以看到发达的树 枝晶末梢 2、缩松的形成 形成过程:

第二讲液态金属的流动与传热

第二讲液态金属的流动与传热
19
5)表面张力 造型材料一般不被液态金属润湿,即润湿角θ>900。故液态
金属在铸型细薄部分的液面是凸起的,而由表面张力产生一个 指向液体内部的附加压力,阻碍对该部分的充填。所以,表面 张力对薄壁铸件、铸件的细薄部分和棱角的成形有影响。型腔 越细薄,棱角的曲率半径超小,表面张力的影响则越大。为克 服附加压力用阻碍,必须在正常的充型压力上增加一个附加压 头。
式中,
v为在静压头H作用下液态金属在型腔 中的平均流速;
t为液态金属自进入型腔到停止流动的 时间。
充型过程的物理模型
7
由流体力学原理可知 :
v 2gH
式中,H为液态金属的静压头;为流速系数。
关于流动时间的计算,液态金属不同的停止流动机理则有不 同的计算方法。
对于纯金属或共晶成分合金,凝固方式呈逐层凝固时,其停 止流动是由于液流末端之前的某处从型壁向中心生长的晶粒相 接触,通道被堵塞的结果。因此,对于这类液态金属的停止流 动时间t,可以近似地认为是试样从表面至中心的凝固时间,可 根据热平衡方程求出(凝固时间的计算)。
17
A1-Si合金的流动性,在共晶成分处并非最大值,而在过共 晶区里继续增加,是因为初生硅相块状晶体,有较小的机械强度, 不形成坚强的网络,结晶潜热得以发挥。硅相的结晶潜热比 α 相大三倍。
18
3)金属的比热、密度和导热系数
比热和密度较大的合金,因其本身含有较多的热量,流动性 好。导热系数小的合金,热量散失慢,保持流动的时间长;导 热系数小,在凝固期间液固并存的两相区小,流动阻力小,故 流动性好。
合金的结晶温度范围越宽,枝晶就 越发达,液流前端析出少量固相, 即在较短的时间,液态金属便停止 流动。在液态金属的前端析出 15~20%的固相量时,流动就停止。

液态金属(合金)的流动性及充型能力-PPT课件

液态金属(合金)的流动性及充型能力-PPT课件

三、教法分析
基于本课题的特点,我主要采用了 以下的教学方法:
1. 直观演示法:利用多媒体进行直观演示,激 发学生的学习兴趣,活跃课堂气氛,促进学生 对知识的掌握。课节内容公式较多,采用板书 推导的方法便于学生理解。 2. 引导提问法:通过提出问题引导学生,以学 生为主体,使学生的独立探索性得到了充分的 发挥,培养学生的自觉能力、思维能力。 3. 集体讨论法:针对学生提出的问题,组织学 生进行集体和分组语境讨论,促使学生在学习 中解决问题,培养学生团结协作的精神。
(2)、教材内容要点
①、液态金属流动性及充型能力的 概念 ②、液态金属(合金)充型能力的 计算
(3)、教学目标 ①、知识目标: 了解液态金属在成形过程中的流动特点 了解影响充型能力的因素和提高措施 熟悉并掌握液态金属停止流动机理及液态金属充 型能力的计算方法 ②、能力目标: 由于本节课内容是本门课的重点内容之一,属于 理论性较强的内容。通过多媒体演示和板书的合理应 用,培养学生勤于思考的学习能力。并且本节内容计 算部分较多,锻炼学生独立思考,独立分析问题的能 力。 ③、德育目标: 培养学生从事研究工作认真、严谨的作风。
ቤተ መጻሕፍቲ ባይዱ
2. 讲授新课:(39分钟) 在讲授新课的过程中,我突出教材的重点 ,明了地分析教材的难点。我选择了多媒体的 教学手段,可以使抽象的知识具体化,枯燥的知 识生动化,乏味的知识兴趣华。还重视教材中 的疑问,适当对题目进行引申,使它的作用更 加突出,有利于学生对知识的串联、积累、加 工,从而达到举一反三的效果。教学过程:通 过幻灯片演示展开本节内容——液态金属在成 形过程中的流动特点——液态金属流动性和充 型能力概念——重点分析液态金属停止流动机 理——着重讲解液态金属充型能力的计算方法 ——影响充型能力的因素和提高措施。

铸造金属凝固原理课件:液态金属的充型能力-

铸造金属凝固原理课件:液态金属的充型能力-

l =μ
2gH
• Fρ1
KL •
+C1(T浇 - TK
)

