9_工程结构实例有限元分析

合集下载

板结构有限元分析实例详解

板结构有限元分析实例详解

板结构有限元分析实例详解板结构是一种常见的结构形式,广泛应用于建筑、航空航天、机械、电子等领域。

板结构的特点是结构主要由板和边界构件组成,受到外加载荷作用时,产生弯曲和剪切变形。

为了评估板结构的强度和稳定性,可以使用有限元分析方法进行分析。

本文将以一座大跨度板结构为例,详解板结构有限元分析的步骤及其相关实例。

首先,我们需要对板结构进行几何建模。

通常情况下,板结构可以简化为二维平面问题。

我们可以使用专业的有限元分析软件,如ANSYS、ABAQUS等,进行几何建模。

在建模过程中,需要确定结构的几何形状、边界条件、加载方式等参数。

以一块长方形板作为例子,我们可以在软件中创建一个二维平面,并定义板的几何尺寸和材料属性。

接下来,我们需要对板结构进行网格划分。

有限元分析方法将结构划分为许多小的单元,然后对每个单元进行分析计算。

在板结构分析中,常用的单元类型包括矩形单元、三角形单元、四边形单元等。

我们可以根据实际需要选择适当的单元类型和网格密度,并利用软件自动生成板结构的网格。

然后,我们需要为板结构定义边界条件。

边界条件包括支撑条件和加载条件两个方面。

支撑条件描述了板结构受力的边界,通常包括固定支撑、滑动支撑、自由支撑等情况。

加载条件描述了外力或外载荷施加在板结构上的方式和大小。

在我们的例子中,假设板结构的四个边界均为固定支撑,我们可以在软件中设置相应的边界条件。

之后,我们需要为板结构定义材料属性。

板结构的材料属性包括弹性模量、泊松比、密度等参数。

这些参数描述了板结构在受力时的材料性能和特性。

我们需要根据实际的材料情况,为板结构指定合适的材料属性,并在软件中进行设置。

最后,我们可以对板结构进行有限元分析计算。

在软件中,我们可以选择合适的求解器和分析方法,进行结构的静力分析、动力分析、稳定性分析等。

通过有限元分析,我们可以得到板结构在受力状态下的变形、应力分布、应变分布等结果。

总之,通过板结构的有限元分析,我们可以对结构的强度、稳定性、振动等性能进行评估和优化。

有限元分析报告

有限元分析报告

有限元分析报告
有限元分析是一种工程结构分析的方法,它可以通过数学模型和计算机仿真来
研究结构在受力情况下的应力、应变、位移等物理特性。

本报告将对某桥梁结构进行有限元分析,并对分析结果进行详细的阐述和讨论。

首先,我们对桥梁结构进行了几何建模,包括梁柱节点的建立以及材料属性的
定义。

在建模过程中,我们考虑了桥梁结构的实际工程情况,包括材料的弹性模量、泊松比、密度等参数的输入。

通过有限元软件对桥梁结构进行离散化处理,最终得到了数学模型。

接着,我们对桥梁结构施加了实际工况下的荷载,包括静载、动载等。

通过有
限元分析软件的计算,我们得到了桥梁结构在受力情况下的应力、应变分布,以及节点位移等重要参数。

通过对这些参数的分析,我们可以评估桥梁结构在实际工程情况下的安全性和稳定性。

在分析结果中,我们发现桥梁结构的主要受力部位集中在梁柱节点处,这些地
方的应力、应变值较大。

同时,桥梁结构在受力情况下产生了较大的位移,需要进一步考虑结构的刚度和稳定性。

基于这些分析结果,我们提出了一些改进和加固的建议,以提高桥梁结构的安全性和可靠性。

综合分析来看,有限元分析是一种非常有效的工程结构分析方法,它可以帮助
工程师们更加深入地了解结构在受力情况下的物理特性,为工程设计和施工提供重要的参考依据。

通过本次桥梁结构的有限元分析,我们不仅可以评估结构的安全性,还可以为结构的改进和优化提供重要的参考意见。

总之,有限元分析报告的编制不仅需要对结构进行准确的建模和分析,还需要
对分析结果进行科学的解读和合理的讨论。

只有这样,我们才能为工程结构的设计和施工提供更加可靠的技术支持。

有限元分析实例

有限元分析实例
轻型货车普通变截面 钢板弹簧有限元分析
机械与动力工程学院
26
1.钢板弹簧的作用
承载
导向
减振
缓和冲击
国内外研究现状
钢板弹簧的垂直方向载荷的计算上常用计算方法:
三角形板法 :假设各弹簧片为一个整体的三角形板
国 内
板端接触法
:假设力在各片弹簧间的传递仅靠各片 端来完成
共同曲率法 :假定各片的弯曲具有共同的曲率
第二,在同一工况下,例如在标定功率工况下,当活 塞的活塞顶圆角半径的变化是5 mm , 6 mm , 3 mm , 2 mm时,活塞的最高温度变化为: 361.15℃~180.96℃ ,356.94℃~180.01℃, 369.78℃~182.24℃ , 373.88℃~183.7℃。这是因为当 活塞的活塞顶圆角半径变大时,燃烧室容积变大,压 缩比变小,活塞的整体温度降低了。当活塞的活塞顶 圆角半径变小时,燃烧室容积变小,压缩比变大,活 塞的整体温度升高了。所以在设计活塞的活塞顶圆角 时应在不影响其结构时尽可能的大一点。本文中活塞 顶圆角半径为6 mm的活塞是相对较好的。
