坐标值转换计算方法
大地坐标及直角空间坐标转换计算公式
![大地坐标及直角空间坐标转换计算公式](https://img.taocdn.com/s3/m/22a32ffcf12d2af90342e655.png)
大地坐标与直角空间坐标转换计算公式一、参心大地坐标与参心空间直角坐标转换1名词解释:A :参心空间直角坐标系:a) 以参心0为坐标原点;b) Z 轴与参考椭球的短轴(旋转轴)相重合;c) X 轴与起始子午面和赤道的交线重合;d) Y 轴在赤道面上与X 轴垂直.构成右手直角坐标系0-XYZ ;e) 地面点P 的点位用(X.Y.Z )表示;B :参心大地坐标系:a) 以参考椭球的中心为坐标原点.椭球的短轴与参考椭球旋转轴重合;b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ;c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ;d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ;e) 地面点的点位用(B.L.H )表示。
2 参心大地坐标转换为参心空间直角坐标:⎪⎭⎪⎬⎫+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2公式中.N 为椭球面卯酉圈的曲率半径.e 为椭球的第一偏心率.a 、b 椭球的长短半径.f 椭球扁率.W 为第一辅助系数ab a e 22-= 或 ff e 1*2-= Wa N B W e =-=22sin *1( XX80椭球参数:长半轴a=6378140±5(m )短半轴b=6356755.2882m扁 率α=1/298.2573 参心空间直角坐标转换参心大地坐标 []N BY X H H e N Y X H N Z B XY L -+=+-++==cos ))1(**)()(*arctan()arctan(22222 二 高斯投影及高斯直角坐标系1、高斯投影概述高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关.与方向无关;3. 离中央子午线越远变形越大为控制投影后的长度变形.采用分带投影的方法。
对数坐标与普通坐标的转换计算
![对数坐标与普通坐标的转换计算](https://img.taocdn.com/s3/m/fff3733df56527d3240c844769eae009581ba239.png)
对数坐标与普通坐标的转换计算对数坐标与普通坐标是数学中常见的两种坐标系统。
它们在不同的场景中都有着各自的优势和适用性。
本文将介绍对数坐标与普通坐标的转换计算方法。
普通坐标系统是我们通常使用的坐标系统,也称为直角坐标系统。
在这个坐标系统中,任意点可以表示为一个有序数对(x, y),其中x表示横坐标,y表示纵坐标。
这种表示方法通过两个数值的大小和正负关系来确定点的位置。
而对数坐标系统则是以对数函数为基础的坐标系统。
在对数坐标系统中,数值的大小代表了对数函数的值,而点的位置则通过数值的指数来表示。
对数坐标系统常用于表示非线性关系,可以将数据的广度差异较大的部分更好地展示出来。
在对数坐标系统中,横坐标通常是以对数形式表示的。
常见的对数坐标包括常用对数坐标(以10为底)、自然对数坐标(以e为底)等。
对于对数坐标与普通坐标之间的转换,下面将分别介绍两种情况的计算方法:1.对数坐标转换为普通坐标:对数坐标转换为普通坐标时,我们需要知道坐标轴上的起始点和单位长度。
以常用对数坐标为例,起始点为(0, 0),单位长度为1,指数表示坐标轴上的位置。
假设需要将对数坐标(x, y)转换为普通坐标(X, Y),计算公式如下:X = 10^xY = 10^y例如,对于对数坐标(2, 3):X = 10^2 = 100Y = 10^3 = 1000则对应的普通坐标为(100, 1000)。
2.普通坐标转换为对数坐标:普通坐标转换为对数坐标时,我们需要知道坐标轴上的起始点和单位长度。
以常用对数坐标为例,起始点为(0, 0),单位长度为1,指数表示坐标轴上的位置。
假设需要将普通坐标(X, Y)转换为对数坐标(x, y),计算公式如下:x = log10(X)y = log10(Y)例如,对于普通坐标(100, 1000):x = log10(100) = 2y = log10(1000) = 3则对应的对数坐标为(2, 3)。
以上就是对数坐标与普通坐标之间的转换计算方法。
施工坐标与测量坐标的换算有哪几种方法
![施工坐标与测量坐标的换算有哪几种方法](https://img.taocdn.com/s3/m/0e4222cdb8d528ea81c758f5f61fb7360b4c2b02.png)
施工坐标与测量坐标的换算有哪几种方法在工程建设领域,施工坐标与测量坐标是两个常用的坐标系统。
施工坐标通常用于指导施工作业,而测量坐标则用于测量和记录实际地理位置。
在实际工作中,经常需要进行施工坐标与测量坐标之间的换算。
下面将介绍几种常见的换算方法。
1. 坐标转换法坐标转换法是最常用的施工坐标与测量坐标换算方法之一。
该方法通过坐标系之间的线性变换关系,将施工坐标转换为测量坐标。
需要注意的是,坐标转换法需要有已知的参考点,并且参考点的坐标在两个坐标系中是已知的。
通过测量这些参考点在两个坐标系中的坐标,可以建立转换参数,再根据转换参数将施工坐标转换为测量坐标。
2. 矩阵变换法矩阵变换法是另一种常用的施工坐标与测量坐标换算方法。
该方法通过矩阵运算将施工坐标转换为测量坐标。
具体步骤包括建立坐标转换矩阵、计算矩阵的逆矩阵以及矩阵乘法运算。
通过这一系列运算,可以将施工坐标转换为测量坐标。
需要注意的是,矩阵变换法也需要有已知的参考点,并且参考点的坐标在两个坐标系中是已知的。
3. 转角测量法转角测量法是一种基于测量方位角的换算方法。
方位角是指物体或点相对于某一参考方向的角度。
在转角测量法中,先测量施工坐标系和测量坐标系中的方位角,并记录下来。
然后根据两个方位角的差值,求得转角。
最后根据转角和已知参考点的坐标,通过三角函数的计算,将施工坐标转换为测量坐标。
4. 公式换算法公式换算法是一种基于数学公式的换算方法。
通过已知的数学公式,将施工坐标与测量坐标进行相互转换。
具体的换算公式根据不同的坐标系和工程要求而定,可以是简单的线性变换公式,也可以是复杂的非线性变换公式。