Tl - T型
充型壓頭
液態金屬在流動方向上所受的壓力越大,充型能力就越 好。在生產中,用增加金屬液的靜壓頭的方法提高充型
能力,也是經常採取的工藝措施。其他方式外加壓力,
例如壓鑄、低壓鑄造、真空吸鑄等,也都能提高金屬液
的充型能力。 澆注系統的結構
流動性好。導熱係數小的合金,熱量散失慢,保持流 動的時間長;導熱係數小,在凝固期間液固並存的兩 相區小,流動阻力小,故流動性好。 金屬中加入合金元素後,一般都使導熱係數明顯下降。 但是,有時加入合金元素後初晶組織發生變化,反而 使流動性下降。
l =μ
2gH
• Fρ1
KL •
+C1(T浇 - TK
)
➢ 對於結晶溫度範圍較寬的合金,散失約20%潛熱後,晶粒 就連成網路而阻塞流動,大部分結晶潛熱的作用不能發揮, 所以對流動性的影響不大
問題:為什麼在相同的過熱度下AI-Si合金的流動性,在共 晶成分處並非最大值,而在過共晶區裏繼續增加?
金屬的比熱、密度和導熱係數 比熱和密度較大的合金,因其本身含有較多的熱量,
➢ 無限長立方截面棒:a/4
➢ 無限長圓柱棒:d/4
➢ 半無限大平面:t/2
➢ 垂直壁液面上升速度較大,容易充滿 ;
鑄件的複雜程度 鑄件結構複雜、厚薄部分過渡面多,則鑄型型腔結構複雜,
流動阻力大,鑄型的充填就困難。
➢ 鑄鋼流動性和充型能力 — 碳、矽、錳、磷、硫、 — 銅的影響
結晶潛熱
➢ 結晶潛熱約占液態金屬熱含量的85~90%,但是,它對不 同類型合金流動性的影響是不同的。

液态金属的流淌性与充型能力有何异同[整理版]

液态金属的流淌性与充型能力有何异同[整理版]

1.液态金属的流动性与充型能力有何异同?如何提高液态金属充型能力?(1)液态金属的流动性指液态金属本身的流动能力,与金属成分,温度杂质含量及物理性质有关。

充型能力是指液态金属充满型腔而获得的结构完整轮廓清晰的能力,与液态金属自身性能和金属种类及铸型等有关。

2)液态金属的浇动性是通过浇注流动的方法衡量的,以式样的长度或某处的厚薄程度表示其流动性;而充型能力的影响影响因素很多,故用流动性表示其充型能力,因此液态金属的流动性可以认为是确定条件下的充型能力。

提高充型能力:1)正确选择合金成分。

2)合理浇注条件。

3)铸件结构适当。

2.什么是流变铸造?其工艺特点。

在固液两相区进行,强烈搅拌,使普通铸造易形成树枝晶被打碎而保留分散的颗粒状,当固相率为50%-70%时仍具有一定的流动性,使得可以在固液两相区温度进行的铸造工艺。

特点:1)可以在固液两相区温度进行铸造。

2)由于固相存在,凝固收缩小,气孔少缩孔缩松大幅度度减少且组织细密3)结晶潜热的释放,对模具冲击性能减小,模具寿命提高。

3.灰口铸铁成型时为什么不设置冒口?灰口铸铁在凝固过程中初生A形成骨架,间隙内部的A与石墨相按共生生长方式生长,石墨相横向生长少,纵向生长多,膨胀力主要作用在液相上,使得液态收缩量加上凝固收缩量小于固态收缩量,使缩孔缩松产生空间减小,即自补缩现象,故不用设置冒口。

4.铸件模数以及其意义。

铸件体积V与铸件散热面积S的比即R=V/S使凝固时间计算更加简便即T=R2/K2。

引入模数的意义:1)计算更加简便2)是对平方根定律的补充,考虑到了铸件形状这个主要影响因素,使计算更接近实际。

5.分析说明纯金属的热过冷仅取决于凝固时熔体中的实际温度分布。

纯金属的平衡凝固温度为T0,S-L界面温度T*=T0—△T K,以S-L界面为原点建立坐标系,界面前方L相的温度梯度G L=dt/dx,L相x距离处的温度T(x)=T*+G L X,所以x处的过冷度=△T k—G L X,由于△T k很小,可以略去,所以△T(x)=-G L x,要获得过冷,即G L<0,△T(x)负的温度梯度,所以纯金属的热过冷仅取决于凝固时熔体的实际温度分布。

材料基本原理名词解释

材料基本原理名词解释
50、应力球张量-也称静水应力状态,不能使物体产生形状变化,而只能产生体积变化,即不能使物体产生塑性变形。
51、加工硬化-随着变形程度的增加,(位错运动所受到的阻力增大),金属的强度和硬度增加,而塑性和韧性下降,即产生了加工硬化。
52、应变速率-单位时间内的应变,又称变形速度。
53、滑移-晶体在外力的作用下,其一部分沿着一定的晶面和该晶面上的一定晶向,相对于另一部分产生的相对移动。
45 塑性-指金属材料在外力作用下发生变形而不破坏其完整性的能力。
46热塑性变形-金属在再结晶温度以上的变形。
47、张量-由若干个当量坐标系改变时满足转换关系的所有分量的集合。
48 塑性-指固体材料在外力作用下发生永久变形而不被破坏其完整性的能力。
49 简单加载-是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。
11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。
光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。
25沉淀脱氧-是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并脱溶沉淀转入熔渣中的一种脱氧方式。
26真空脱氧-钢液的熔化过程是在真空条件下进行,利用抽真空降低气相中CO分压来加强钢液中碳的脱氧能力。
27 偏析-合金在凝固过程中发生的化学成分不均匀现象。
33焊接-通过加热或加压,或者两者并用,用或不用填充材料,使两个分离的工件(同种或异种金属或非金属,也可以是金属与非金属)产生原子(分子)间结合而形成永久性连接的工艺工程。