满载应力分析(少片)
最大应力 =280.68MPa<材料许
用应力=1000MPa
结论
1.对板簧的结构与尺寸设计的强度方面的校核与有限元分析 表明校核的结果符合相关技术要求。
2.在相同条件以及同样寿命的前提下,使用少片变截面钢板 弹簧,重量大约比多片弹簧减少50%左右。
基于Workbench 对发动机活塞的温度场分析
有限元结课汇报
主讲人:尹振华
主 1、基于Workbench的曲柄连杆组动力学分析——
要 成
2、基于ANSYS刹车盘应力分析——
员 及

有限元实例分析

有限元实例分析

作业一:有限元分析实例实例:请对一个盘轴配合机构进行接触分析。

轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。

盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。

问题分析说明(1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。

由于为过盈配合,属于大变形,故应考虑几何非线性的影响。

(2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计算时间。

分析过程由两个载荷步组成, 第一个载荷步为过盈分析, 求解过盈安装时的情况。

第二个载荷步为将轴从盘心拔出时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的接触应力。

它们都属于大变形问题, 属于非线性问题。

在分析时需要定义一些非线性选项来帮助问题的收敛。

(3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。

模型建立的分析说明(1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。

盘轴接触问题属于面面接触, 目标面和接触面都是柔性的,将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接触面。

分别创建名为为part1、part2的部件。

(2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入0 . 3,并将定义的材料属性赋予给part1和part2。

如下图所示。

(3)进入装配模块,创建两者间的装配关系。

(4)进入分析步模块定义名为step1和step2的两个分析步。

(5)进入相互作用模块,创建相互作用属性,设置摩擦系数;然后定义接触关系。

如下图所示。

(6)进入载荷模块,创建边界条件,依次定义名为BC -2(类型为:完全固定)、BC -3(类型为:位移/转角,约束U1、UR3),分析步均为Initial 。

有限元分析及应用课件

有限元分析及应用课件
参数设置
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。

有限元-结构静力学分析

有限元-结构静力学分析

03
结果优化
如果结果不满足设计要求,需要对有 限元模型进行优化设计,如改变梁的 截面尺寸、增加支撑等。
THANKS
谢谢您的观看
结构静力学的求解方法
解析法
解析法是通过数学方法求解结构在静载荷作用下的响应的求解方法。它通常 适用于具有简单几何形状和载荷条件的结构,如梁、板、壳等。
数值法
数值法是一种通过数值计算方法求解结构在静载荷作用下的响应的求解方法 。它通常适用于具有复杂几何形状和载荷条件的结构,如飞机、汽车等。
结构静力学的基本假设和简化
问题描述和基本方程
问题描述
弹性地基梁是支撑在弹性地基上的梁,受到垂直荷载的作用。该问题可描述为求 解地基反力和梁的挠度。
基本方程
该问题的基本方程包括梁的平衡方程、几何方程和物理方程。这些方程描述了梁 在受力后的变形和应力分布情况。
利用有限元法进行每个单元之间通过节点相连。每个节点具有三个自由度:沿 x、y、z方向的移动。
系统方程的建 立
将所有单元的平衡方程 和变形协调方程组合起 来,得到整个结构的系 统方程。
求解系统方程
利用数值方法(如高斯 消元法)求解系统方程 ,得到每个节点的位移 和应力。
结果分析和讨论
01
结果输出
输出每个节点的位移、应力、应变和 弯矩等结果。
02
结果评估
根据输出结果,对框架结构的强度、 刚度和稳定性进行评估,判断是否满 足设计要求。
连续性假设
结构静力学的基本假设是结构的材料是连续的, 即结构的内部没有空隙和缺陷。
各向同性假设
结构静力学的基本假设是结构的材料是各向同性 的,即结构的各个方向具有相同的材料性质。
均匀性假设
结构静力学的基本假设是结构的材料是均匀的, 即结构的各个部分具有相同的材料性质。

结构有限元分析 (2)

结构有限元分析 (2)