使用公式换算法的关键是找到适合的公式,并确保公式的准确性和可靠性。
5. 特殊换算法除了上述常见的换算方法之外,根据具体的工程要求,还可以使用一些特殊的换算方法。
这些特殊的换算方法通常与特定的应用领域相关,比如大地坐标系到平面坐标系的换算、高斯投影坐标系到经纬度坐标系的换算等。
坐标系转换问题及转换参数的计算方法
![坐标系转换问题及转换参数的计算方法](https://img.taocdn.com/s3/m/dc98e8c55ef7ba0d4a733b30.png)
坐标系转换问题及转换参数的计算方法对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。
我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。
在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。
我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。
其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。
对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。
这里不多罗嗦。
那么,为什么要做这样的坐标转换呢?因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。
简单的来说,就一句话,减小误差,提高精度。
下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。
说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。
我们都知道,地球是一个近似的椭球体。
因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。
而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。
比如北京54坐标系采用的就是克拉索夫斯基椭球模型。
而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。
WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。
测绘技术中的坐标数据转换方法
![测绘技术中的坐标数据转换方法](https://img.taocdn.com/s3/m/b5cf4319580102020740be1e650e52ea5518ce16.png)
测绘技术中的坐标数据转换方法一、引言在测绘技术中,坐标数据的转换是至关重要的一步。
不同的测绘设备和测量方法得到的坐标数据可能存在差异,为了精确地进行地理信息系统(GIS)分析和地图制作,我们需要将这些坐标数据进行转换。
本文将从旋转法、平移法和缩放法等方面论述测绘技术中的坐标数据转换方法。
二、旋转法旋转法是一种常用的坐标数据转换方法。
它通过将源坐标系旋转到目标坐标系的方法来实现坐标数据的转换。
旋转法的基本原理是根据源坐标系和目标坐标系之间的旋转角度,对源坐标系中的坐标点进行旋转。
一般来说,旋转角度可以通过两个已知点之间的方位角来确定。
旋转法的步骤如下:1. 确定旋转角度:根据已知的方位角计算源坐标系与目标坐标系之间的旋转角度。
2. 坐标旋转:对源坐标系中的每个坐标点进行旋转,得到目标坐标系中的坐标点。
三、平移法平移法是另一种常用的坐标数据转换方法。
它通过将源坐标系平移至目标坐标系的方法来实现坐标数据的转换。
平移法的基本原理是通过计算源坐标系和目标坐标系之间的平移量,将源坐标系中的坐标点平移至目标坐标系中。
平移法的步骤如下:1. 确定平移量:根据已知的两个已知点在源坐标系和目标坐标系中的坐标值,计算源坐标系与目标坐标系之间的平移量。
2. 坐标平移:对源坐标系中的每个坐标点进行平移,得到目标坐标系中的坐标点。
四、缩放法缩放法是一种将源坐标系中的坐标数据按照比例进行放大或缩小的方法,从而实现坐标数据的转换。
缩放法的基本原理是通过计算源坐标系和目标坐标系之间的比例因子,对源坐标系中的坐标点进行比例缩放或放大。
缩放法的步骤如下:1. 确定比例因子:根据已知的两个已知点在源坐标系和目标坐标系中的坐标值,计算源坐标系与目标坐标系之间的比例因子。
2. 坐标缩放:对源坐标系中的每个坐标点进行比例缩放,得到目标坐标系中的坐标点。
五、综合应用实例为了更好地理解坐标数据转换方法的应用,我们来看一个综合的实例。
假设我们需要将一辆汽车的行驶轨迹数据从全球定位系统(GPS)坐标系转换到平面直角坐标系(UTM)。
实时动态(RTK)测量中坐标转换参数计算的几种方法
![实时动态(RTK)测量中坐标转换参数计算的几种方法](https://img.taocdn.com/s3/m/7816cf1a52ea551810a68718.png)
实时动态(RTK)测量中坐标转换参数计算的几种方法摘要:RTK所接收到的数据是WGS-84坐标系下的数据,而我们使用的坐标系一般是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们工程所使用的坐标系坐标。
为此,如何计算这些坐标系统转换参数成为RTK使用过程中的一个非常重要的环节。
关键词:GPS-RTK测量坐标转换1、RTK技术概述实时动态(RTK)测量系统,是GPS测量技术与数据传输技术的结合,是GPS测量技术中的一个新突破。
GPS测量中,静态、快速静态、动态测量都需要事后进行解算处理才能获得待测点的坐标,而RTK测量实时差分定位是一种能够在野外实时得到厘米级精度的测点坐标。
RTK实时测量技术具有全天候、作业效率高、定位精度高、操作简便等优点,因而得到了广泛的应用,而且技术设备越来越先进与方便。
RTK测量系统一般由以下三部分组成:GPS接收设备、数据传输设备、软件系统。
数据传输系统由基准站的发射电台与流动站的接收电台组成,它是实现实时动态测量的关键设备。
2、RTK实时测量坐标参数转换RTK所接收到的数据是WGS-84坐标系下的数据,而我们一般使用的坐标系是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们使用的1954北京坐标系坐标或1980年国家大地坐标系坐标或城市工矿使用的独立坐标系坐标。