材料加工第2章作业参考答案

材料加工第2章作业参考答案

第2章作业参考答案1. 液态金属成形的一般工艺过程是怎样的?结合其工艺特点分析该类工艺的优点、缺点和和适用范围。

液态金属成形是将液态金属注入铸型中使之冷却、凝固而形成零件的方法,一般工艺过程包括模样制造、铸型制造、金属熔化与充型、凝固等关键步骤。

铸造为液体成形具有不受零件大小/薄厚/复杂程度限制、可制造各种合金铸件、相对焊接和塑性成形而言尺寸精度高、成本低等优点;但需要造型、浇注等步骤,工艺相对繁琐,工件承载能力不如锻件,同时工作环境差,粉尘多。

铸造适用于绝大部分零件,适用范围广。

(工艺过程三点明确。

明确分析优点、缺点和适用范围,同时结合其工艺特点)2.铸造合金流动性差对铸件质量有何影响?浇注时金属液过热温度及其他工艺条件相同的情况下,初步判断一下HT350和HT200两种合金,哪个流动性好,为什么?什么是液态金属的充型性能?它与那些因素有关?流动性差,金属充型能力差,铸件成形质量降低;液态金属中的气体夹杂物不易浮出,易产生气孔、夹杂;对缩孔和裂纹的充填和愈合作用减弱,易产生缩孔、裂纹等缺陷。

HT200流动性好,HT200碳含量在3.0~3.6%,HT350在2.7~3.2%,因HT200成分更靠近共晶点,固-液区间小,熔点较低,故流动性好(固液两相区越大,结晶温度范围越大,枝晶越发达,流动性越差)。

(流动性影响,判断及理由)充型能力:指液态金属充满型腔,获得形状完整、轮廓清晰健全铸件的能力。

充型能力首先取决于合金的流动性,同时又受到铸型性质(如铸型蓄热系数、铸型温度、铸型中的气体)、浇注条件(如浇注温度、充型压头、浇注系统结构)以及铸件结构(如模数、复杂程度等)的影响。

(充型能力定义,四个影响方面)3. 缩孔、缩松的区别是什么?什么样的合金容易出现疏松缺陷?生产中如何采取措施防止缩孔、缩松缺陷的产生?缩孔缩松的区别在形态,而取决于凝固方式,当铸件以逐层凝固方式凝固时,液态金属的流动使收缩集中到铸件最后凝固部分形成集中孔,即缩孔;而铸件以体积凝固方式凝固时,枝晶间隙的液体得不到补缩而形成小的孔洞,即缩松。

液态金属的充型能力

液态金属的充型能力

4.流动性式样
衡量金属或合金的流动 性,常用螺旋形式样浇 铸后得到的长度制来衡 量。
1-浇口杯;2-低坝;3直浇道;4-螺旋试样; 5-高坝;6-溢流道;7全压井
金属成型理论基础
第二节
液态金属的停止流动机理及充型能 力的计算
一 液态金属的停止流动机理 二 液态金属充型能力的计算
金属成型理论基础
一、液态金属的停止流动机理
金属成型理论基础
二、铸型性质方面的因素
1. 铸型蓄热系数大,激冷作用强,流动性减小。 2.涂层,金属型铸造中浇冒口处涂料中加入蓄热系数小的 石棉粉,砂型铸造中加入烟黑材料等。 3. 铸型温度高,减小温差;提高充型能力。 4.发气量:铸型有一定的发气能力,在铸型和金属液之间 形成气层,减小摩擦阻力,利于充型,但应适当,气压力 过大导致浇不进,甚至飞溅等,减小发气物质含量,增加 铸型透气性。
金属成型理论基础
三、浇注条件性质方面的因素
1.适当的提高浇注温度: 浇注温度(决定性影响),提高利于充型,但到一程度 后,吸气量增加,氧化严重,不利充型;还会出现结晶 组织粗大,缩孔,缩松等缺陷。 2.充型压头高,浇注位置合适,顶注式浇注等,都提高充 型能力。 3.合理地布置内浇道在铸件上的位置,选择适当的浇注系 统结构。
1.纯金属、共晶成分合金和结晶范围很窄的合金: 纯金属、共晶成分合金和结晶范围很窄的合金: 纯金属
金属成型理论基础
2.结晶范围很宽的合金: 结晶范围很宽的合金: 结晶范围很宽的合金
金属成型理论基础
二、液态金属的充型能力的计算
假设某成分合金浇注一棒形试 样,充型能力l=vτ v:静压头H作用下液态金属 在型腔中的平均流速。 τ:液态金属进入型腔到停止 流动的时间 ≈ τ浇 V=µ(2gh)1/2 H:液态金属静压头 µ: 流量消耗系数