结构有限元分析1. 简介结构有限元分析是工程领域中一种常用的数值分析方法,用于解决结构载荷下的应力、变形和振动问题。

通过将复杂的结构分成有限个简单的单元,通过求解每个单元的应力和位移,再将它们组合得到整个结构的应力和位移场。

有限元方法广泛应用于各种工程领域,如土木工程、机械工程和航空航天工程等。

2. 有限元分析的基本原理有限元分析的基本原理是建立结构的有限元模型,然后通过求解有限元模型的力学方程,得到结构的应力和位移场。

有限元模型通常由节点和单元构成。

节点是结构中的关键点,单元是连接节点的构造单元,常用的单元包括三角形单元、四边形单元和六面体单元等。

通过对单元的弯曲、伸长等变形进行逼近,可以得到结构的位移场。

然后,根据位移场和材料的力学性质,可以计算结构的应力场。

3. 有限元分析的步骤有限元分析通常包括以下步骤:步骤1:离散化将结构分成有限个单元,并为每个单元选择合适的单元类型。

步骤2:建立单元刚度矩阵根据每个单元的几何形状、材料性质和节点位移,建立单元的刚度矩阵。

步骤3:建立全局刚度矩阵将所有单元的刚度矩阵组装成全局刚度矩阵。

步骤4:应用边界条件根据结构的边界条件,将边界节点的位移固定或施加给定的载荷。

步骤5:求解线性方程组根据边界条件将全局刚度矩阵和载荷向量进行约束,然后通过求解线性方程组得到结构的位移。

步骤6:计算应力和应变根据得到的位移场和材料的力学性质,计算结构的应力和应变场。

4. 有限元分析的应用领域有限元分析是一种非常灵活和广泛应用的方法,可以用于解决各种结构工程中的力学问题,包括:•结构静力学分析:用于计算结构的应力和变形。

•结构动力学分析:用于计算结构的振动频率和模态形状。

•结构优化设计:通过调整结构的几何形状、材料和边界条件,实现结构的最佳设计。

•结构疲劳分析:用于评估结构在长期应力加载下的疲劳寿命。

有限元分析在工程实践中得到了广泛应用,可以帮助工程师在设计和优化结构时做出准确的决策。

在土木工程中有限元运用的实例

在土木工程中有限元运用的实例

在土木工程中有限元运用的实例哎,说起土木工程里有限元法的运用啊,那可真是无处不在,用处多多。

你想啊,土木工程师们天天跟高楼大厦、桥梁隧道打交道,这些玩意儿结构复杂,受力情况也五花八门,光靠经验和直觉,那哪行?所以啊,有限元法就成了他们的得力助手。

我就拿我自己身边的事儿来说吧,前两年我参与了一个大型商业综合体的建设项目,那可真是个大工程,好几栋高楼,底下还有好几层的商业裙楼,再加上地下室,结构复杂得跟迷宫似的。

在设计阶段,我们团队就遇到了一个大难题,就是那个商业裙楼和塔楼交接的地方,受力特别复杂,各种剪力、弯矩、扭矩都搅和在一起,让人头疼不已。

这时候,有限元法可就派上用场了。

我们用专业的有限元分析软件,把整个结构模型建立起来,然后输入各种材料参数、荷载条件,接着就让软件去跑计算。

说实话,那软件跑起来可真是费时费力,得等上好几天才能出结果,但你别说,等结果一出来,那受力分布图、变形图、应力图,一目了然,清清楚楚。

你瞧,那交接处的受力情况,通过有限元分析,我们就能清楚地看到哪些地方应力集中,哪些地方变形过大,这样就能有针对性地优化设计方案。

比如说,我们发现某个部位的应力超出了材料的许用应力,那我们就得加强那里的配筋,或者调整结构尺寸,让应力分布得更均匀一些。

这样一来,整个结构的安全性就大大提高了,咱们心里也踏实多了。

再来说说桥梁工程吧。

我有一次去参观了一座刚建成的大桥,那桥可真壮观,横跨在一条大江之上,气势恢宏。

我跟大桥的设计师聊了聊,他告诉我,在设计这座桥的时候,他们也用了有限元法。

你想啊,那桥那么长,那么重,还得承受各种车辆荷载、风荷载,甚至还得考虑地震的影响,这受力情况得多复杂啊!设计师们就用有限元法对整个桥梁结构进行了详细的受力分析。

他们考虑了各种可能的荷载组合,还模拟了桥梁在各种极端条件下的变形和应力分布。

这样一来,他们就能准确地评估出桥梁的承载能力和安全性,确保大桥在各种情况下都能稳稳当当的。

应用有限元分析工程实例

应用有限元分析工程实例

结构稳定性分析
总结词
结构稳定性分析研究结构在各种载荷作用下的失稳临界状态,包括屈曲、后屈曲和流动 等。
详细描述
结构稳定性分析是评估结构在各种载荷作用下的稳定性的关键环节。通过结构稳定性分 析,可以确定结构的失稳临界点,预测结构的极限承载能力。在进行结构稳定性分析时, 需要考虑结构的形状、支撑条件、材料属性和外部载荷等因素,以准确评估结构的稳定
局限性
有限元分析需要耗费大量的计算资源 和时间,对于大规模系统可能存在计 算效率低下的问题,同时对于某些复 杂问题可能需要建立较为精细的模型, 导致计算成本增加。
有限元分析的应用领域
01
02
03
04
工程结构分析
广泛应用于机械、航空、土木 、交通等领域,用于分析结构 的强度、刚度、稳定性等。
流体动力学分析
工程实例应具有实际应用价值,能够为相关领域提 供参考和借鉴。
难度适中
工程实例的难度应适中,既不过于复杂也不过于简 单,能够保证分析过程的完整性和可靠性。
工程实例背景介绍
工程实例名称:某桥梁工程
工程背景:该桥梁位于高速公路上,是连接两个城市的交通要道。桥梁全长1000 米,主跨为300米,设计载荷为公路一级。由于该桥跨越峡谷,主跨跨度较大, 因此需要进行详细的有限元分析来确保结构安全。
工程实例问题描述
02
01
03
问题一
该桥梁在承受载荷时,各部分的应力分布情况如何?
问题二
该桥梁在不同载荷下的变形情况如何?
问题三
该桥梁的稳定性如何?
03
有限元模型的建立
模型建立的原则与步骤
模型建立的原则
真实反映实际结构、合理划分网 格、选择合适的边界条件和载荷 。

