高分子材料第2章3

合集下载

药用高分子材料学复习重点

药用高分子材料学复习重点

第一章绪论1、高分子分别在传统制剂、现代制剂中的作用答:在传统剂型中的应用的高分子材料:如作为片剂的赋形剂、黏合剂、润滑剂等。

在现代制剂中高分子作为应用在控释、缓释制剂和靶向制剂中,如做微丸的赋形剂、缓释包衣的衣膜以及特殊装置的器件。

包装用材料。

药用辅料的定义答:辅料是经过安全评价的、有助于剂型的制备以及保护、支持,提高药物或制剂有效成分稳定性和生物利用度的材料。

第二章高分子的结构、合成和化学反应聚合物的结构式答:聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)聚甲基丙烯酸甲脂(PMMA)聚乙酸乙烯酯(PV Ac)聚乙烯醇(PV A)纤维素尼龙-66按照性能和用途进行的高分子材料分类答:五大类,塑料、橡胶、纤维,涂料以及黏合剂。

热塑性塑料和热固性塑料的区别答:热塑性塑料——受热后软化,冷却后又变硬,这种软化和变硬可重复、循环,因此可以反复成型。

大吨位的品种有聚氯乙烯、聚乙烯、聚丙烯。

热固性塑料——是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。

聚合过程(最后的固化阶段)和成型过程是同时进行的,所得制品不溶不熔。

热固性塑料的主要品种有酚醛树脂、氨基树脂、环氧树脂等。

柔性概念、影响因素答:(1)主链结构当主链中含C-O,C-N,Si-O键时,柔顺性好。

因为O、N原子周围的原子比C原子少,内旋转的位阻小;而Si-O-Si的键角也大于C-C-C键,因而其内旋转位阻更小,即使在低温下也具有良好的柔顺性。

当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻单键的非键合原子间距增大使内旋转较容易,柔顺性好。

当主链中由共轭双键组成时,由于共轭双键因p电子云重叠不能内旋转,因而柔顺性差,是刚性链。

(2)侧基侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。

非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;对称性侧基,可使分子链间的距离增大,相互作用减弱,柔顺性大。

