余弦定理的证明方法大全(共十法)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余弦定理的证明方法大全(共十法)

一、余弦定理

余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ∆中,已知AB c =,BC a =,CA b =,则有

2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-.

二、定理证明

为了叙述的方便与统一,我们证明以下问题即可:

在ABC ∆中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ∆中,由CB AB AC =-可得:

()()CB CB AB AC AB AC ⋅=-⋅-

2

2

2AB AC AB AC =+-⋅

222cos b c bc A =+-

即,2222cos a b c bc A =+-.

证法二:本方法要注意对A ∠进行讨论.

(1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-︒=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则

在Rt ACD ∆中,cos AD b A =,sin CD b A =.

从而,cos BD AB AD c b A =-=-.

在Rt BCD ∆中,由勾股定理可得: 222BC BD CD =+

22(cos )(sin )c b A b A =-+

222cos c cb A b =-+

即,2222cos a b c bc A =+-.

说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的

图1

图2-1

A

点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上.

(3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ∆中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=.

从而,cos BD AB AD c b A =+=-.

在Rt BCD ∆中,由勾股定理可得:

222

BC BD CD =+

22(cos )(sin )c b A b A =-+

222cos c cb A b =-+

即,222

2cos a b c bc A =+-.

综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则

在Rt ABD ∆中,sin BD c α=,cos AD

c α=.

在Rt ACD ∆中,sin CD b β=,cos AD

b

β=.

由cos cos()cos cos sin sin A αβαβαβ=+=-可得:

2cos AD AD BD CD AD BD CD

A c b c b bc

-⋅=⋅-⋅=

2222AD BD CD bc -⋅=222222c BD b CD BD CD bc -+--⋅=

222()2b c BD CD bc +-+=222

2b c a bc

+-=

整理可得2222cos a b c bc A =+-. 证法四:在ABC ∆中,由正弦定理可得

sin sin sin sin()

a b c c

A B C A B ===+. 从而有sin sin b A a B =,………………………………………………………………①

sin sin()sin cos cos sin c A a A B a A B a A B =+=+. …………………………②

将①带入②,整理可得cos cos a B c b A =-.…………………………………………③ 将①,③平方相加可得22222(cos )(sin )2cos a c b A b A b c bc A =-+=+-.

图2-2

图3

即,2222cos a b c bc A =+-.

证法五:建立平面直角坐标系(如图4),则由题意可得点(0,0)A ,(,0)B c ,(cos ,sin )C b A b A ,再由两点间距离公式可得2a =22(cos )(sin )c b A b A -+222cos c cb A b =-+.

即,2222cos a b c bc A =+-.

证法六:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,222224sin 4sin ()a R A R B C ==+

222224(sin cos cos sin 2sin sin cos cos )R B C B C B C B C =++ 222224(sin sin 2sin sin 2sin sin cos cos )R B C B C B C B C =+-+ 2224(sin sin 2sin sin cos())R B C B C B C =+++ 2224(sin sin 2sin sin cos )R B C B C A =+-

22(2sin )(2sin )2(2sin )(2sin )cos R B R C R B R B A =+-

222cos b c bc A =+-

即,结论成立.

证法七:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,2222cos a b c bc A =+-

22222224sin 4sin 4sin 8sin sin cos R A R B R C R B C A ⇔=+-

2222sin 2sin 2sin 4sin sin cos A B C B C A ⇔=+- 22sin 2cos 2cos 24sin sin cos A B C B C A ⇔=-+-

222cos 22cos()cos()4sin sin cos A B C B C B C A ⇔-=-+--

由于cos()cos()cos B C A A π+=-=-,因此

2cos cos()cos()2sin sin cos A B C B C B C A ⇔=+-+

cos cos()2sin sin A B C B C ⇔=--+

cos cos cos sin sin cos()A B C B C B C ⇔=-+=-+. 这,显然成立.

相关文档
最新文档