液态金属的充型能力

液态金属的充型能力

第四章液态金属的充型能力1、试述液态金属的充型能力和流动性之间在概念上的区别,并举例说明。

答:①液态金属的充型能力:充满铸型型腔,获得形状完整轮廓清晰的铸件能力。

影响因素:金属液体的流动能力,铸型性质,浇铸条件,铸件结构。

②流动性:液态金属本身的流动能力,与金属本身有关:成分,温度,杂质物理性质。

其流动性一定,但充型能力不高,可以改变某些因素来改变,流动性是特定条件下的充型能力。

2、用螺旋形试样测定合金的流动性时,为了使得数据稳定和重复性好,应该控制哪些因素?答:①铸型性质②浇铸条件3、试分析中等结晶温度范围的合金停止流动机理。

答:过热能量散失尽以前,金属液也可以纯金属液态流动。

温度下降到液相线以下,首先生成了一批小晶粒,在型壁上长成细而长的柱状晶,空隙的液体继续流,流动过程继续生长柱状晶,在液体温度不段下降时,出现等轴晶,阻塞通道。

介于两者之间,出现枝状晶时,温度不产生大量晶粒,但是生长到一定程度,等轴晶大量析出。

4、碳钢()4.0~w流动性螺旋试样流束前端常出现豌豆形突出物,经化学分=.025c析,突出物的S,P较高,试解释生成原因。

答:豌豆型突出物可能是FeS,Fe3P2其熔点比钢熔点低,故在结晶终了析出,一般在晶界上,则形成豌豆状。

5、AL-Mg合金机翼,壁厚为3mm,长为1500mm,其铸造工艺为采用粘土砂型,常压下浇铸,常浇铸不足而报废,你认为应该采取哪些工艺措施来提高铸件的成品率?答:①提高铸型的透气性②提高浇铸温度③足够的压头④变质处理⑤浇铸系统合理⑥涂烟黑涂料,减小b。

26、欲铸造壁厚为3mm,外形尺寸为305580⨯⨯mm的箱体,(材质为ZL106)355你认为如何浇铸更合理?答:应使305mm的方向为垂直方向,更利于充型7、采用石膏铸型可产生壁厚达0.8mm的铝合金铸件(石膏为绝热材料)但是常出现浇铸不足分析产生该缺陷的原因,如何消除?答:可能的原因:铸型温度低,排气不好,浇铸温度低等措施:预热铸型,加强排气,提高浇铸温度8、采用高温出炉,低温浇铸的工艺措施,为什么可提高合金的流动性?答:高温出炉:使一些难熔的质点熔化,未熔的质点和气体在浇包中镇静有机会上浮而使金属净化,提高流动性。

(1.1.1)《液态合金的充型能力》课件

(1.1.1)《液态合金的充型能力》课件

Engineering TrainingCenter铸件形成理论基础—液态合金的充型能力液态合金的充型能力1.什么是铸造2.充型与充型能力3.充型能力的影响因素1.什么是铸造铸造是一种液态金属成形的方法,即将金属熔化后,使其具有流动性,然后浇入到具有一定形状的型腔的铸型中,液态金属在重力场或外力场(压力、离心力、电磁力、振动惯性力、真空等)的作用下充满型腔,冷却并凝固成具有型腔形状的铸件。

充型能力:液态金属充满铸型型腔,获得尺寸正确、轮廓清晰的铸件的能力。

充型:熔化金属充填铸型的过程。

充型能力不足:浇不足冷隔夹渣气孔缩孔(松)充型能力的影响因素1.合金的流动性2.铸型性质3.浇注条件4.铸件结构热裂2.充型与充型能力(1)合金本身的流动性合金的流动性:液态金属的流动能力。

流动性的判定:用浇注标准螺旋线试样的方法进行测定。

螺旋形试样3.充型能力的影响因素(1)合金本身的流动性①合金的种类:不同种类的合金,因熔点、热导率和黏度等物理性质以及结晶特性的不同,其流动性不相同。

3.充型能力的影响因素合金种类铸型浇注温度/℃螺旋线试样长度/mm铸钢w(C) 0.4%砂型1 6001640100200灰铸铁w(C+wS i)6.2%砂型1300 1800 w(C+wS i)5.9% 1300 1300 w(C+wS i)5.2% 1300 1000 w(C+wS i)4.2% 1300 600锡青铜w(Sn )9%~11%砂型1040 420 w(Zn)2%~4%1040 420硅黄铜w(Si)1.5%~4.5%砂型1100 1100(1)合金本身的流动性②合金的化学成分:同类合金中,成分不同的合金具有不同的结晶特点,其流动性也不同。

3.充型能力的影响因素流动性和成分的关系结晶特点对流动性的影响示意图(a)共晶成分合金;(b)非共晶成分合金3.充型能力的影响因素(1)合金本身的流动性③杂质含量:液态金属中含有固态夹杂物,使液体的黏度增加,因而会降低合金的流动性;液态金属中的含气量越多,其流动性也越差。