药用高分子材料各章知识点总结

药用高分子材料各章知识点总结

药用高分子材料各章知识点总结第一章一、 高分子材料的基本概念1、什么是高分子:高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子量为104~106的化合物;2、单 体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子;即合成聚合物的起始原料;3、结构单元:在大分子链中出现的以单体结构为基础的原子团;即构成大分子链的基本结构单元;4、单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元;5、重复单元 Repeating unit ,又称链节:聚合物中化学组成和结构均可重复出现的最小基本单元;重复单元连接成的线型大分子,类似一条长链,因此重复单元又称为链节;高分子的三种组成情况1.由一种结构单元组成的高分子此时:结构单元=单体单元=重复单元说明:n 表示重复单元数,也称为链节数, 在此等于聚合度;由聚合度可计算出高分子的分子量:M=n. M0 式中:M 是高分子的分子量 M0 是重复单元的分子量2.另一种情况:结构单元=重复单元 单体单元结构单元比其单体少了些原子氢原子和氧原子,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元;注意:对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致3.由两种结构单元组成的高分子合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元;注意:1对于均聚物,即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的; 聚CH 2 CH CH 2-CH n CH 2 CH n单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +552对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子,其结构单元与重复单元是不同的;二、高 分 子 的 命 名1、 习 惯 命 名 法天然高分子:一般有与其来源、化学性能与作用、主要用途相关的专用名称;如纤维素来源、核酸来源与化学性能、酶化学作用;合成高分子:1由一种单体合成的高分子:“聚”+ 单体名称;如乙烯:聚乙烯; 丙烯:聚丙烯; 氯乙烯:聚氯乙烯2以高分子结构特征来命名. 如聚酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等;尼龙-66:聚己二酰己二胺;尼龙-610:聚癸二酰己二胺;尼龙-6:聚己内酰胺或聚ω-氨基己酸2.商品名称:1树脂类未加工成型的原料都称为树脂2橡胶类 3纤维如丁苯橡胶---丁二烯、苯乙烯聚合物 氯纶 PVC 聚氯乙烯乙丙橡胶---乙烯、丙烯共聚物 丙纶 PP 聚丙烯腈纶 PANC 聚丙烯腈3. IUPAC 系统命名法1 确定重复结构单元;2给重复结构单元命名:按小分子有机化合物的IUPAC 命名规则给重复结构单元命名;3给重复结构单元的命名加括弧括弧必不可少,并冠以前缀“聚”;例: COOCH 3CH 3n C CH 2 重复结构单元为: 聚1-甲氧基羰基-1-甲基乙烯 聚1-氯乙烯三、高 分 子 链 结 构1.聚合物的结构:一级结构近程结构:结构单元的化学组成、连接顺序、立体构型,以及支化、交联等;是反映高分子各种特性的最主要结构层次;二级结构远程结构:通常包括高分子链的形态构象以及高分子的大小分子量;与高分子链的柔性和刚性有直接关系;三级结构聚集态结构:聚集态结构也称三级结构,或超分子结构,它是指单位体积内许多大分子链之间的的排列与堆砌方式;包括晶态、非晶态、取向态、液晶态及织态等;2.高分子链的近程结构:高分子链的构型 :构型:是对分子中的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排列;1.旋光异构:若高分子中含有手性C 原子,则其立体构型可有D 型和L 型,据其连接方式可分为如下三种:以聚丙烯为例:1 全同立构高分子:主链上的C 的立体构型全部为D 型或L 型, 即DDDDDDDDDD 或C H H C Cl H C H H C Cl H C H H C Cl H C H H CC l HLLLLLLLLLLL;2 间同立构高分子:主链上的C的立体构型各不相同, 即D型与L型相间连接,LDLDLDLDLDLD;立构规整性高分子tactic polymer: C的立体构型有规则连接,简称等规高分子;3 无规立构高分子:主链上的C的立体构型紊乱无规则连接;3、高分子链的远程结构:包括分子量及分子量分布和高分子形态构象;书P8分子量:1.数均分子量:按聚合物中含有的分子数目统计平均的分子量;根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定;2重均分子量:是按照聚合物的重量进行统计平均的分子量;根据聚合物溶液对光的散射性质、扩散性质测得的;通过光散射法测定;分子量分布:分子量分布越窄,聚合物排布越好;4.高分子聚集态结构的特点.1.聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的;2.聚合物聚集态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件;四、聚合与高分子化学反应1.自由基聚合特点:1可概括为慢引发、快增长、速终止;2聚合体系中只有单体和聚合物组成;3单体转化率随聚合时间的延长而逐渐增大;4小量阻聚剂足以使自由基聚合终止;2.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行的聚合;3.溶液聚合:单体和引发剂溶于适当溶剂中进行的聚合方法;4.悬浮聚合:单体以小液滴状悬浮在水中的聚合;5.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合;6.缩聚反应由含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应,是合成聚合物的重要反应之一;特点:1.每一高分子链增长速率较慢,增长的高分子链中的官能团和单体中的官能团活性相同,所以每一个单体可以与任何一个单体或高分子链反应,每一步反应的结果,都形成稳定的化合物,因此链逐步增长,反应时间长;2.由于分子链中官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物;四、药用高分子材料通论药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料;第二章一、高分子的分子运动1.高分子运动特点:一运动单元的多重性:1.整链的运动:以高分子链为一个整体作质量中心的移动,即分子链间的相对位移;2.链段的运动:由于主链σ键的内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心不变宏观上不发生塑性形变;高弹性:链段运动的结果拉伸—回复;流动性:链段协同运动,引起分子质心位移;3.链节的运动:指高分子主链上几个化学键相当于链节的协同运动,或杂链高分子的杂链节运动4.侧基、支链的运动:侧基、支链相对于主链的摆动、转动、自身的内旋转;二、分子运动的时间依赖性:物质从一种平衡状态在外场作用下,通过分子运动低分子是瞬变过程,高分子是速度过程需要时间达到与外界相适应的另一种平衡状态;三、分子运动的温度依赖性1.活化运动单元:温度升高,增加了分子热运动的能量,当达到某一运动单元运动所需的能量时,就激发这一运动单元的运动;2.增加分子间的自由空间:温度升高,高聚物发生体积膨胀,自由空间加大;当自由空间增加到某种运动单元所需的大小时,这一运动单元便可自由运动;2、高分子的玻璃化转变玻璃态、高弹态和粘流态称为聚合物的力学三态;温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态;随着温度的升高,形变逐渐增大,当温度升高到某一程度时,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复;这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态;由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度,以Tg表示;当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态;高弹态开始向粘流态转变的温度称为粘流温度,以T f表示,其间的形变突变区域称为粘弹态转变区;二、溶解与高分子溶液一、高聚物的溶解1.非晶态高聚物的溶解条件:足够量的溶剂、一定量的非晶态高聚物溶解过程:溶胀到无限溶胀;溶解过程的关键步骤是溶胀;其中无限溶胀就是溶解,而有限溶胀是不溶解;2.结晶晶态高聚物的溶解非极性结晶高聚物的溶解条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热到熔点附近;溶解过程:加热使结晶熔化,再溶胀、溶解;极性溶解高聚物的溶解条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用加热;溶解过程:通过溶剂化作用溶解;二、溶剂的选择1.极性相似原则2.溶剂化原则3.溶解度参数相近原则三、高聚物的力学性能1.应力:单位面积上的内力为应力,其值与外加的应力相等;2.应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸会发生变化,这种变化称为应变或形变;3.弹性模量:是单位应变所需应力的大小,是材料刚度的表征;4.硬度:是衡量材料抵抗机械压力能力的一种指标;5.强度:是材料抵抗外力破坏的能力;6.高聚物力学性能的最大特点是高弹性和粘弹性:1.高弹性:处于高弹态的高聚物表现出的独特的力学性能;是由于高聚物极大的分子量使得高分子链有许多不同的构象,而构象的改变导致高分子链有其特有的柔顺性;链柔性在性能上的表现就是高聚物的高弹性;橡胶就是具有高弹性的材料;弹性形变的本质也就是高弹性变的本质;2).粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性; 力学松弛:高聚物的力学性能随时间的变化统称力学松弛;最基本的有:蠕变、应力松弛、滞后、力学损耗;蠕变:在一定的温度和恒定的外力作用下拉力,压力,扭力等,材料的形变随时间的增加而逐渐增大的现象;应力松弛:对于一个线性粘弹体来说,在应变保持不变的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松弛;滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象;力学损耗:由于力学滞后而使机械功转换成热的现象;第三章一、凝胶与功能水凝胶1.凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质;影响胶凝作用的因素:浓度、温度、电解质;2.凝胶的性质1触变性 2溶胀性 3脱水收缩性 4透过性3.