有限元分析实例范文

有限元分析实例范文

有限元分析实例范文假设我们正在设计一个桥梁结构,希望通过有限元分析来评估其受力情况和设计是否合理。

首先,我们需要将桥梁结构进行离散化,将其分为许多小的有限元单元。

每个有限元单元具有一定的材料性质和几何形状。

接下来,我们需要确定边界条件和加载条件。

例如,我们可以在桥梁两端设置固定边界条件,然后通过加载条件模拟车辆的载荷。

边界条件和加载条件的选择需要根据实际情况和设计要求来确定。

然后,我们需要选择适当的有限元模型和材料模型。

有限元模型选择的好坏将直接影响分析结果的准确性。

材料模型需要根据材料的弹性和塑性性质来选择合适的模型。

接下来,我们可以使用有限元软件将桥梁结构的离散化模型输入计算。

有限元软件将自动求解结构的受力平衡方程,并得出结构的应力和位移分布。

通过分析这些结果,我们可以评估桥梁结构的强度、刚度和稳定性等性能。

最后,根据有限元分析结果进行设计优化。

如果发现一些部分的应力过大,我们可以对设计进行调整,例如增加材料厚度或增加结构的增强筋。

通过不断优化设计,我们可以得到一个满足强度和刚度要求的桥梁结构。

需要注意的是,有限元分析只是工程设计中的一个工具,分析结果需要结合实际情况和工程经验来进行判断。

有限元分析的准确性也取决于离散化的精度、边界条件和材料模型等的选择。

总之,有限元分析是一种重要的工程分析方法,可以用于评估结构的受力情况和设计是否合理。

通过有限元分析,我们可以优化结构的设计,提高结构的性能和安全性。

希望以上例子对你对有限元分析有所了解。

有限元结构静力学分析

有限元结构静力学分析

04
有限元结构静力学的应用实例
工程实例一:桥梁结构的静力分析
总结词
桥梁结构的静力分析是有限元结构静力学分析的重要应用之一,通过分析可以获取桥梁在不同载荷条件下的变 形和应力分布,为桥梁设计提供依据。
详细描述
桥梁结构的静力分析通常需要考虑重力、车辆载荷、风载荷等作用,利用有限元方法可以将桥梁离散化为有限 个单元,并通过对单元进行刚度分析和受力分析,得到桥梁的位移和应力分布。根据分析结果,可以优化桥梁 设计,提高其承载能力和安全性。
建立有限元模型
选择合适的单元类型
建立节点坐标系
根据结构的形状和受力特性选择合适的单元 类型,如三角形、四面体、梁、壳等。
确定每个节点的三维坐标,为单元划分和节 点连接提供基础。
划分单元网格
定义材料属性
根据节点坐标系将结构划分为相应的单元网 格。
为每个单元赋予相应的材料属性,如弹性模 量、泊松比、密度等。
有限元分析中的参数不确定 性以及误差控制是一个重要 问题,需要发展更有效的误 差控制和不确定性量化方法 ,以保证分析结果的可靠性 和精度。
06
参考文献
参考文献
01
02
03
《有限元法基本原理与 数值方法(第二版)》 ,陆明万、罗学富 著, 清华大学出版社,1997
年。
《有限元法教程(第二 版)》,王勖成 著,清 华大学出版社,2004年
有限元结构静力学分析与人工智 能、机器学习等技术的结合,使 得分析过程更加智能化,能够自 动优化模型、选择合适的参数, 提高分析效率。
有限元结构静力学分析与材料科 学、流体动力学、热力学等领域 的交叉融合,使得分析结果更加 全面和准确,为工程设计和优化 提供更好的支持。

结构有限元分析中的网格划分技术及其应用实例

结构有限元分析中的网格划分技术及其应用实例

结构有限元分析中的网格划分技术及其应用实例一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。

网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。

从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。

同理,平面应力和平面应变情况设计的单元求解方程也不相同。

在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。

辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。

由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。

CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种方法。

Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。

现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。

在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。

其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。

数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。

在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。

这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。

有限元分析在工程设计中的应用案例分析

有限元分析在工程设计中的应用案例分析

有限元分析在工程设计中的应用案例分析有限元分析,简称FEA(Finite Element Analysis),是一种利用数值计算方法对复杂结构进行力学分析的技术。