为此,如何计算坐标系统转换参数成为RTK使用过程中的很重要的一个环节。
根据RTK的原理,参考站和流动站直接采集的都为WGS84坐标,参考站一般以一个WGS84坐标作为起始值来发射,实时地计算点位误差并由电台发射出去,流动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就可达到固定解,流动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与流动站之间的测量精度。
坐标转换参数计算
![坐标转换参数计算](https://img.taocdn.com/s3/m/a31cda1d814d2b160b4e767f5acfa1c7aa008226.png)
坐标转换参数计算
平移参数:
平移参数是指将一个坐标系中的点平移至另一个坐标系中所需的平移量。
平移参数通常包括x偏移量和y偏移量。
计算平移参数的方法是通过比较两个坐标系中的控制点的坐标值来确定平移量。
通过计算两个坐标系中控制点的x、y坐标值之差,即可得到相应的平移参数。
旋转参数:
旋转参数是指将一个坐标系中的点旋转至另一个坐标系中所需的旋转角度。
旋转参数通常用一个角度或弧度来表示。
计算旋转参数的方法是通过比较两个坐标系中的控制点的坐标值来确定旋转角度。
常用的计算方法包括最小二乘法和最大似然估计法。
缩放参数:
缩放参数是指将一个坐标系中的点缩放至另一个坐标系中所需的缩放比例。
缩放参数通常包括x缩放比例和y缩放比例。
计算缩放参数的方法是通过比较两个坐标系中的控制点的坐标值来确定缩放比例。
通过计算两个坐标系中控制点的x、y坐标值之比,即可得到相应的缩放参数。
其他参数:
除了平移、旋转和缩放参数外,坐标转换还可能涉及其他参数,例如倾斜、挤压等。
这些参数的计算方法与平移、旋转和缩放参数类似,也是通过比较两个坐标系中的控制点的坐标值来确定。
总结:
在进行坐标转换时,常常需要利用一些参数来实现不同坐标系之间的转换。
这些参数包括平移、旋转、缩放以及其他参数。
计算这些参数的方法通常是通过比较两个坐标系中的控制点的坐标值来确定。
通过计算两个坐标系中控制点之间的差异,即可得到相应的转换参数。
不同的坐标转换方法有不同的计算公式和步骤,实际应用时需要根据具体情况选择合适的方法进行计算。
关于经纬度坐标转换的方法
![关于经纬度坐标转换的方法](https://img.taocdn.com/s3/m/741bd00e763231126edb11de.png)
关于经纬度坐标转换的方法一、十进制转换成经纬度把经纬度转换成十进制的方法很简单如下就可以了Decimal Degrees = Degrees + minutes/60 + seconds/3600例:57°55'56.6" =57+55/60+56.6/3600=57.9323888888888114°65'24.6"=114+65/60+24.6/3600=结果自己算!如把经纬度 (longitude,latitude) (205.395583333332,57.9323888888888)转换成坐标(Degrees,minutes,seconds)(205°23'44.1",57°55'56.6")。
步骤如下:1,直接读取"度":2052,(205.395583333332-205)*60=23.734999999920 得到"分":233,(23.734999999920-23)*60=44.0999******** 得到"秒":44.1采用同样的方法可以得到纬度坐标:57°55'56.6"==============二、分带方法1.我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。
字串81∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~ 4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、3 9、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。
新旧坐标的换算方法
![新旧坐标的换算方法](https://img.taocdn.com/s3/m/8802cd2b17fc700abb68a98271fe910ef12dae33.png)
新旧坐标的换算方法
坐标平面座标投影换算:从旧坐标系中抽取地理信息到新坐标系中去。
换算新旧坐标是一个广泛使用的技巧,它可以帮助人们更快地完成任务,没有增加大量的计算工作。
换算新旧坐标有以下几种方法:
1. 加减法:这是换算新旧坐标的最简单的方法,只要根据新坐标的值减去旧坐标的值,就能够算出新面积点的坐标。
2. 相对坐标:相对坐标也称为极坐标,是换算新旧坐标的最常用的方法之一。
它把旧坐标点当作新坐标的原点,再根据新坐标的角度和距离,得出点的坐标。
3. 三角函数:三角函数也是换算新旧坐标的方法之一,在此方法中,主要利用数学函数来求解新坐标的坐标。
4. 迭代方法:在迭代方法中,我们可以把新坐标点根据旧坐标点转换
为新坐标点,迭代求解新坐标的坐标。
5. 高精度转换:这种方法适用于换算新旧坐标时要求更高的精度的情况。
它可以通过拟合曲线,调整拟合参数,获得更高精度的新坐标点。
以上就是换算新旧坐标的常用方法。
通过不同的方法,换算新旧坐标
可以帮你更快完成任务,不用耗费太多时间。
四参数坐标转换步骤
![四参数坐标转换步骤](https://img.taocdn.com/s3/m/61e47a76ff4733687e21af45b307e87100f6f864.png)
四参数坐标转换步骤1. 引言四参数坐标转换是一种常用的地理信息处理方法,用于将不同坐标系下的地理数据进行转换。
本文将介绍四参数坐标转换的基本原理和步骤。
2. 坐标系的基本概念在开始了解四参数坐标转换之前,需要了解一些基本概念。
地理坐标系是用来描述地球表面位置的一种坐标系统。
常见的地理坐标系有经纬度坐标系和投影坐标系。
经纬度坐标系使用经度和纬度来表示地球上的点,而投影坐标系是将地球表面投影到一个平面上,并使用x和y坐标来表示点的位置。