液态金属的充型能力

液态金属的充型能力
液态金属的充型能力
液态金属是一种具有特殊充型能力的材料。本文将介绍液态金属的定义、物 理性质、化学性质、充型方法、充型应用、优势以及挑战及解决方案。
什么是液态金属?
液态金属是一种在常温下处于液体状态的金属。它具有高导电性、高导热性 和优异的机械性能。
液态金属的物理性质
1 高流动性
液态金属具有较高的流动性,能够被轻松注 入复杂的形状和细小的空隙。
1 氧化问题
液态金属容易与空气中的 氧气发生反应,需要采取 相应措施,如惰性气体保 护。
2 温度控制
液态金属的充型过程需要 精确控制温度,以确保质 量和性能。
3 模具设计
液态金属充型对模具的要 求较高,需要进行适当的 设计和优化。
与其他材料反应性低
液态金属与大多数材料的反应 性较低,不会导致副反应和损 坏。
可与其他金属合金化
液态金属能够与其他金属进行 合金化,提高材料的性能和应 用范围。
液态金属的充型方法
1
重力充型
将液态金属通过自由流动充入模具,适用于简单形状的零件充型。
2
压力充型
利用机械力将液态金属压入模具,适用于复杂形状和精密零件的充型。
液态金属充型的优势
高精度
液态金属充型可以制造高精度、高质量的零件, 满足复杂应用的要求。
高效率
液态金属充型过程快速、高效,可大幅提高生 产效率。
材料节约
液态金属充型不需要额外的材料加工,有效减 少浪费。
设计自由度
液态金属充型技术可以实现复杂形状和细节的 自由设计,提供更多创新空间。
液态金属充型的挑战及解决方案
2 低表面张力
液态金属的表面张力相对较低,使其能够更 好地与其他材料接触和结合。

第二章 液态金属的充型能力

第二章  液态金属的充型能力

L:合金的结晶潜热, / g carl
F 1 kL C 1 TP Tk l vt 2 gH p T LTm 合金成分 结晶潜热 合金的比热容、密度和 换热系数 1.合金性质
液态金属的粘度 表面张力
§2-3 影响充型能力的因素
影响充型能力的因素
铸型的蓄热系数 2.铸型性质 铸型的温度 铸型中的气体
末端之前的某个部位从型壁向中心生长的柱 状晶相接触,金属的流通道被堵塞。
液态金属的停止 流动机理
2.宽结晶合金停止流动机理
液态金属的停止 流动机理
液态金属的温度是沿程下降的,液流前端冷 却最快,首先结晶,当晶体达到一定数量时, 变结成了一个连续的网状,发生堵塞,停止 流动。
二、液态金属充型能力的计算
4.金属的流动性 液态金属本身的流动能力,称为流动性。
二、流动性、充型能力及铸造缺陷的关系
流动性好,排气排杂,净化金属,还可以凝固后补缩 流动性不好,充型能力弱,浇不足和冷隔,夹杂夹气
三、不同合金及造型方法对金属充型能力的影响 不同金属和不同合金铸造方法铸厚/mm
金属种类
液态金属的充型能力:
TP Tm TL Tm vF 1 C 1 ln l vt C 1 ln p TL Tm Tk Tm
x
v 2gH
ln x x 1
TP Tm TP TL ln TL Tm TL Tm
F 1 kL C 1 TP Tk l vt 2 gH p T LTm 浇注温度
3.浇注条件
充型压头 浇注系统的结构
影响充型能力 的因素
折算厚度(模数)
4.铸件结 构方面
V (铸件的体积 ) F (铸件的断面面积 ) M S (铸件的散热表面积 P (铸件的断面周长 ) )

材料成型技术 第二章 .ppt

材料成型技术  第二章 .ppt
试分析将会如何变形?
++++++++ ----------
(2)变形规律:
一般,受拉应力部分(厚壁),向内凹; 受压应力部分(薄壁),向外凸。
AUTS
(3)形成原因: 1)铸造应力超过了材料的屈服强度; 2)切削加工破坏了应力平衡。
(4)防止措施: 1)减小和消除内应力, 2)采用反变形法:
在制造木模时,把模样制成与铸件变形 相反的形状。
(3)裂纹的防止措施:
1)减小和消除内应力, 2)严格控制硫的含量(对热裂纹),
严格控制磷的含量(对冷裂纹)。
2.1.3 常用铸造合金的铸造性能
1.铸铁
常用的有:灰铸铁、球墨铸铁、可锻铸铁等。 (1)灰铸铁:
铸造性能优良。流动性好,收缩小。 一般采用同时凝固原则,无需设置冒口。 (2)球墨铸铁: 铸造性能介于灰铸铁和铸钢之间。 流动性较差,收缩较大,易产生缩孔、缩松缺陷。 一般采用顺序凝固原则。
(3)可锻铸铁: 原铁液铸造性能差。
为获得白口坯件,原铁液C、Si含量较低, 凝固区间大,故流动性较差,收缩也较大。
一般采用顺序凝固原则,设置冒口。
2.铸钢
铸造性能差。流动性差,收缩大。 易产生冷隔、浇不到,缩孔、裂纹等缺陷。
一般采用顺序凝固原则,设置冒口。
3.铸造铝合金:
铝硅合金铸造性能好,其它系列合金较差; 且易吸气、氧化,故易产生夹杂、气孔等缺陷。 一般采用顺序凝固原则,设置冒口; 熔炼时应注意除气和去渣。
(4) 防止措施
①采用顺序凝固原则
铸件凝固顺序:薄壁→厚壁→冒口。
②合理选择铸造合金, 如选用共晶成分或合金温度范围窄的合金。
③合理使用冒口、冷铁和补贴,