它基于物理学原理,利用离散化方法将连续的结构在有限元上分解成多个互相联系但是局部地独立的单元,再通过数学算法进行求解,最终得到整个结构的力学行为。

因为它可以减少试错周期、降低开发成本和提高产品性能,所以有限元分析已经成为当今工程设计和生产领域一项非常重要的技术。

本文将介绍一些有限元分析在工程设计中的具体应用案例。

1.汽车发动机壳体优化汽车发动机壳体是承载引擎所有关键部件的重要结构,其制造复杂度很高。

为了减少开发过程中的试验成本和时间,一家风机厂专门利用有限元分析技术对汽车发动机壳体进行优化设计。

更改前发动机壳体在经过一定的较高频振动时会存在密封性能下降的现象,需要进行加强设计。

利用有限元分析技术,他们对发动机壳体进行了动力学分析,并计算了各部位的振动位移和应力分布,通过不断地修改控制点的位置和形状来提高振动阻尼性能和密封性能。

最终确定了优化方案,成功地减少了振动,提高了发动机壳体的防震性能和密封性能。

2.建筑物钢框架分析建筑物钢框架是建筑结构的重要组成部分,其承载能力和组装结构设计都需要严格控制。

如何选取更好的工艺和材料来设计出更安全可靠的钢框架结构,被许多建筑设计公司所思考。

有限元分析技术的应用可以帮助工程师确定结构的承载能力,最大应力极限和变形情况,进而实现结构的优化。

一家建筑设施的设计公司利用有限元分析技术来优化钢框架的结构,计算具体承载状况,最终确定钢框架结构的有效设计方案。

这一个优化设计方案进一步增强了建筑物钢框架的承载能力,提高了项目的整体优势性。

3.飞机负荷分析航空工业是重要的现代国家产业之一。

飞机设计、测试和生产都需要极高的准确性,而这需要大量的场地、人力和物资投入。

一家工程公司成功地利用有限元分析技术对飞机进行负荷分析并评估整体结构的强度和刚度。

有限元模态分析实例

有限元模态分析实例

有限元模态分析实例有限元模态分析是一种用数学方法对结构物的振动特性进行分析的工程方法。

在设计和优化结构时,对结构的模态进行分析是十分重要的。

通过模态分析可以获得结构的固有频率、模态形态以及模态阻尼等信息,为结构的设计和工程优化提供依据。

下面将介绍一个有限元模态分析的实例。

工程项目中有一座长桥,设计要求对该桥进行模态分析,以评估其振动特性和优化设计。

桥梁的整体结构是由主梁和横梁构成。

在进行模态分析之前,首先进行了有限元建模。

主梁和横梁的几何尺寸、材料性质和截面形状被纳入有限元模型中。

通过有限元分析软件对桥梁进行了静力分析,确定了主梁和横梁的应力分布和变形情况。

在静力分析的基础上,进行了模态分析。

在模态分析中,首先得到了桥梁的固有频率。

固有频率是结构在没有外部激励作用下自发振动的频率,也可以理解为结构的固有振动频率。

通过固有频率的计算,可以得到结构的自由振动周期。

接下来,得到了桥梁的模态形态。

模态形态是固有振动状态下结构各个节点的振型。

通过模态形态的计算,可以了解结构在不同频率下的振动模式,进一步评估结构的振动特性。

最后,得到了桥梁的模态阻尼。

模态阻尼是结构在振动过程中能量耗散的程度。

结构的阻尼特性对于振动特性的评估和结构的设计优化具有重要影响。

对模态分析的结果进行评估,发现一些模态频率较接近结构的主要激励频率,存在共振现象。

为了消除共振现象,采取了一些优化措施,如增加结构的刚度、改变材料性质等。

通过有限元模态分析,得到了桥梁的固有频率、模态形态和模态阻尼等信息,为结构的设计和工程优化提供了依据。

基于模态分析的结果,进行了优化设计和改进措施,提高了结构的振动特性和抗震能力。

总之,有限元模态分析是一种重要的工程分析方法,通过模态分析可以评估结构的振动特性,并为结构的设计和工程优化提供依据。

符合桥梁的模态分析在设计和改进中的实践,对于确保工程质量和结构的稳定性具有重要意义。

有限元分析实例

有限元分析实例

有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。

本文将以一个实例来介绍有限元分析的基本过程和步骤。

实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。

假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。

我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。

有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。

常用的网格划分方法有三角形划分、四边形单元划分等。

根据具体问题的要求和复杂度,选择合适的划分方法。

单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。

在弯曲问题中,常见的单元模型有梁单元、壳单元等。

在本实例中,我们选择梁单元作为杆件的单元模型。

对于梁单元,我们需要定义每个节点的位移和约束条件。

根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。

材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。

对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。

加载条件可以包括集中力、均布力、弯矩等。

在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。

单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。

常见的方程模型有刚度矩阵方法、位移法等。

根据所选的单元模型,选择合适的方程模型进行计算。

通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。

将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。

结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。

通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。

有限元分析实验报告

有限元分析实验报告

有限元分析实验报告有限元分析实验报告一、实验基本要求根据实验指导书的要求能够独立的使用ANSYS 软件操作并在计算机上运行,学会判断结果及结构的分析,学会建立机械优化设计的数学模型,合理选用优化方法,独立的解决机械优化设计的实际问题。