3. 四参数坐标转换的原理四参数坐标转换是一种简化的投影坐标转换方法,它通过四个参数来描述两个坐标系之间的转换关系。
这四个参数分别是平移、旋转、比例因子和误差。
平移参数表示两个坐标系的原点之间的偏移量,旋转参数表示两个坐标系之间的旋转角度,比例因子表示两个坐标系之间的比例关系,误差参数用来补偿转换过程中的误差。
4. 四参数坐标转换的步骤四参数坐标转换的步骤如下:4.1 数据准备首先需要准备两个坐标系下的地理数据,包括源坐标系和目标坐标系下的点的坐标。
这些坐标可以通过GPS测量或其他地理信息系统获取。
4.2 坐标系匹配将源坐标系和目标坐标系进行匹配,确定它们之间的关系。
这个过程需要使用一些参考点来进行匹配,比如在源坐标系下测量一些点的坐标,在目标坐标系下测量同样的点的坐标,并将这些点进行对应。
4.3 参数计算通过匹配点的坐标,可以计算出四个参数的值。
平移参数可以通过计算两个坐标系的原点之间的偏移量得到,旋转参数可以通过计算两个坐标系之间的旋转角度得到,比例因子可以通过计算两个坐标系之间的比例关系得到,误差参数可以通过计算两个坐标系之间的坐标差得到。
4.4 坐标转换根据计算得到的四个参数,将源坐标系下的点的坐标转换到目标坐标系下。
这个过程可以通过矩阵运算来实现,将源坐标系下的点的坐标乘以一个转换矩阵,得到目标坐标系下的点的坐标。
4.5 检验精度转换完成后,需要检验转换的精度。
中海达七参数坐标数据转换方法
![中海达七参数坐标数据转换方法](https://img.taocdn.com/s3/m/c255ca49bfd5b9f3f90f76c66137ee06eff94ec9.png)
中海达七参数坐标数据转换方法1.引言中海达七参数坐标数据转换方法是用于将一个坐标系统的坐标数据转换到另一个坐标系统的方法。
七参数包括三个平移参数、三个旋转参数和一个尺度参数。
在实际应用中,七参数转换常用于地理信息系统(GIS)、测量和导航等领域。
2.数据准备在进行坐标数据转换之前,需要准备两个坐标系的坐标数据。
每个坐标数据包括坐标点的三维坐标(x,y,z)和相应的椭球高(h)。
3.参数计算根据已知的源坐标系和目标坐标系的坐标数据,可以计算七个参数的值。
参数计算可采用多种方法,其中较常用的方法是最小二乘法。
最小二乘法的计算步骤如下:3.1.根据坐标数据,计算相应的坐标系平移中心。
平移中心的计算可以采用几何平均法、最大似然法等方法。
3.2.将源坐标系中的坐标点平移到平移中心。
3.3.计算源坐标系和目标坐标系的旋转矩阵。
旋转矩阵的计算可以采用相似性变换法、最小二乘法等方法。
3.4.计算旋转矩阵的欧拉角。
3.5.根据平移、旋转和尺度的定义,计算平移参数、旋转参数和尺度参数。
3.6.利用最小二乘法求解得到七参数的最优解。
4.坐标数据转换得到七参数的值之后,可以将源坐标系的坐标数据转换到目标坐标系。
转换步骤如下:4.1.将源坐标系的坐标点减去平移中心得到坐标差值。
4.2.根据旋转矩阵将坐标差值旋转到目标坐标系中。
4.3.根据尺度参数对坐标差值进行尺度变换。
4.4.将坐标差值加上目标坐标系的平移中心得到目标坐标系的坐标点。
5.转换精度评估完成坐标数据转换后,需要对转换结果的精度进行评估。
评估方法可以采用坐标残差法、平差误差法等方法。
通过比较转换后的坐标数据与目标坐标数据的差异,可以评估转换结果的精度和可靠性。
6.应用案例中海达七参数坐标数据转换方法已在许多应用案例中得到成功应用。
例如,在陆地测量中,可以将不同基准坐标系的测量数据转换到统一的坐标系统中,以实现数据的一致性和比较。
在导航领域,可以将GPS接收到的坐标数据转换到地理信息系统中使用的坐标系统,以实现位置的准确定位和导航。
RTK坐标参数转换,图文教程!
![RTK坐标参数转换,图文教程!](https://img.taocdn.com/s3/m/fd3463ce77eeaeaad1f34693daef5ef7ba0d12b7.png)
RTK坐标参数转换,图文教程!一、求重合点参数转换的主要工作就是测定重合点。
重合点是指的同时有两种坐标系坐标的大地点(或各等级控制点)。
重合点的成果获取又可以分为两种:一、通过实测得到;二、通过收集获取已有控制点成果获得。
下面就是两种成果的列子:假设我们在一个地方要加密图根或者测图、放样:我们有四个地面点的1980西安坐标。
点名 X 坐标值 Y 坐标值 1985高程(m) (m) (m)D05 3372824.402 35 564413.221 359.523D10 3371097.742 35 567824.123 355.942D13 3370286.806 35 564590.361 274.045D15 3370077.975 35 562012.967 276.000我们来利用这两种方法求取参数:1、实测点2、已有控制点成果点名纬度 B 经度 L 大地高H(°′ ″ ) ( °′ ″ ) (m)D05 30 28 25.54978 105 40 14.84791 317.676D10 30 27 28.80871 105 42 22.30994 314.169D13 30 27 03.11715 105 40 20.92242 232.224D15 30 26 56.82404 105 38 44.27925 234.140你看几个点的经纬度坐标都有了,就不需要实地测量了,直接输入到坐标管理库求转换参数就行了。
(GPS控制点经纬度在严密平差计算后会得到,并会随计算成果一并上交,收集测区控制资料时注意收取)在求取参数之前大家先看下面的说明:无论什么牌子的GPS 接收机输出的数据都是 WGS-84 经纬度坐标,需要转化到施工测量坐标,这就需要软件进行坐标转换参数的计算和设置,转换参数就是完成这一工作的主要工具。
求转换参数主要是计算四参数或七参数和高程拟合参数,可以方便直观的编辑、查看、调用参与计算四参数和高程拟合参数的校正控制点。
施工坐标(A,B)与大地测量坐标(X,Y)之间的几种换算方法
![施工坐标(A,B)与大地测量坐标(X,Y)之间的几种换算方法](https://img.taocdn.com/s3/m/c47225b3d0d233d4b04e6927.png)
CAD软件功能来实现坐标换算的方法.
方法四:AutoCAD软件UCS法
AutoCAD有UCS命令设置用户坐标系,
用该命令来建立AB坐标系,也可实现坐标
转换.