凝胶的分类1物理凝胶:由非共价键氢键或范德华力相互连接,形成网状结构;由于聚合物分子间的物理交联使其具有可逆性,只要温度等外界条件改变,物理链就会破坏,凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝胶;2化学凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称为不可逆凝胶;3冻胶:指液体含量很多的凝胶,通常在90%以上;多数由柔性大分子构成,具有一定的柔顺性,网络中充满的溶剂不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶;4干凝胶:液体含量少的凝胶,其中大部分是固体成分;在吸收适宜液体膨胀后即可转变为冻胶;4.功能水凝胶:对温度或pH等环境因素的变化所给予的刺激有非常明确或显着的应答; 根据环境变化的类型不同,环境敏感水凝胶可分为:温敏水凝胶、pH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶;二、粒子分散结构:有以下四种类型:1.药物粒子分散在高聚物基材中的复合结构,高聚物为连续相,如速释型固体分散制剂;2.药物粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂3.药物粒子包裹在聚合物囊膜中,再分散在聚合物基材中4.药物粒子分散在高聚物凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯-聚氧丙烯共聚物的水凝胶制成的皮鲁卡品滴眼剂等缓释给药系统;三、缓控释性材料1.缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂;系指口服药物在规定释放介质中,按要求缓慢地非恒速释放;2.控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓度保持相对恒定,体内释药不受pH影响;系指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放;四、分散传质过程药物的扩散过程:1.药物溶出并进入周围的聚合物或孔隙;2.由于浓度梯度,药物分子扩散通过聚合物屏障;3.药物由聚合物解吸附;4.药物扩散进入体液或介质;第四章药用天然高分子材料一、淀粉1.来源淀粉starch广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒而存在;药用淀粉多以玉米淀粉为主;2.化学结构和组成淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物;结构单元:D-吡喃环型葡萄糖淀粉组成可以分为两类,直链淀粉与支链淀粉;自然淀粉中直链,支链淀粉之比一般约为15-28%比72-85%,视植物种类、品种、生长时期的不同而异;1直链淀粉是以α-1,4苷键连接而成的线型聚合物;直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋圈大约有6个葡萄糖单元;2支链淀粉是由D-葡萄糖聚合而成的分支状淀粉,其直链部分也为α-1,4苷键,而分支处则为α-1,6苷键;在各种淀粉中,直链淀粉约占20%-25%,支链淀粉约占75%-85%3.性质1形态与物理常数玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定;2淀粉的溶解性、含水量与氢键作用力溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的吸湿性; 含水量:在常温、常压下,淀粉有一定的平衡水分,但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要是淀粉中的葡萄糖单元存在的众多醇羟基与水分子相互作用形成氢键的缘故;不同淀粉的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致;3淀粉的吸湿与解吸吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称为平衡水分;用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉;解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境的变化而变化,它具有生理活性,可被微生物利用,而结合水则不能;4淀粉的水化、膨胀、糊化水化:淀粉颗粒中的淀粉分子有的处于有序态晶态,有的处于无序态非晶态它们构成淀粉颗粒的结晶相和无定性相,无定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象;膨胀:淀粉在60-80℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以淀粉粒残余的形式保留在水中;糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀粉加热至60~80℃时,则颗粒可逆地吸水膨胀,至某一温度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也都下沉的现象;糊化的本质:水分子加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成为亲水胶体;5淀粉的回升老化、凝沉回生或老化:淀粉糊或淀粉稀溶液再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象;形成的淀粉称为回生淀粉;4、反应1水解反应存在于淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,呈现多糖具备的水解性质;2显色反应淀粉与碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝色,支链淀粉呈紫红色;5.应用淀粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂;淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,1g淀粉含霉菌应在100个以下,杂菌不得多于1000个;可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉;二、糊精1.来源与制法淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精;糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却;2.分类在药剂学中应用的糊精有白糊精和黄糊精;3.性质糊精为白色、淡黄色粉末;不溶于乙醇95℃、乙醚,缓缓溶于水,易溶于热水三、麦芽糖糊精1.来源与制法麦芽糖糊精是由食用淀粉在有水存在的条件下,将淀粉加热,经合适的酸或者酶部分水解而制得;制法:部分地将淀粉水解可得不同链长的葡萄糖单元的聚合物溶液,然后过滤、浓缩、干燥即得麦芽糖糊精;2.性质为无甜味、无臭的白色粉末或颗粒;易溶于水,微溶于乙醇;若其葡萄糖当量提高,则吸湿性、可压性、溶解度、甜度也随之提高,黏度下降;四、羧甲基淀粉钠1.结构为聚α-葡萄糖的羧甲基醚2.性质为白色至类白色自由流动的粉末,能分散于水,形成凝胶,醇中溶解度约2%,不溶于其它有机溶剂,有较大的吸湿性3.应用羧甲淀粉钠作为胶囊剂和片剂的崩解剂广泛应用于口服药物制剂中,在湿法制粒时,将羧甲淀粉钠加入颗粒内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用;是某些口崩片的理想辅料;也可用作助悬剂;五、纤维素1.来源纤维素存在于一切植物中,是构成植物细胞壁的基础物质;2.结构结构单元是D-吡喃葡萄糖基,相互间以-1,4-苷键连接,分子式为C6H10O5n;3.性质1化学反应性纤维素的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在大量羟基有关;2氢键的作用纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在3吸湿性纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后,其平衡含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量; 4溶胀性纤维素的有限溶胀可分为结晶区间溶胀和结晶区内溶胀;纤维素溶胀能力的大小取决于碱金属离子水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随其浓度而增加,至某一浓度,溶胀程度达最高值;5机械降解特性机械降解后的纤维素比氧化、水解或热降解的纤维素具有更大的反应能力;6可水解性纤维素大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是催化剂,可降低贰键破裂的活化能,增加水解速度;纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素也产生碱性水解;六、粉状纤维素1.制法将植物纤维材料纤维浆,用%NaOH溶液在20℃处理,不溶解的部分中包括纤维浆中的纤维素和抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎即得粉状纤维素;2.性质呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的流动性和堆密度不一,具有一定的可压性,流动性较差;3.应用可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可用于降低油性悬浮性内容物的稳定剂,以减轻其沉降作用,也可作口服混悬剂的助悬剂;用作片剂干性粘合剂的浓度为5%;-20%,崩解剂浓度为5%-15%,助流剂浓度为1%-2%,不得用作注射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂;七、微晶纤维素1.制法将结晶度高的纤维经强酸水解除去其中的无定形部分,所得聚合度约为220,相对分子质量约为36000的结晶性纤维即为微晶纤维素;胶态微晶纤维素:纤维素+亲水性分散剂2.性质白色、无臭、无味,多孔、易流动粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂;可压性:具有高度变形性,极具可压性;吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等;分散性:微晶纤维素在水中经匀质器作用,易于分散生成妈油般的凝胶体;反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能;3.应用微晶纤维素PH型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作为倍散的稀释剂和丸剂的赋形剂;微晶纤维素RC型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏的稳定剂;微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的核芯,微晶纤维素AvicelPH-300系列具有快速崩解性、较好的流动性、可减小片重差异等优点;Avice KG-801可以提高片剂硬度、降低磨损性、少量添加适于在低压力下压片等优点;纤维素衍生物具有以下性质:具有玻璃化转变温度、溶度参数和表面能、物理配伍相容性、溶胀性、吸湿性、黏度、生物黏附性、热凝胶化和昙点、液晶的形成;八、醋酸纤维素。