二、实验目的1. 加深对机械优化设计方法的理解2. 掌握几种常用的最优化设计方法3. 能够熟练使用ANSYS 软件操作,培养学生解决案例的能力4. 培养学生灵活运用优化设计方法解决机械工程中的具体实例三、实验软件及设备计算机一台、一种应用软件如ANSYS四、实验内容实验报告例题实训1——衍架的结构静力分析图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y , 衍架的尺寸已在图中标出,单位: m。

试计算各杆件的受力。

其他已知参数如下: 弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的2横截面积A=0.125m.一、 ANSYS8.0的启动与设置图2-2 衍架结构简图1.启动。

点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。

图2-4 Preference 参数设置对话框2.功能设置。

电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。

本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。

3.系统单位设置。

由于ANSYS 软件系统默认的单位为英制,因此,在分析之前,应将其设置成国际公制单位。

在命令输入栏中键入“/UNITS,SI ”,然后回车即可。

(注:SI 表示国际公制单位)二单元类型,几何特性及材料特性定义1.定义单元类型。

2.定义几何特性。

3.定义材料特性。

三衍架分析模型的建立1.生成节点。

UG有限元分析第9章

UG有限元分析第9章

设置参数
单击该命令
单击确定命令
2)求解
单击【Solution 1】节点,右键单击弹出的【求解】命令,弹出【求解】对话框,单 击【确定】按钮。稍等相关窗口出现,等待出现【作业已完成】的提示后,如图所示, 关闭各个信息对话框。双击出现的【结果】节点,即可进入后处理分析环境。
后处理导航器 新增节点
解算监视器信 息状态
5)结果查看
在【后处理导航器】窗口出现了结构约束模态计算结果,如图所示显示出副车架系统 结构在约束状态下的第1至第4阶的频率值,分别为第1阶固有频率97.20Hz,第2阶固 有频率为118.8 Hz,第3阶固有频率为157.5 Hz。 约束模态计 算结果情况
6)模式1下云图查看
展开【模式1】、【位移-节点的】,双击【幅值】节点即可在窗口出现模型在第1阶频 率97.20Hz共振时的变形云图,如图所示。


2017/8/12
第1阶约束模态 整体振型云图
7)模式2下云图查看
展开【模式2】、【位移-节点的】,双击【幅值】节点即可在窗口出现模型在第2阶频 的变形云图,如图所示。
第2阶约束模态 整体振型云图
8)模式3下云图查看
展开【模式3】、【位移-节点的】,双击【幅值】节点即可在窗口出现模型在第3阶频 的变形云图,如图所示。
设置相关 参数
单击确定
2)指派材料
单击工具栏中的【指派材料】图标,弹出
【指定材料】对话框;
设置相关 参数
单击确定
3)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
选择材料
单击【创建】
单击【确定】
4)网格属性定义
单击工具栏中的【网格收集器(俗称为:网格属性定义)】图标,弹出【网格捕集器】 对话框