具体步骤:
(1)数据预处理,求出待求点D相对于
基准点Ⅳ的,A(同方法二).
始坐标系.
(6)运行ID命令,端点捕捉方法读出D
点坐标为(627449.40,55920.86).与方法
三同理,调换计算机屏幕上的纵横轴值,即得
D点XY坐标(55920.86,627449.40).
方法五:AutoCAD软件ROTATE法
利用AutoCAD软件ROTATE旋转功能,
亦可实现坐标旋转转换.
调换一下计算机提供的纵横轴值,即可
得点D的XY坐标(55920.86,627449.40).
该方法对各数据不进行任何的预处理,
直接机械地将相关数据输入计算中,完全由
计算机软件来完成换算.若本身是用GPCAD
软件设计出图,已设置好新坐标系,直接用步
骤(5)就可得出换算结果,很是方便简单.但
其局限性也是显而易见的——要购有GP-
XY坐标系)与数学笛卡尔直角坐标系(或计
算机图形处理器)的纵横轴是不匹配的(图
3).工程图纸上的点(,B)(或(,))对应于
数学笛卡尔坐标系(或计算机图形)中的点
(,)或(,).坐标值进出计算机和套用数
学公式时应注意.
方法一:坐标轴平移和旋转公式法
新坐标系Y,}.系的原点不在,y系的
原点,却在X,系中有坐标=Xo和y=
当然,上述五种转换法对建北,磁北一致
时仍适用,只是夹角一O了.
直角坐标系坐标转换公式解析
![直角坐标系坐标转换公式解析](https://img.taocdn.com/s3/m/b0eed1c503d276a20029bd64783e0912a3167c70.png)
直角坐标系坐标转换公式解析直角坐标系(也称笛卡尔坐标系)是一种二维坐标系统,由两条相互垂直的轴组成,通常水平轴称为x轴,垂直轴称为y轴。
在这种坐标系中,每个点的位置由两个坐标值(x,y)表示,x值表示点相对于原点在x轴方向上的距离,y值表示点相对于原点在y轴方向上的距离。
1.极坐标转直角坐标:在极坐标系中,一个点的位置由极径r和极角θ表示。
极径r表示点相对于极点的距离,极角θ表示点与极正方向的夹角。
对于特定的点(r,θ),我们可以使用以下公式将其转换为直角坐标系中的坐标(x,y):x = r * cos(θ)y = r * sin(θ)其中cos(θ)表示θ的余弦值,sin(θ)表示θ的正弦值。
这两个公式描述了点在直角坐标系中的位置。
2.直角坐标转极坐标:对于给定的点(x,y),我们可以使用以下公式将其转换为极坐标系中的坐标(r,θ):r = sqrt(x^2 + y^2)θ = atan2(y, x)其中sqrt(x^2 + y^2)表示点到原点的距离,atan2(y, x)表示点与正 x 轴的夹角。
这两个公式描述了点在极坐标系中的位置。
需要注意的是,当进行坐标转换时,需要考虑坐标系的正负方向以及特殊角度的处理,如负角度和超过360度的角度。
此外,将极坐标系的点转换为直角坐标系时,有可能存在多个直角坐标系的点对应于同一个极坐标系的点,这是由于一个角度对应于一条射线,而不是一个具体的点。
直角坐标系坐标转换公式在数学、物理学、工程学等领域有着广泛的应用。
它们可以用于描述点的位置、计算两点间的距离和角度,以及进行图形的变换和旋转等操作。
了解和理解这些公式可以帮助我们更好地理解和应用直角坐标系。
施工坐标(A,B)与大地测量坐标(X,Y)之间的几种换算方法
![施工坐标(A,B)与大地测量坐标(X,Y)之间的几种换算方法](https://img.taocdn.com/s3/m/ee1aa5f7dd36a32d7275817e.png)
施工坐标(A,B)与大地测量坐标(X,Y)之间的几种换算方法施工坐标(,B)与大地测量坐标(,y)之间的几种换算方法杨成贵(四川石油蔷面葡察设计研究院).『]3'摘要总图设计施工图阶段,常常引入施工坐标系,施工坐标值与大地测量坐标值之间就存在一个换算问题本文针对建北与磁北不一致时(即施工坐标系与大地测量坐标系之问有一旋转角),结合工程实践,归纳总结出五种简便易行的坐标换算方法.主翘词大地测量施工坐标值计算方法AB坐标系(即施工坐标系).然后在AB坐标问题的提出系下以设定的基准点为参照,推算确定各个工程设计中,为方便设计和施工放线,常建构筑物的AB坐标,来达到给建构筑物定常在XY坐标系(即测量坐标系)基础上引入位的目的.图l某油库征地边界线示意图(xY坐标AB坐标)建北成都某油库(圉1).由测量成果表可得征地界址点的XY坐标.为方便施工定位,我*扬成贵,助理工程师,1971年生;1994年毕业于武汉测绘科技大学城镇建设学院城市规划专业,获工学学士.现主要从事总图设计工作.地址:(6iO0l7)四川省成都市小关庙后街28号.电话:(028)6917700389.十天然气与石油们以点为基准点,MP为纵轴设置AB坐标系,且建北与磁北夹角为北偏东37.45(由和P两点得出),继而在AB坐标系下确定出各构筑的AB坐标,但是图面上界址点和库内建构筑分属两套坐标系统(XY坐标系和AB坐标系),界址点就难以用现有坐标值有效直观地控制库内建构筑的定位.速就要求我们统一坐标系,即要求我们将各界址点的XY坐标换算成AB坐标靖边至西安输气管道工程某基地平面布置图中(图2).引入了AB坐标,以站3(.一55912.63,y0—627599.45)相当于A0—500.00,B.一500.00为基准,建北与磁北夹角为北偏东l7..然后在AB坐标系下较简便地给基地内各建构筑物定了位,而某些特殊要求的建构筑物(如该基地综合楼上通讯塔,即图2中点D(A一464.00,B=354.10),仅知道AB坐标是不够的,应通讯专业要求,还要给出其相应的XY坐标.如何将AB坐标换算成相应的XY坐标就又摆在了设计人面前.