高分子材料与应用各章习题总结

高分子材料与应用各章习题总结

高分子材料及应用各章试题总结第一章绪论1【单选题】材料研究的四要素是?∙A、合成/加工、结构/成分、性质、实用性能∙∙B、合成/加工、结构/成分、性质、使用性能∙∙C、分子结构、组分、性质、使用性能∙∙D、分子结构、组分、性质、实用性能∙我的答案:B2【多选题】未来新一代材料主要表现在哪些方面?∙A、既是结构材料又具有多种功能的材料∙∙B、具有感知、自我调节和反馈等能力的智能型材料∙∙C、制作和废弃过程中尽可能减少污染的绿色材料∙∙D、充分利用自然资源,能循环作用的可再生材料∙我的答案:ABCD3【判断题】材料的性能可分为两类,一种是材料本身所固有的称之为功能物性,另一种是通过外场刺激所转化的性能称为特征性能。

∙我的答案:∙4【判断题】材料的特征性能是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一种作用的性质。

例如许多材料具有把力、热、电、磁、光、声等物理量通过“物理效应”、“化学效应”、“生物效应”进行相互转换的特性。

∙我的答案:∙5【判断题】材料的功能物性是指材料本身所固有的性质,包括热学、电学、磁学、力学、光学等。

∙我的答案:6【简答题】材料科学的内容是什么?∙我的答案:一是从化学角度出发,研究材料的化学组成,健性,结构与性能的关系规律;二是从物理学角度出发,阐述材料的组成原子,分子及其运动状态与各种物性之间的关系。

在此基础上为材料的合成,加工工艺及应用提出科学依据。

∙7【简答题】材料的基本要素有哪些?∙我的答案:1,一定的组成和配比∙2,具有成型加工性∙3,具有一定的物理性质,并能够保持∙4,回收,和再生性∙5,具有经济价值∙8【简答题】材料科学的主要任务是什么?∙我的答案:就是以现代物理学,化学等基础学科理论为基础,从电子,原子,分子间结合力,晶体及非晶体结构,显微组织,结构缺陷等观点研究材料的各种性能,以及材料在制造和应用过程中的行为,了解结构-性能-应用之间的规律关系,提高现有材料的性能,发挥材料的潜力并探索和发展新型材料以满足工业,农业,生产,国防建设和现代技术发展对材料日益增长的需求。

高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工(考试重点及部分习题答案)

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。

受热不熔融,达到一定温度分解破坏,不能反复加工。

在溶剂中不溶。

化学结构是由线型分子变为体型结构。

举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。

再次受热,仍可软化、熔融,反复多次加工。

在溶剂中可溶。

化学结构是线型高分子。

举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。

3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。

4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。

举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。

透明度不好,强度较大。

6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。

结晶度小,透明度好,韧性好。

定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。

7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。

透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。

针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。

热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。

高分子加工原理与技术2-成型原理

高分子加工原理与技术2-成型原理

Q=
1 JBiblioteka τ γ·=1 Jηaγ·2
(2-2)
用摩擦热加热塑料是通过挤出机或注射机的螺杆与 料筒的相对旋转运动等途径来实现的。由于聚合物的 表观粘度随摩擦升温而降低,使物料熔体烧焦的可能 性不大,而且塑化效率高,塑化均匀。
2.1.2 高分子材料的流变性能
(1)流动类型
➢层流和湍流 ➢稳定流动与不稳定流动 ➢等温流动和非等温流动 ➢一维流动、二维流动和三维流动 ➢拉伸流动和剪切流动 ➢拖曳流动和压力流动
第2章 高分子材料成型原理
2.1 高分子材料的加工性能 2.1.1 高分子材料的熔融性能
热传导 热传递 对流
辐射
高分子材料的熔融方法:
无熔体移走的传导熔融 有强制熔体移走(由拖曳或压力引起)的传导熔融 耗散混合——熔融 利用电的、化学的或其它能源的耗散熔融方法 压缩熔融
热扩散系数及其影响因素
聚合物熔体在管隙中的流动分析
➢ 圆管通道 ➢ 圆锥形通道
流动缺陷
塑料流体在流道中流动时,常因种种原因使流动出现 不正常现象或缺陷。这种缺陷如果发生在成型时中,则常 会使制品的外观质量受到损伤,例如表面出现闷光、麻面、 波纹以致裂纹等,有时制品的强度或其它性能也会裂变。 这些现象与工艺条件、高聚物的非牛顿性、端末效应、离 模膨胀和熔体破裂有关。
(2)非牛顿型流动
图2-6 各类型流体的流动曲线 a-宾汉流体 b, e-假塑性流体 c-膨胀性流体 d-牛顿型流体
描述假塑性和膨胀性的非牛顿流体的流变行为, 用幂律函数方程 :
τ = Kγ·n
式中 K——流体稠度,Pa·s n——流动指数,也称非牛顿指数。
(3) 时间依赖性流体 这类流体的流变特征除与剪切速率与剪切应力