ANSYS有限元分析实例

ANSYS有限元分析实例

ANSYS有限元分析实例1.悬臂梁的结构分析悬臂梁是一种常见的结构,其呈直线形式,一端固定于支撑点,另一端自由悬挂。

在这个分析中,我们将使用ANSYS来确定悬臂梁的最大弯曲应力和挠度。

首先,我们需要创建悬臂梁的几何模型,并给出其材料属性和加载条件。

然后,在ANSYS中创建有限元模型,并进行网格划分。

接下来,进行力学分析,求解材料在给定加载下的应力和位移。

最后,通过对结果的后处理,得出最大弯曲应力和挠度。

2.螺旋桨的流体力学分析螺旋桨是一种能够产生推力的旋转装置,广泛应用于船舶、飞机等交通工具中。

螺旋桨的流体力学分析可以帮助我们确定其叶片的受力情况和推力性能。

在这个分析中,我们需要建立螺旋桨的几何模型,并给出流体的流速和压力条件。

然后,我们在ANSYS中创建螺旋桨的有限元模型,并进行网格划分。

通过求解流体场方程,计算叶片上的压力分布和受力情况。

最后,通过对结果的后处理,得出叶片的受力情况和推力性能。

3.散热片的热传导分析散热片是一种用于散热的装置,广泛应用于电子设备、电脑等领域。

散热片的热传导分析可以帮助我们确定散热片在给定热源条件下的温度分布和散热性能。

在这个分析中,我们需要建立散热片的几何模型,并给出材料的热导率和热源条件。

然后,我们在ANSYS中创建散热片的有限元模型,并进行网格划分。

通过求解热传导方程,计算散热片上各点的温度分布。

最后,通过对结果的后处理,得出散热片的温度分布和散热性能。

以上是三个ANSYS有限元分析的实例,分别涉及结构分析、流体力学分析和热传导分析。

通过这些实例,我们可以充分展示ANSYS在不同领域的应用,并帮助工程师和科研人员解决工程问题,提高设计效率和产品性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xz
0.25 0.25 0.15 0.25 0.332 0.332 0.3 0.25 0.27 0.27
G xy
17.0 7.4 0.37 0.62 3.6 3.6 16.9 2.808 83.46 27.2
G yz
17.0 7.4 0.37 0.62 3.6 3.6 16.9 2.808 83.46 27.2
某型机垂尾翼尖结构有限元静力分析
有限元静力分析结果
垂尾位移云图
垂尾翼尖结构第1铺层最 大失效指标分布
某型直升机涵道尾桨有限元动力分析
结构简述
某型直升机涵道尾桨叶片结构实体和翼型如下图所示。
y x
某型直升机涵道尾桨叶片结构
桨叶翼型图
某型直升机涵道尾桨有限元动力分析
表给出了桨叶所采用材料的弹性特性数据。除金属材料、泡沫块及膨胀胶膜 为各向同性材料外,其它材料均为正交各向异性材料。
某型机前机身结构静力有限元分析
某型机前机身结构总体有限元分析模型
某型机前机身结构静力有限元分析
载荷及边界条件 前机身结构分析的载荷为气密载荷,气密压强大小为 0.04MPa。气压可通过在蒙皮、气密地板、气密端框简化得到 的壳单元上施加分布载荷来实现。
某型机前机身结构静力有限元分析
在边界条件的处理上,由于气密载荷是自平衡载荷,故理论上 在气密舱段上任意加 6 个独立约束即可。这里,采用在 12 框框缘处 加边界条件,12 框上所有辐射筋与框缘相交处节点的 x 方向自由度 被约束,最左侧和最右侧节点的 x , y 和 z 方向自由度被约束,最下 侧节点的 x 、 y 方向自由度被约束。
FRP蜂窝结构标志底板有限元分析
在表 6 中铝蜂窝的等效弹性模量、泊松比和剪切模量计算公式 如下:
4 t3 4 0.05 Ex Ey Es 68000.0 0.0383MPa 3 3l 3 8
某型机前机身结构静力有限元分析
某型机垂尾翼尖结构有限元静力分析
结构简介
某型机垂尾翼尖设计结构如下图所示。
某型机垂尾翼尖结构有限元静力分析
垂尾翼尖的所有结构件均采用玻璃钢结构,由预浸料铺设 而成,单层厚度为 0.25mm ,单层材料的力学性能数据如下表 所示。
表 1 预浸料的力学性能 常温干燥 湿 热 拉 伸 压 缩 拉 伸 压 缩 23.7 25.8 20.5 27.1 00 模量 GPa 21.9 23.9 18.6 33.8 900 模量 GPa 362 216 223 186.8 00 强度 MPa 296 226.5 184.8 114.7 900 强 MPa 14 10.5 剪切模量 GPa 81 28.8 剪切强度 MPa 0.11 0.093 泊松比
<<结构分析中的有限元法>>
工程结构实例有限元分析
王晓军 航空科学与工程学院固体力学研究所
工程结构实例有限元分析
某型机前机身结构静力有限元分析
某型机垂尾翼尖结构有限元静力分析 某型直升机涵道尾桨有限元动力分析 FRP蜂窝结构标志底板有限元分析 风机塔架的屈曲稳定性分析
某型机前机身结构静力有限元分析
FRP蜂窝结构标志底板有限元分析
有限元分析模型的建立
模型中所使用各向同性材料的性能数据见表 5。
表 5 各向同性材料特性 序号 1 2 3 名称 铝滑槽 预埋件 铆钉 材料 铝合金 铝合金 铝合金 弹性模量 E (MPa) 68000.0 68000.0 68000.0 泊松比(μ ) 0.3 0.3 0.3
某型机垂尾翼尖结构有限元模型
某型机垂尾翼尖结构有限元静力分析
载荷工况 考虑某型机在某飞行状态下,垂尾翼尖结构受到气动载荷 作用,如下图所示。
飞行状态下的气动力分布
某型机垂尾翼尖结构有限元静力分析