下面就以图2中通讯塔坐标换算为例,详细讲述五种坐标换算方法.数学公式法图2某工矿基地平面布置示意图(AB坐标xY坐标)首先得强调的是:工程中AB坐标系(或XY坐标系)与数学笛卡尔直角坐标系(或计算机图形处理器)的纵横轴是不匹配的(图3).工程图纸上的点(,B)(或(,))对应于数学笛卡尔坐标系(或计算机图形)中的点(,)或(,).坐标值进出计算机和套用数学公式时应注意.方法一:坐标轴平移和旋转公式法新坐标系Y,}.系的原点不在,y系的原点,却在X,系中有坐标=Xo和y=ro;并有OX轴与OX轴之间有旋转角0(弧度,逆时针方向为正)则有数学公式:』一'一...+'r—in(1)lY一(一.)sin~(—D)c0f—o+Xcc~+YsinO{—+置sjn+c0s(2)在工程上,以(o,)为基准点M(山,)设置AB坐标系,且建北与磁北有夹角(逆时针(即北偏西)为正).则有公式(参见图4):rA.+'.c~o(Y (3)lB一0+(X一0)sinO+(Y一】0)cosO=X0+(AAncos+(BBnsing{—.一(一.)s.n+(—.)c.s第l6卷第l期扬成贵:施工坐标(^,口)与大地测量坐标(,y)之间的几种换算方法}^J一0'X=100P(1O.O,蚰工程图中:纵轴为轴()轴数学坐标系及计算机图形器中l轴为()轴^(盛北)/.一Xain口L-/,^\//o\ArI\△h口图4具体到图2中通讯塔坐标转换,有:^=464,00,A0=500.00,Xo=55912,63B=354.10,BD=500.O0,Yo=627599.45日一一17.(建北为北偏东故取负值)将上述值代入公式(4)中,则可得D点相应的XY坐标:X一55912,63+(464—5O0)coS(一17)+(354,10--500)sin(一17)一55912.63(一36)×cos(一17)+(一145.9)×sin(一17)=55912,63—34.427+42.657=55920.86r=627599.45一(464—500)sin(一17)354.1—500)cos(一17)一627599.45一l0.525到∞\l刺乙,O图5XY坐标系下P(r,d)AB坐标系下P(r,)其中——点P的向径ia,——点P在极坐标系的角弧度有(0≤d,fl<~360.)#~a--O天然气与石油极轴分别为OY,OB算成直角坐标值本方法就是借助极坐标来实现转换,再将转换后的极坐标折算成直角坐标.具体步骤:(1)数据预处理,求出AA,AB.AA=A--n==464--500一——36△=B—B0=354.1—500=一145.9(2)在AB坐标系,求出D点相对于M点的极坐标(r,),(注意是以MB方向为极轴.)r=&B2==丽_1一150.275=a…g(面A,4)ecg(二)一(180+13.86)=193.86(O≤fl~360.,注意象限)图(3)参照图5画出AB坐标系及XY坐标系之间的旋转关系及D点位置(如图6),以极坐标方法实现D点的坐标转换,即在XY 坐标系下点D的极坐极为:D(r,)其中一+口(口在建北为北偏西时为正)具体到通讯塔,有=150.276,d一193.86+(一l7),即:D(150.276,176.86)(4)在XY坐标系下,将极坐标O(r,a)换AX=rsina=rsin(+)=150.276sin(176.86)=8.23AY=rcosa=rcos(+)一l50.276c∞(176.86)一一l50.05(5)在J】lf点XY坐标值基础上,纵横轴值分别加上AX,△y即为D点的XY坐标. X—X0+AX一559l2.63+8.23=55920.86Y=Yo+AY一527599.45一l5O.05=627449.40方法二较之方法一,公式分解后较简单易记.但步骤较多并面临一个确定象限角的问题,还涉及反三角函数等.计算机图形处理法从前面两种方法中,我们不难看出:数学公式法计算麻烦,需要不断进行逐点校对.因此,我们都希望用直观的换等方法来代替传统的,抽象的数学公式法.计算机图形编辑器及相关工程软件的出现,给我们带来了极大的便利.方法三:GPCAD软件法GPCAD是杭州飞时达电脑技术公司开发的规划总圈设计软件包.利用该软件包中"设置坐标系"这一功能菜单,按照具体设计要求在XY坐标系下设置好AB坐标系.用IDD命令点取图中任意位置,程序自动计算出该点的AB坐标,并将该点的XY坐标一并读出.具体步骤:(1)进入GPCAD工作环境;(2)点取功能菜单{系统H设置坐标,图层…—设置坐标系(3)选择"建立"选项,程序提示:选择参考点<O,O>:[选定当前坐标系建,二北磁第l6卷第l期杨成贵:施工坐标,B)与大地测量坐标(x,y)之间的几种换算方法47中的某一点<可用捕捉>]627599.25.559l2.63取该点的坐标值d0,O>;[给定参考点在新坐标系中的坐标]500.00,500.00输入+B轴旋转角度(定义+轴角度):一17.[给定新建坐标系(AB坐标系)与原坐标系(XY坐标系)水平轴之间的旋转角<逆时针为正>];(4)在新建坐标系下,画线MD,以确定待求点D的位置:Command:Linefrompoint:500,500topoint:354.10,464.00(5)用IDD命令点取D点(端点捕捉),从计算机上读出D点:B施工坐标(354.10,464.10)对应x—r测量坐标(627449.40,55920.86)调换一下计算机提供的纵横轴值,即可得点D的XY坐标(55920.86,627449.40).该方法对各数据不进行任何的预处理,直接机械地将相关数据输入计算中,完全由计算机软件来完成换算.若本身是用GPCAD软件设计出图,已设置好新坐标系,直接用步骤(5)就可得出换算结果,很是方便简单.