第2章 高分子材料的高弹性与粘弹性

第2章 高分子材料的高弹性与粘弹性

14
高分子材料性能学
高弹形变可分为平衡态形变(可逆)和非平衡态
形变(不可逆)两种
假设橡胶被拉伸时发生高弹形变,除去外力后可
完全回复原状,即变形是可逆的,所以可用热力
学第一定律和第二定律来进行分析
15
高分子材料性能学
dl
f
f
体系的内能受三个因素影响: (1)拉伸功 (2)体积变化功 (3)热量变化
h2 S KN 2 ( 21 2 2 32 3) 3
交联网络的构象熵
1 2 2 S Nk (1 2 3 3) 2 2
33
高分子材料性能学
⊿F= ⊿U-T⊿S;⊿U=0 根据赫姆霍尔兹自由能定义:恒温过程中,外力对 体系作的功等于体系自由能的增加。 橡胶弹性贮能方程
粘弹性
同时具有弹性形变和粘 性形变
橡胶:施加外力时发生大的形变,外力除去后 可以恢复的弹性材料
3
高分子材料性能学
2.1 高弹性
高弹性——聚合物(在Tg以上)处于高弹态时所表
现出的独特的力学性质,又称橡胶弹性
橡胶、塑料、生物高分子在Tg~Tf间都可表现 出一定的高弹性
4
高分子材料性能学
2.1.1 高弹性的特点
使Байду номын сангаас胶的内能随伸长变化
使橡胶的熵变随伸长变化
17
高分子材料性能学
理想弹性变形时,体系内能不变化
U 0 l T ,V
S f T l T ,V
只对理想橡胶成立
理想橡胶在等温拉伸过程中,弹性回复力主要
是由体系熵变所贡献的。
据上式拉伸功-fdl=TdS=dQ,将转变成热量,若过程进行的快, 体系来不及与外界进行热交换,拉伸功使橡胶升温.

材料化学第2章高分子材料的结构

材料化学第2章高分子材料的结构

X
CH2
C n
H
有不对称碳原子,所以有旋光异构。
注:对高分子来说,关心不是具体构型(左旋或 右旋),而是构型在分子链中的异同,即:
全同(等规)、间同或无规。
34
c
aC b
高分子链上有 取代基的碳原子 可以看成是不对
d
R RR R R
称碳原子
HHHH
将锯齿形碳链 H 排在一个平面上,
RH
RH
取代基在空间有 不同的排列方式。
以大分子链中的重复单元数目表示,记作 DP
注:重复单元与结构单元的异同:
5
(1) 由一种结构单元组成的高分子
一个高分子如果是由一种单体聚合而成,其重复单 元与结构单元相同。
例如:聚苯乙烯
n CH2 CH 聚合
CH2-CH-CH2-CH-CH2-CH
缩写成
CH2 CH n
n 表示重复单元数,也称为链节数, 在此等于聚合度
(6) 单体单元(monomer unit): 与单体的化学组成完全相同只是化学结构不同的 结构单元。
4
(7) 聚合度(degree of polymerization): 聚合物分子中,结构单元的数目叫聚合度。 聚合度是衡量高分子大小的一个指标。
有两种表示法:
以大分子链中的结构单元数目表示,记作 xn
2.6 高分子材料的结构
前言 一、定义
1. 高分子化合物 是指分子量很高并由共价键连接的一类化合物 . 又称:高分子化合物、大分子化合物、高分子、
大分子、高聚物、聚合物 Macromolecules, High Polymer, Polymer
分子量:一般高达几万、几十万,甚至上百万, 范围在104~106

高分子材料

高分子材料

高分子材料主讲人:蔡水洲Tel: 87556544第一章引言大家一定都听说过“赛璐珞”。

在19世纪,台球都是用象牙做的,数量自然非常有限。

于是有人悬赏1万美元征求制造台球的替代材料。

1869年,美国的海厄特(J.W.Hyatt,1837-1920)把硝化纤维、樟脑和乙醇的混合物在高压下共热,然后在常压下硬化成型制出了廉价台球,赢得了这笔奖金。

这种由纤维素制得的材料就是“赛璐珞”。

“赛璐珞”是人类历史上第一种合成塑料,它是一种坚韧材料,具有很大的抗张强度,耐水,耐油、耐酸。

从此,"赛璐珞"被用来制造各种物品,从儿童玩具到衬衫领子中都有"赛璐珞"。

它还被用来做胶状银化合物的片基,这就是第一张实用照相底片。

不过,由于"赛璐珞"中含硝酸根,所以它有一个很大的缺点,就是极易着火引起火灾。

“赛璐珞”是由天然的纤维素加工而成的,并不是完全人工合成的塑料。

人类历史上第一种完全人工合成的塑料是在1909年由美国人贝克兰(Leo Baekeland)用苯酚和甲醛制造的酚醛树脂,又称贝克兰塑料。

酚醛树脂是通过缩合反应制备的,属于热固性塑料。

进入50年代,从石油裂解而得的a-烯烃主要包括乙烯与丙烯,德国人齐格勒(Karl Ziegler)与意大利人纳塔(Giulio Natta)分别发明用金属络合催化剂合成低压聚乙烯与聚丙烯的方法,前者1952年工业化,后者1957年工业化,这是高分子化学的历史性发展,因为可以由石油为原料又能建立年产10万吨的大厂,他们二人后来都获得了1963年的诺贝尔化学奖。