液态金属的充型能力1

液态金属的充型能力1

等固相法
内切圆法 特 征:形状不规则,表面不光滑,可以看到发达的树 枝晶末梢 2、缩松的形成 形成过程:
产生原因:液态收缩+凝固收 缩>固态收缩
产生条件:宽结晶温度范围的 合金 出现部位:铸件中心轴线处 上一页 下一页 退出
3、防止措施
顺序凝固原则
同时凝固 原则
内冷铁:铸件 的一部分
冷铁
外冷铁:铸型 的一部分
以上影响因素错综复杂,在实际生产中必须根据具体情况具 体分析,找出其中的主要矛盾,采取措施,才能有效地提高液态 金属的充型能力。
上一页 下一页 退出
3、对铸件质量的影响
充型能力好:
◆ 可获得外形完整、尺寸准确、轮廓清晰的铸件 ◆ 有利于排气和排渣
◆ 有利于补缩
充型能力不好,铸件易产生以下缺陷: 浇不足:液态金属未充满铸型而产生缺肉的现象。 冷隔:两股金属流汇合时因表层氧化而未能融合而产生凹坑 或缝隙的现象。
2、防止措施 ⑴设计上:合理设计铸件结构,以减少铸造内应力;使铸 件形状对称,抵消变形 ⑵工艺上 a.反变形法 b.设置拉筋(热处理后去除) c.控制打箱时间 上一页 下一页 退出
㈤ 裂纹及其防止
1、裂纹的形成 当铸造内应力超过金属的强度极限时,铸件便产生裂纹。

形成区域 外观形状 (特征) 高






形状曲折而不规则,裂纹表面 呈氧化色,无金属光泽;裂口 沿晶粒边界通过。 一般分布在铸件易产生应力集
外形呈连续直线状(没有分叉)
或圆滑曲线,裂纹表面干净,具 有金属光泽,有时呈轻微氧化色;
穿过晶粒。
常出现在铸件表面


中的部位或铸件最后凝固部位 的内部

10液态金属的充型能力

10液态金属的充型能力
国家级精品课程
《材料成形基本原理 》(3Ed-2016)
普通高等教育“十二五”国家级规划教材 国家级精品资源共享课
课件编制: 上篇 祖方遒 李萌盛
下篇 陈文琳
合肥工业大学
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
第2章 液态金属的充型能力
2.1 液态金属充型能力的基本概念 2.2 液态金属停止流动机理与充型能力 2.3 影响充型能力的因素
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
金属液粘度的影响(充型后期)
(液态金属的粘度与成分、温度、固相微粒的含量

等相关 )

金属液表面张力的影响

(降低金属表面张力可提高金属液的流动性 :铸型通
它 因 素 的
常与金属液的 润湿角大于 90o,型腔内薄壁和棱角处合 金液形成凸面,表面张力的附加力指向液体内部,阻碍 金属液对型腔细薄、棱角部位的填充 )
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
影响充型能力的因素 1. 金属性质方面的因素
(流动性的高低)
2. 铸型性质方面的因素
3. 浇注条件方面的因素
4. 铸件通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
对于同一种合金,也可以用流动性试样研究各铸造工艺 因素对其充型能力的影响。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
合金的螺旋形流动性实验

液态金属的流动性及充型能力

液态金属的流动性及充型能力

液态金属的流动性及充型能力液态金属充填过程是铸件形成的第一阶段,铸件的许多缺陷是在这个过程中形成的。

为了获得优质健全的铸件,必须掌握和控制这个过程。

为此,研究液态金属充满铸型的能力,以便得到形状完整、轮廓清晰的铸件,防止在充型阶段产生缺陷一、充型的概念液态合金充满型腔,形成轮廓清晰、形状完整的优质铸件的能力,称为液态合金的流动性又叫做充型能力。

液态合金的流动性愈好,不仅易于铸造出轮廓清晰,薄而形状复杂的铸件,而且有助于液态合金在铸型中收缩时得到补充,有利于液态合金中的气体及非金属夹杂物上浮与排除。

若流动性不好,则易使铸件产生浇不足、冷隔、气孔、夹渣和缩松等缺陷液态金属充填铸型是一个复杂的物理、化学和流体力学问题,涉及到金属液的各种性质,如密度、黏度、表面张力、氧化性、氧化物的性质及润湿性等。