但其局限性也是显而易见的——要购有GP-CAD软件包,而GPCAD本身远不及Auto_ CAD软件普及;下面就介绍两种基于AuCAD软件功能来实现坐标换算的方法.方法四:AutoCAD软件UCS法AutoCAD有UCS命令设置用户坐标系,用该命令来建立AB坐标系,也可实现坐标转换.具体步骤:(1)数据预处理,求出待求点D相对于基准点Ⅳ的,A(同方法二).(2)进入AutoCAD图形编辑器,在当前(XY)坐标系下找到点M(627599.45, 55912.63).并画出方向角为0的直线(建北为北偏西时,0取正).(3)运行UCS命令,用三点法设置用户坐标系(以埘为原点,MN为水平轴).(4)在新建坐标系下,画线MD(0,0)(A,△).'5)再运行UCS命令,空回车.恢复到原始坐标系.(6)运行ID命令,端点捕捉方法读出D点坐标为(627449.40,55920.86).与方法三同理,调换计算机屏幕上的纵横轴值,即得D点XY坐标(55920.86,627449.40).方法五:AutoCAD软件ROTATE法利用AutoCAD软件ROTATE旋转功能,亦可实现坐标旋转转换.具体步骤:(I)数据预处理,求出AA,△(同方法二)(2)进入Aq~oCAD图形编辑器,视当前坐标系为AB坐标系,基准点为坐标原点(0,0).画线MD(O,0)一(△占,△)以确定D点相对于点的位置.(3)运行ROTATE命令,以点为基点旋转一(建北为北偏西时,0取正).(4)运行ID命令,用端捕捉方式得出D点旋转后的坐标值D(△y,△x)为(一l5O.05,8.23).再调换纵横轴值与点的XY坐标值相加,即得点D的XY坐标:x一o+AX=55912.63+8.23—55920.86Y—d-△y627599.45—15O.05=627449.40结束语I.五种换算方法的比较(表I),设计人员可据自身习惯以及手上现有软件和工具,选择相应的坐标换算法.有条件的,笔者建议天然气与石油1998芷用计算机图形处理法,特别对于需要对多个具体工程中,可用一种方法来换算计算,点进行坐标换算时(如图1),更显其优越性.表1五种方法综台比较表数学公式法方法一,坐标轴平移和旋转公式法方法二,投坐标公式法计算器计算器公式只一十,一次性出结果但:公式长,运算易错公式有五十,公式易记但:要分五步才得出结果,井涉及象限角,运算易错方法三,GPCAD软件法方法四,AutoCAD软件UCS法处理法方法五,Aut0cAD软件ROTATE法计算机(带GPCAD软件包)计算机(带AutoCAD软件)计算机(带AutoCAD软件)最简单,直观,明了但:局限性大(要购有GPCAD为前提)简单,直观,明了通用性强(AutoCAD很普及),但:有少量的数据预处理直观根普及)注:AB坐标xY坐标,建北为北偏西时,取正值.用另一种方法来校对,验算,达到自检的目的.2.本文是以由AB坐标换算成相应的XY坐标为例论述的.若是XY坐标换算成AB坐标(如图1).则:方法一,用公式3;方法三,同理;方法二,四,五,用x,y(或AX,)换A,B(找AA,△B)来上机操作或代八公式亦可实现转换,值则在建北为北偏东时取正值3.本文重点论述的是建北与磁北之间有一夹角0.当建北与磁北一致时,换算较简单:参照基准点倒有:AA=AX,AB=AY,在倒点相应的坐标轴上简单的增减AX,AY(或AA,△日).即可实现转换.当然,上述五种转换法对建北,磁北一致时仍适用,只是夹角一O了.参考文献l[美]A?科恩M?科恩.国民强等译.数学手册.工人出版杜,1987,122陈高波等.GPCAD操作手册.杭州飞时达电脑技术公司,t995,123邱玉春.AutoCAD操作手册.电子工业出敝社,1989,54王莉等.计算机图形学殛其在工程中的应用.交通出版社,1992,3f审稿人高级工程师杨秀田lI收稿日期1997--10--14)』计算机图形D理处预糍濑通但。
坐标转换参数计算方法
![坐标转换参数计算方法](https://img.taocdn.com/s3/m/2747a21b2bf90242a8956bec0975f46527d3a7d1.png)
坐标转换参数计算方法坐标转换是指将一种坐标系中的坐标转换为另一种坐标系中的坐标的过程。
在GIS中,经常需要将不同坐标系下的地理位置信息进行转换,以使得这些信息能够在同一坐标系下进行叠加、分析和展示。
本文将介绍坐标转换过程中常用的参数计算方法。
1. 坐标系的定义首先,需要了解各种坐标系的定义及其特点。
常见的坐标系包括: WGS84、UTM、高斯-克吕格、北京54、西安80等。
这些坐标系的定义有各自的参考椭球体、基准面、坐标单位等。
2. 坐标转换参数的计算在坐标转换过程中,需要计算出从原坐标系到目标坐标系的转换参数。
常用的方法包括三角法、最小二乘法、地心坐标转换法等。
三角法是一种基于三角函数计算坐标转换参数的方法。
这种方法需要测量两个坐标系下至少三个点的坐标,并在两个坐标系下求出这些点的坐标差值。
然后利用三角函数求出坐标转换参数。
最小二乘法是一种统计学方法,其目的是寻找一个函数,使得函数曲线与数据点的差距最小。
在坐标转换中,可以将坐标系转换看作一个函数关系,利用最小二乘法求解转换参数。
地心坐标转换法是一种利用地球经纬度和高程信息计算地球空间位置的方法。
在坐标转换中,可以先将经纬度坐标转换为地心坐标,再将地心坐标转换为目标坐标系下的坐标。
3. 坐标转换的实现计算出坐标转换参数后,就可以通过计算将原坐标系下的坐标转换为目标坐标系下的坐标。
常用的GIS软件如ArcGIS、QGIS等都提供了坐标转换工具,可以方便地实现坐标转换。
总之,了解各种坐标系的定义和特点、掌握坐标转换参数计算方法、熟悉坐标转换的实现过程,可以更准确地处理地理位置信息。
实时动态(RTK)测量中坐标转换参数计算的几种方法