60年代,由于要飞往月球而出现高温高分子的研究热。

耐高温的定义是材料能够在氮气中、500摄氏度环境中能使用一个月;在空气中,300摄氏度环境下能使用一个月。

其结果主要分为两大类,一类是芳香聚酰胺例如苯二胺与间苯二酰缩聚得到的Nomex,这在当时曾被作为太空服的原料。

还有对苯二胺与对苯二酰氯缩聚得到的Kevlar,它属于耐高温的高分子液晶,现在用于超音速飞机的复合材料中。

功能高分子材料

功能高分子材料

第一章绪论性能:材料对外部作用的抵抗特性。

高性能高分子材料:对外部作用有特别强的抵抗能力的高分子材料。

功能高分子材料:是指当有外部刺激时,能通过化学或物理的方法做出响应的高分子材料。

(具有特殊物理化学性质的的材料)通用(常规)高分子材料:应用面广、量大,价格较低。

eg:纤维、塑料、橡胶、涂料、粘合剂。

特种高分子材料:功能高分子材料属于特种高分子材料最早的功能高分子是合成的酚醛型离子交换树脂。

一般采用按其性质、功能或实际用途对功能高分子材料进行分类:1. 反应型高分子材料(包括高分子试剂、高分子催化剂等;)2. 光敏型高分子(包括光稳定剂、光刻胶、光致变色材料等。

)3. 电性能高分子材料(包括导电聚合物、能量转换型聚合物、电致发光和电致变色材料以及其他电敏感性材料等。

)4. 高分子分离材料(包括各种分离膜、缓释膜和其他半透性,膜材料、离子交换树脂、高分子螯合剂、高分子絮凝剂等。

)5. 高分子吸附材料(高分子吸附性树脂、高吸水性高分子、高吸油性高分子等。

)6. 高分子智能材料(高分子记忆材料、信息存储材料和光、磁、pH、压力感应材料等。

)7. 医药用高分子材料(医用高分子材料、药用高分子材料和医药用辅助材料等。

)8. 高性能工程材料(高分子液晶材料,耐高温高分子材料、高强高模量高分子材料、阻燃性高分子材料和功能纤维材料、生物降解高分子等。

)!!!功能高分子材料的制备策略功能型小分子材料的高分子化、已有高分子材料的功能化、多功能材料的复合。

功能型小分子材料的高分子化的实现途径:①化学键连接的化学方法,如共聚、均聚等(举例1:丙烯酸,可用于制备离子交换树脂、高吸水性树脂等。

举例2:含双键的环氧丙烯酸酯,广泛用于制备功能性粘合剂。

)②物理方法,如共混、吸附、包埋等。

(维生素C微胶囊)(1)带有功能型基团可聚合单体的聚合法——包括两步骤。

(a)在功能性小分子中引入可聚合基团,或在含有可聚合基团单体中引入功能性基团;(b)进行均聚或共聚反应生成功能聚合物。

功能高分子05第2章吸附性高分子材料PPT

功能高分子05第2章吸附性高分子材料PPT
特性
具有高吸附容量、高选择性和稳定性 等特性,广泛应用于分离、净化、催 化剂载体、离子交换等领域。
吸附性高分子材料的分类
根据吸附机理
物理吸附高分子材料和化学吸附 高分子材料。
根据功能性质
离子交换树脂、活性炭、沸石等。
根据应用领域
水处理、气体分离、催化剂载体等。
吸附性高分子材料的应用领域
01
02
03
现对特定物质的吸附分离。
吸附性高分子材料的环境友好性
总结词
随着环保意识的增强,环境友好型吸附性高分子材料成为研究热点,旨在降低对环境的 负面影响。
详细描述
研究者们致力于开发可生物降解、低毒或无毒的高分子材料,以替代传统的高分子吸附 剂。同时,研究高分子材料的循环利用和废弃物处理方法,以降低对环境的影响。此外,
03
吸附性高分子材料的性能研究
吸附性能研究
吸附性能
吸附性高分子材料能够有效地吸 附气体、液体或固体物质,具有
较高的吸附容量和选择性。
吸附机理
吸附性高分子材料的吸附机理主 要包括物理吸附和化学吸附,其 中物理吸附主要依靠分子间的范 德华力,而化学吸附则涉及到化
学键的形成。
影响因素
影响吸附性能的因素包括高分子 材料的结构、孔径、比表面积、 极性等,这些因素都会对吸附性
能产生影响。
分离性能研究
1 2 不同组分进 行有效的分离,从而实现混合物的净化和纯化。
分离机理
分离机理主要包括筛分作用、亲和作用和选择性 吸附等,这些机理的协同作用使得吸附性高分子 材料具有出色的分离性能。
分离技术
常见的分离技术包括固定床吸附、移动床吸附、 流化床吸附等,这些技术能够根据不同的分离需 求进行选择和应用。

高分子物理课件第二章

高分子物理课件第二章
< 1.0, 原因:更多的晶格缺陷造成非晶区。
2、同质多晶现象
聚乙烯的稳定晶系是斜方晶系,拉伸时可形成 三斜或单斜晶系。
同质多晶现象:由于结晶条件的变化,引起分 子链构象的变化或者堆积方式的改变,一种聚合 物可以形成几种不同的晶型。
形成的晶型不同,聚合物所表现出来的性能 也不相同。
3、 聚丙烯的晶胞结构
基于内聚能的加和性,即原子或基团摩尔吸引力常 数Gi的加和
CED
Gi
i
M0
CED与高聚物物理性质之间的关系
a. CED < 300 J/cm3时(70cal/cm3) 聚合物都是非极性的,分子间作用力主要是色散力,比较 弱,分子链属于柔性链,具有高弹性,作橡胶使用。 b. CED > 400 J/cm3时(100cal/cm3) 聚合物都是极性的,由于分子链上有强的极性基团或分子 间能形成氢键,分子间作用力较强,加上易于结晶和取向, 作纤维使用 c. 300 J/cm3 < CED < 400 J/cm3时(70-100cal/cm3) 聚合物的分子间作用力居中,适宜作塑料使
但是在用X射线研究聚合物的凝聚态结构时,人们 发现:聚合物内部确实存在着三维有序的规整结构。
结晶聚合物最重要的实验证据为:
x射线衍射花样(图)——一系列同心圆(德拜环) (非晶聚合物—弥散环或称无定形晕) 衍射曲线—尖锐的衍射峰 (非晶聚合物—很钝的衍射峰)
实验证明:如果高分子链本身具有必要 的规整结构,同时给予适宜的条件(温度等), 就会发生结晶,形成晶体。
纤维(>100)
解释PE的 CED < 300J/cm3 却作为塑料使用,Why? PE分子链的结构非常规整,很容易结晶, 从而使材料具有一定的强度,作为塑料使用。