充型能力的大小影响铸件的成型,充型能力较差的合金难以获得大型、薄壁、结构复杂的健全铸件而良好的流动性能使铸件在凝固期间产生的缩孔得到液态金属的补充,铸件在凝固末期受阻出现的热裂可以得到液态金属的充填而弥合,有利于防止缺陷产生液态合金流动性的好坏,通常以螺旋形流动性试样的长度来衡量。

如图2-3所示,将液态合金注入螺旋形试样铸型中,冷凝后,测出其螺旋线长度。

为便于测量,在标准试样上每隔50mm 作出凸点标记,在相同的浇注工艺条件下,测得的螺旋线长度越长,合金的流动性越好。

常用合金的流动性如表2-1所示。

其中,灰铸铁、硅黄铜的流动性最好,铝合金次之,铸钢最差通常,流动性好的合金,充型能力强;流动性差的合金,充型能力差,在实际的铸造生产中,可以通过改善外界条件来提高其充型能力,根据铸件的要求及合金的充型能力采取相应的工艺措施以获得健全的优质铸件。

二、影响充型能力的因素影响充型的因素是通过两个途径发生作用的:一是影响金属与铸型之间的热交换条件,从而改变金属液的流动时间;二是影响液态金属在铸型中的水力学条件,从而改变金属液的流速。

【实用】金属液的充型能力PPT文档

【实用】金属液的充型能力PPT文档
(1)有利于液态合金中气体和熔渣的上浮与排除; (2)有助于对凝固过程中所产生的收缩进行补缩; (3)若合金的流动性差,铸件容易产生浇不到、冷隔等缺陷, 而且也是引起铸件气孔、夹渣和缩孔等缺陷的间接原因。
➢ 金属的流动性:
改善金属 有利于 的流动性
金属流动性 测试实验
实验如右图所示:
液态成形——铸造
►充型能力不足时,会产生浇不到、冷隔、 夹渣、气孔等缺陷。
液态成形——铸造
影响金属充型的因素
►合金的流动性 ►浇注温度 ►填充压力 ►铸型的充型条件 ►铸件结构和铸件模数
合金的流动性
液态成形——铸造
合金的流动性是: 液态合金本身的流动能力。合金的流动性 越好,填充性也越好。
1、流动性对铸件性能的影响
不同结晶特征合金的流动性 铁碳合金的流动性与含碳量关系
液态成形——铸造
几种合金流动的比较
1、铸铁大于铸钢; 2、共晶大于非共晶; 3、近共晶大于远共晶。
浇注温度
液态成形——铸造
►浇注温度越高,金属液的粘度越低,且因 其过热度高,金属液蓄热多,保持液态的 时间长,故有利于提高金属液的充型能力。
►但浇注温度过高,会导致金属的收缩增大, 吸气增多,氧化严重,使铸件产生缩孔、