边界条件 在边界条件的处理上,为了能更真实的模拟垂尾翼尖的支 撑刚度,将垂尾翼尖的有限元模型向下延伸建立整个垂尾有限 元模型,在垂尾下部加以简支边界条件。
传力路线、承载方式和边界条件等因素的基本原则,将垂尾翼
尖结构离散化为一个有限元分析模型。 由于垂尾翼尖结构为由蒙皮、前后梁、多隔板和天线罩组 成的全复合材料结构,因而将它们均用层合壳单元来离散。垂 尾翼尖有限元模型共包括层合壳单元 1684个,节点1459个。垂
尾翼尖结构蒙皮有限元模型如下图所示。
某型机垂尾翼尖结构有限元静力分析
设备等传来的集中载荷。
某型机前机身结构静力有限元分析
有限元分析模型的建立 根据如实地反映结构的几何形状、构造型式、材料特性、 传力路线、承载方式和边界条件等因素的基本原则,将前机身 结构离散化为一个有限元分析模型。 由于气密舱段形状不规则,其外形切面由圆弧、双曲线甚 至平直线组成,加上由于结构布置上的需要,天窗骨架前部左 右各有一个驾驶员弹射救生抛盖开口,天窗骨架后部有一个操 作员弹射救生抛盖开口,舱段左侧新开有登机门开口,形成一 个复杂结构的气密舱段。在气密载荷作用下,蒙皮不仅受剪应 力,还受弯曲应力;长桁和框不仅受拉伸,还受弯曲。将蒙皮 和隔框腹板等简化为壳单元,长桁、框缘及纵横加筋等简化为 空间梁元。对驾驶员抛盖及操作员抛盖的定位支座与挂钩的连 接采用多点约束(MPC单元)来模拟,二维壳单元向一维梁单元 的过渡通过MPC单元模拟。
Ez
42.5 18.5 0.0185 0.0310 0.1250 125.0 44.0 5.616 212.0 69.0
xy
0.25 0.25 0.15 0.25 0.332 0.332 0.3 0.25 0.27 0.27
yz
0.25 0.25 0.15 0.25 0.332 0.332 0.3 0.25 0.27 0.27
1
90
0
15
30
Hz
45 60 Hz
75
90
挥舞共振图
扭转共振图
FRP蜂窝结构标志底板有限元分析
结构简介 某FRP蜂窝结构标志示意图和标志底板结构三维图如下图 所示。
FRP蜂窝结构标志底板有限元分析
FRP蜂窝结构标志底板为蜂窝夹层结构,底板尺寸为 ,上 下面板为玻璃钢材料,厚度均为1mm;芯层为铝蜂窝,厚度为 23mm;底板内预埋有两金属型材料,截面为空心矩形,宽度 为70mm,壁厚为3mm,长度为1m;用以固定外面的铝滑槽, 长度为600mm,其三维结构如下图所示,铆钉直径为5mm。
某型机前机身结构静力有限元分析
前机身结构传力路线 结构所承受载荷仅考虑气密压力载荷作用。从机身结构 总体受力来说,长桁和大梁用来承受机身弯矩引起的轴力。蒙
皮除了承受全部剪力和扭矩外,还要不同程度地承受轴力的作
用。普通框的作用是维持机身外形,支持机身长桁和蒙皮。加
强框除具有普通框的作用外,还要承受飞机其他部件、组件和
桨叶振动的共振图
900
P(Hz)
P(Hz)
2 1200
750
3
8
1--挥舞一阶 2--挥舞二阶 3--挥舞三阶
1000 800 600
600
7 6 5
1--扭转一阶 2--扭转二阶
450
300
2
4 3 2
1 400 200 0
8 7 6 5 4 3 2 1
150
1
0 0 15 30 45 60 75
二阶振型图
某型直升机涵道尾桨有限元动力分析
考虑离心刚度时桨叶振动特性分析
表 4 桨叶固有频率和振动形式 1 2 3 4 阶次 359.99 430.46 472.83 频率(Hz) 107.87 形式 挥舞 挥舞 摆+挥 扭转 5 820.57 挥舞
一阶振型图
二阶振型图
某型直升机涵道尾桨有限元动力分析
的约反力再将其反加到总体模型的前风挡玻璃框、观测窗框及
12框堵盖口边节点上。因此,总体应力分析时便可只分析除去
前风挡玻璃、观测窗及12框堵盖的整体模型便可。
某型机前机身结构静力有限元分析
某型机前机身结构静力有限元分析
通过MSC.Nastran对总体模型进行应力分析,得出总体模 型中最大壳单元应力为239MPa,最大梁单元应力为387MPa, 壳单元最大位移为19.9mm,梁单元最大位移为8.13mm。
结构简介
某型机前机身结构CATIA模型图
某型机前机身结构静力有限元分析
某型机前机身,包括气密舱段( 5 框 ~12 框)和设备舱段 (3框~5框)。某型机前机身气密舱段是由长桁、纵向大梁、 蒙皮与框组成的半硬壳式舱壁和前、后端框组成,形成一个能 承受气密载荷作用的封闭体。长桁和大梁一般都是穿过隔框直 通的,由型材或机加锻件构成。蒙皮由钣金件构成,按照外形 分为不同块进行加工成型。框一般是由钣弯件制成,受力严重 的加强框则是由锻件或机加件构成。前端框为由纵、横加筋的 平板结构组成;为改善受力特性,后端框为加筋的半球面形结 构。前机身气密舱设有地板,地板由地板纵梁和横梁构成框架, 横梁与机身隔框相连,其上安装有面板,共采用了两种类型的 面板。对于机头部分,下部是前起落架舱,驾驶员地板是气密 的,为金属板,形成气密地板结构。其它部分地板为非气密地 板,采用玻璃钢板。气密舱前部为设备舱。
某型机垂尾翼尖结构有限元静力分析
结构受力特点 垂尾翼尖为由蒙皮、前后梁、多隔板和天线罩构成的无桁 条、少翼肋结构。蒙皮和隔板凸缘承受弯矩引起的轴向力。多
隔板腹板承剪、多闭室承扭,受力高度分散,局部刚度和总体
刚度均较大。
某型机垂尾翼尖结构有限元静力分析
垂尾翼尖结构的有限元模型的建立
根据如实地反映结构的几何形状、构造型式、材料特性、
维结构体单元 Solid92 及 20 节点三维结构体单元 Solid95 。其单
元几何形状如下图所示。
某型直升机涵道尾桨有限元动力分析
Shell99
Solid92
相关文档
最新文档