高分子材料成型加工考试重点及部分习题答案

高分子材料成型加工考试重点及部分习题答案

高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。

受热不熔融,达到一定温度分解破坏,不能反复加工。

在溶剂中不溶。

化学结构是由线型分子变为体型结构。

举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。

再次受热,仍可软化、熔融,反复多次加工。

在溶剂中可溶。

化学结构是线型高分子。

举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。

3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。

4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。

举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。

透明度不好,强度较大。

6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。

结晶度小,透明度好,韧性好。

定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。

7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。

透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。

9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。

第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。

针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。

热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。

高分子材料思考题答案

高分子材料思考题答案

《高分子材料导论》思考题第一章材料科学概述1.试从不同角度把材料进行分类,并阐述三大材料的特性。

按化学组成分类:金属材料无机材料.有机材料(高分子材料)按状态分类:气态。

固态:单晶.多晶.非晶.复合材料.液态按材料作用分类:结构材料,功能材料按使用领域分类:电子材料。

耐火材料。

医用材料。

耐蚀材料。

建筑材料三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。

(2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。

(3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差。

2.说出材料、材料工艺过程的定义。

材料——具有满足指定工作条件下使用要求的形态和物理性状的物质。

由化学物质或原料转变成适用于一定用场的材料,其转变过程称为材料化过程或材料工艺过程。

3.原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。

离子键:无方向性,键能较大。

由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。

共价键:具有方向性和饱和性两个基本特点。

键能较大,由共价结合而形成的材料一般都是绝缘体。

金属键:无饱和性和方向性。

具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。

4.何为非晶态结构?非晶态结构材料有何共同特点?原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。

共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。

5.材料的特征性能主要哪些方面?热学、力学、电学、磁学、光学、化学等性能6.什么是材料的功能物性?材料的功能物性包括哪些方面?功能物性,是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一形式功能的性质。

包括:1热电转换性能2光-热转换性能3光-电转换性能4力-电转换性能5磁-光转换性能6电-光转换性能7声-光转换性能7.材料工艺与材料结构及性能有何关系?材料工艺,包括材料合成工艺及材料加工工艺,影响材料的组织结构,因而对材料的性能有显著的影响。

新型高分子材料第二章——高性能高分子PPT课件

新型高分子材料第二章——高性能高分子PPT课件
17
2. 热性能
PPS分子的刚性高及规整排列,使其成为结晶性聚合物, 最高结晶度达65%,结晶温度为127℃,Tm为280~290℃, 在空气中的开始分解温度为430~460℃,热稳定性远远优于 PA、PBT、POM及PTFE等工程塑料。经与GF复合增强后, HDT可达260℃,长期使用温度为220~240℃,在热塑性塑 料中是最高的。
全同立构PS(IPS),结晶, 熔点240 ℃
间同立构PS(SPS) ,熔 点270 ℃,
无规立构PS(aPS),无定 形,透明
提高分子的等规度,提高Tg 和Tm
7
分子间氢键
交联
增加分子间的相互作用,提高Tg
8

聚甲醛


尼龙6

尼龙66

酚醛树脂

聚碳酸酯

芳香聚酯


聚醚醚酮

聚苯硫醚

聚砜
14
2.2.1 聚苯硫醚
聚苯硫醚(PPS)为对二氯苯和硫化钠为原料制备的,目 前被认为耐热性最佳的聚合物之一。
nNa2S + n Cl
Cl NMP 加热加压
S
+ 2nNaCl
n
PPS为第六大工程塑料和第一大特种工程塑料,属热塑性 结晶树脂。其Tm高达280~290℃,Td>400℃,与无机填料、 增强纤维以及其它高分子材料复合,可制得各种PPS工程塑 料及合金。
有极好的刚性和强度,其拉伸强度、弯曲强度和弯曲弹 性模量均列在工程塑料前列。PPS树脂通过纤维增强后, 刚性进一步提高。
良好的抗蠕变性,在高温下的强度保持率远远高于PBT、 PES、PC及其它工程塑料,适宜制作螺丝等紧固件,可解 决因塑料松弛而引起的紧固力下降这一缺点。