பைடு நூலகம்
合金的流动性主要与合金的化学成分有关。 定义:铸造是指将熔融态的金属(或合金)浇注于特定型腔的铸型中凝固成形的金属材料成形方法。 合

金 流


性 的


定 定
浇注温度过高,又会使液态合金吸气严重、收缩增大,反而易使铸件产生其它缺陷,如气孔、缩孔、缩松、粘砂和晶粒粗大等。
影响流动性的因素
液态成形——铸造
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料成形基本原理》(3Ed-2016)
普通高等教育“十二五”国家级规划教材
国家级精品课程
国家级精品资源共享课
课件编制: 上篇 祖方遒 李萌盛
下篇 陈文琳
合肥工业大学
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
第2章 液态金属的充型能力
2.1 液态金属充型能力的基本概念 2.2 液态金属停止流动机理与充型能力
《材料成形基本原理》(第3版)
国家级精品课程
பைடு நூலகம்
金属液流动性概念
与充型过程有关的另一概念称为流动性——充型过程金属
液本身的流动能力。
流动性好的铸造合金充型能力强,反之亦然; 金属的流动性好,气体和杂质易于上浮,使金属净化,
有利于得到没有气孔和夹杂的铸件;
金属的流动性好,有利于铸件在凝固期间可能产生的缩 孔得到金属液的补缩; 金属的流动性好,凝固末期收缩受阻而出现的热裂得到液 态金属的弥合
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
流动性与充型能力的关系:
流动性是决定充型能力的内在因素,而充型能力还取决 于其它外界因素,充型能力是内因和外因的共同结果。
通常,在相同的外界条件下浇注各种合金的流动性试样, 以试样的长度表示该合金的流动性,并以所测得的合金 流动性表示合金的充型能力。因此可以认为:合金液流 动性是确定条件下的充型能力。 对于同一种合金,也可以用流动性试样研究各铸造工艺 因素对其充型能力的影响。
2.3 影响充型能力的因素
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
液态金属充型能力概念
液态金属充型能力:在充型过程中,液态金属 充满铸型型腔,获得形状完整、尺寸精确、轮廓
清晰的铸件的能力。也可简称为充型能力。
充型能力是设计浇注系统的重要依据之一。
国家级精品课程
影响充型能力的因素
1. 金属性质方面的因素 (流动性的高低) 2. 铸型性质方面的因素
3. 浇注条件方面的因素 4. 铸件结构因素
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
1. 金属性质方面的因素
结晶温度范围的影响 结晶潜热、比热、密度的影响 金属其它因素的作用
砂成分的配比、砂型的紧实度等因素有关。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
表2-3 几种铸型材料的蓄热系数
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
合肥工业大学材料科学与工程学院制作
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版) 金属液粘度的影响(充型后期)
国家级精品课程
金 属 其 它 因 素 的 作 用
(液态金属的粘度与成分、温度、固相微粒的含量 等相关)
金属液表面张力的影响
(降低金属表面张力可提高金属液的流动性:铸型通
3、浇注条件方面的因素
浇注温度越高、充型压 头越大,则液态金属的充 型能力越好; 浇注系统(直浇道、横
浇道、内浇道)的复杂程
度,铸件的壁厚与复杂程 度等也会影响液态金属的 充型能力。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
图1-21 Fe-C合金流动性与成分的关系
充型能力弱,则可能产生浇不足、冷隔、砂眼、
铁豆、抬箱,以及卷入性气孔、夹砂等缺陷。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版) 液态金属的充型能力取决于:
国家级精品课程
内因 —— 金属本身的流动性
外因 —— 铸型性质、浇注条件、铸件结构等 因素的影响,是各种因素的综合反映。
具有宽结晶温度范围的合金:流动性不好;
例:Fe-C合金流动性与成分的关系
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
合金液的比热、密度越大,导热系数越小, 充型 能力越好; 结晶潜热(约为液态金属热量的85~90%):
对于纯金属、共晶和金属间化合物成分的合金,放
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
合金的螺旋形流动性实验
在相同的条件下浇注各 种合金的流动性试样, 以试样的长度表示该合
金的流动性,并以所测
得的合金流动性表示合
金的充型能力。
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
1. 金属性质方面的因素 成分 结晶温度范围的影响
纯金属、共晶和金属间化合物成分的合金:在固 定的凝固温度下,已凝固的固相层由表面逐步向
内部推进,固相层内表面比较光滑,对液体的流
动阻力小,合金液流动时间长,所以流动性好
《材料成形基本原理》(第3版)
国家级精品课程
液态金属停止流动机理与充型能力
前端析出15~20%的固相量 时,流动就停止。
充型能力强
纯金属、共晶成分合金及结晶温度 很窄的合金停止流动机理示意图 宽结晶温度合金停止 流动机理示意图
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
表2-1 不同金属和不同铸造方法的铸件最小壁厚
金属种类 灰 铸 铁 铸 砂 3 型 件 >4 最 小 壁 厚 (mm) 壳 型 压 -铸 0.8-1.5
金 属 型
熔模铸造 0.4-0.8


4
3
8-10
3-4
0.5-1.0
--
2.5
--
-0.6-0.8
铝 合 金
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
国家级精品课程
Al-Si合金,最好流动性并不在 共晶成分Si12.6%处,而是 在含Si量为16~20%左右。 这是因为Si晶体结晶潜热为 180.7×104J/kg,为αAl(38.9×104J/kg)的4倍以上, 而且,过共晶成分Al-Si合金 的初生块状Si强度较低,不 容易形成坚固的枝晶网络, 结晶潜热的作用得以发挥。
越短,充型能力下降。
b2
2 c2 2
b2越大,铸型的激冷能力就越强,金属液于其中保持液态的时间就
金属型(铜、铸铁、铸钢等)的蓄热系数b2是砂型的十倍或数十倍
以上,为了使金属型浇口和冒口中的金属液缓慢冷却,常在一般的 涂料中加入b2很小的石棉粉。
湿砂型的b2是干砂型的2倍左右,砂型的b2与造型材料的性质、型
搅拌或电磁搅拌,可大大改进合金的表观粘度)
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
国家级精品课程
2、铸型性质方面的因素
铸型的蓄热系数
出的潜热越多,凝固过程进行的越慢,流动性越好, 因此潜热的影响较大; 对于宽结晶温度范围的合金潜热对流动性影响较小: 因固相比较少时液流前端就形成骨架而停止流动
其它举例:Al-Si、Al-Mg、铸铁等
合肥工业大学材料科学与工程学院制作
普通高等教育“十二五”国家级规划教材
《材料成形基本原理》(第3版)
常与金属液的润湿角大于90o,型腔内薄壁和棱角处合 金液形成凸面,表面张力的附加力指向液体内部,阻碍 金属液对型腔细薄、棱角部位的填充)
变质及孕育处理的影响
(Na及Sr变质处理都在不同程度上降低亚共晶和共 晶Al-Si合金液流动性;P对过共晶Al-Si 类似)
工艺条件对半固态金属浆料流动性的影响 (较宽结晶温度范围的合金,在半固态温度以机械
相关文档
最新文档