![实时动态(RTK)测量中坐标转换参数计算的几种方法](https://img.taocdn.com/s3/m/7816cf1a52ea551810a68718.png)
实时动态(RTK)测量中坐标转换参数计算的几种方法摘要:RTK所接收到的数据是WGS-84坐标系下的数据,而我们使用的坐标系一般是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们工程所使用的坐标系坐标。
为此,如何计算这些坐标系统转换参数成为RTK使用过程中的一个非常重要的环节。
关键词:GPS-RTK测量坐标转换1、RTK技术概述实时动态(RTK)测量系统,是GPS测量技术与数据传输技术的结合,是GPS测量技术中的一个新突破。
GPS测量中,静态、快速静态、动态测量都需要事后进行解算处理才能获得待测点的坐标,而RTK测量实时差分定位是一种能够在野外实时得到厘米级精度的测点坐标。
RTK实时测量技术具有全天候、作业效率高、定位精度高、操作简便等优点,因而得到了广泛的应用,而且技术设备越来越先进与方便。
RTK测量系统一般由以下三部分组成:GPS接收设备、数据传输设备、软件系统。
数据传输系统由基准站的发射电台与流动站的接收电台组成,它是实现实时动态测量的关键设备。
2、RTK实时测量坐标参数转换RTK所接收到的数据是WGS-84坐标系下的数据,而我们一般使用的坐标系是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们使用的1954北京坐标系坐标或1980年国家大地坐标系坐标或城市工矿使用的独立坐标系坐标。
为此,如何计算坐标系统转换参数成为RTK使用过程中的很重要的一个环节。
根据RTK的原理,参考站和流动站直接采集的都为WGS84坐标,参考站一般以一个WGS84坐标作为起始值来发射,实时地计算点位误差并由电台发射出去,流动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就可达到固定解,流动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与流动站之间的测量精度。
坐标转换算法
![坐标转换算法](https://img.taocdn.com/s3/m/7ec4fc47b42acfc789eb172ded630b1c59ee9b1a.png)
坐标转换算法是指将一个坐标系中的坐标转换为另一个坐标系中的坐标的方法。
在实际应用中,由于不同的地图投影、不同的测量基准等原因,需要将一种坐标系下的数据转换为另一种坐标系下的数据。
坐标转换算法可以分为以下几种类型:
1. 几何变换:通过简单的几何变换将一个坐标系下的点转换为另一个坐标系下的点。
这种方法适用于较小的坐标变换,精度要求不高的情况。
2. 多项式拟合:利用多项式函数对原始数据进行拟合,然后通过这个多项式函数将一个坐标系下的点转换为另一个坐标系下的点。
这种方法适用于大规模的、复杂的坐标变换,但需要较多的计算资源和时间。
3. 参数转换:利用已知的参数将一个坐标系下的点转换为另一个坐标系下的点。
这种方法需要知道转换参数,适用于已知转换参数的情况。
4. 插值方法:利用已知的点对未知点进行插值计算,得到转换后的坐标。
这种方法适用于大规模的、复杂的坐标变换,但需要较多的计算资源和时间。
在实际应用中,可以根据具体需求和数据情况选择合适的坐标转换算法。
同时,也需要注意坐标转换的精度和稳定性,避免出现误差和异常情况。
坐标换算公式范文
![坐标换算公式范文](https://img.taocdn.com/s3/m/60562c41bfd5b9f3f90f76c66137ee06eff94edc.png)
坐标换算公式范文坐标换算是指将一种坐标系统下的坐标值转换为另一种坐标系统下的坐标值的过程。
在地理信息系统(GIS)和地图制图等领域中,坐标换算是非常重要的一项基础工作。
在这篇文章中,我们将介绍一些常见的坐标换算公式。
1.经纬度与高斯坐标的换算经纬度(经度和纬度)是地球表面上的一种常用的坐标系统,用于表示地理位置。
高斯坐标是将地球表面划分成若干个小区域,每个区域都有一个与地球表面相切的圆柱体,用于表示地理位置。
经纬度与高斯坐标的换算公式如下:高斯坐标X = (经度 - 中央经度) × 地球半径× cos(纬度)高斯坐标Y=纬度×地球半径2.高斯坐标与投影坐标的换算投影坐标是将地球表面上的地理位置映射到平面上的一种坐标系统。
常见的投影方式有墨卡托投影、UTM投影等。
高斯坐标与投影坐标的换算公式取决于具体的投影方式,这里以墨卡托投影为例:投影坐标X=(高斯坐标X-中央经度)×投影比例尺投影坐标Y=(高斯坐标Y-中央纬度)×投影比例尺3.地心坐标与大地坐标的换算地心坐标用于表示地球上的点相对于地球质心的位置,而大地坐标用于表示地球表面上的点相对于地球参考椭球体的位置。
地心坐标与大地坐标的换算使用椭球体的参数,其中包括椭球体的长半轴a、短半轴b以及椭球体的扁率f。
大地坐标与地心坐标的换算需要进行以下几个步骤:1)计算椭球体的第一偏心率e,e = sqrt((a^2 - b^2) / a^2)。
2)计算椭球面的曲率半径N,N = a / sqrt(1 - e^2 * sin(纬度)^2)。
3)计算地球表面上其中一点的大地纬度B,B = arctan(z /sqrt(x^2 + y^2) * (1 - e^2 * a / (N + z)))。
4)计算地球表面上其中一点的大地经度L,L = arctan(y / x)。
5)计算地心坐标的X值,X = (N + z) * cos(B) * cos(L)。