高分子材料基础第一二章

高分子材料基础第一二章

2.挤出过程
(P222-232)
注塑成型过程及注塑模具计算机辅助设计中的流变学问题 高分子熔体流动不稳定性及滑壁现象
1.注塑成型过程的流变分析(P255-262)
1.挤出成型过程中的熔体破裂行为
(P286-292)
4
高分子材料基础 第一、二章
第一章
1.1 1.2
材料科学概论
材料与材料科学 材料结构简述
例: 聚甲醛 ━ O ━ CH2 ━
尼龙6
━ NH ━(CH2)5 ━ CO ━
元素有机聚合物:是指大分子主链中没有碳原子,主要由硅、硼、铝、
氧、氮、硫、磷等原子组成,但侧基却由有机团如甲基、乙基、芳基等组 成。 CH3 │ 例:硅橡胶 ━ O ━ Si ━ │ CH3 22 高分子材料基础 第一、二章
缩写
聚合物
聚丙烯
缩写
ABS
PVC
PP
聚酰胺
PA
聚乙烯
PE
聚苯乙烯
PS
21
高分子材料基础 第一、二章
2.1.3
分类
2.1.3.1 按大分子链结构分类
碳链聚合物:是指大分子链完全由碳原子组成。
例:聚乙烯 ━CH2━CH2━ 聚丙烯 ━CH2━CH━ │ CH3
杂链聚合物:是指大分子链中除碳原子外,还有氧、氮、硫等杂质。
金属材料 黑色金属——主要以铁—碳为基的合金,包括碳钢、合金钢、不锈钢、 铸铁。钢的性能主要由渗碳体的数量、尺寸、形状
及分布决定的。
有色金属——除铁之外的纯金属或以其为基的合金。
如铝合 金、铜合金、镁合金、钛合金等
无机材料——是由无机化合物构成的材料,其中包括如锗、硅、碳之类的单质所构成的料。 有机材料(高分子材料)——是由脂肪族和芳香族的C—C 共价键为基本结构的高分子构成的,也

摩擦学材料研究方法高分子材料摩擦学 第2章 表面和接触

摩擦学材料研究方法高分子材料摩擦学 第2章 表面和接触
31摩擦基本原理摩擦的定义29311摩擦基本原理摩擦的分类分类方法摩擦的分类摩擦形式外摩擦摩擦形式内摩擦运动形式静摩擦运动形式动摩擦滑动摩擦滚动摩擦滚滑摩擦润滑状态干摩擦润滑状态边界摩擦润滑状态润滑摩擦摩擦材质金属金属金属非金属非金属非金属等工况条件常见工况常温常压环境介质等工况条件特殊工况高低温高低压辐射真空腐蚀介质失重等30311摩擦基本原理摩擦的分类外摩擦
轮廓峰的平均曲率 为取样长度!内全部轮廓峰顶处 半径(代号"#$%) 的曲率半径平均值
11
2.1表面形貌-典型测量方法
测量方法 光学显微镜 光轮廓 斜剖面 干涉显微镜 复光束干涉 反射电子显微镜 电子显微镜 表面轮廓仪 分辨率μm 横向 0.25~0.35 0.25 0.25 0.25 5 0.03~0.04 0.005 1.3~2.5 纵向 0.18~0.35 0.25 0.025 0.025 0.005 0.002~0.008 0.0025 0.005~0.25
2
第2章 表面和接触
表面:指两相间的边界物质,其中相的定义是“具有明 确的物理边界、区别于其他物质系的均一部分”。 实际存在的固体表面并不是象镜面一样简单的平面, 它具有复杂的形状和表面性质。 2.1 表面形貌 2.2 表面结构 2.3 接触和变形
3
illustration of a regular wavy surface texture
8
2.1表面形貌-轮廓曲线的高度特征
Ra、Ry、Rq比较 Ra和Ry是加工中直接用于控制表面质量的参数,Rq在 工程中很少用,但在轮廓的理论分析中有很重要的应用价 值。上图为两种支承表面的微观形貌,这两种表面的Ra相 同,而Rq值却能把好与差的表面差异反映出来,在塑性材 料磨损,特别是磨合过程中,这种表面形貌的变化是常遇 到的。

第二章 高分子材料成型加工中的物理化学问题(PDF)

第二章 高分子材料成型加工中的物理化学问题(PDF)

高分子材料具有复杂的多层次非均匀的内部结 构,例如大分子链的近程结构(组成和构型)、远程 结构(构象)、聚集态结构(结晶与取向)、织态 结构,因此属于复杂体系。
状态变化
传热和熔融 物质的流动
如何在加工成型过程中精密控制这些多层次内部结构,充 分发挥高分子材料的性能潜力,是当前高分子科学与工程研究 中的重要课题 , 研究内容涉及高分子物理、连续介质力学、 聚合物加工流变学、聚合物成型工艺学、高分子化学等。
聚合物加工中,结晶聚合物大多形成球晶.聚合 物熔体冷却时,熔体中的某些有序区域(或分子链束) 开始形成尺寸很小的晶胚, 晶胚达到一定尺寸后变成 初级晶核,然后大分子链通过热运动沿着晶核重排而 生成初级晶片,初级晶片沿晶核球形对称性生长便形 成球晶. 球晶中存在的缺陷:连接链,链末端,不规则折叠
聚合物结晶过程的特点
Syndiotactic Polystyrene
聚乙烯结晶图
聚合物的结晶态结构与性能
通常将高分子在等温条件下的结晶称为静态结晶 过程。但实际上高分子加工过程大多数情况下结晶都不 是等温的,而且熔体还要受到外力的作用,产生流动和 取向等。这些因素都会影响结晶过程。 结晶高分子的力学性能、热性能和化学稳定性等相 应提高,但耐应力龟裂能力降低。
非晶态高聚物在Tb~Tg范围内的典型拉伸 应力-应变曲线及拉伸过程试样形状变化的示意图
影响因素
内因:塑性形变能力
应力硬化能力
评价:
任何线形的聚合物材料都具有拉伸屈服 后产生大形变的能力,也就是说具有可延展 性。但可延展性的优劣取决于聚合物的分子 结构及实验条件,通常通过测定塑料的拉伸 比(已拉伸试样长度与未拉伸试样长度之比) 来评价其可延展性。
只有线形和支链形结构的大分子 能通过流动形变实现大分子链间的 位移而取得所需的形状,具备进大 变形的加工性能,一旦成为体形结 构,其变形能力有限,一般只有实 现机械加工。

高分子复合材料第二章玻璃纤维

高分子复合材料第二章玻璃纤维
特点:没有固定的熔点 玻璃纤维是将玻璃材料通过拉丝形成的纤维状的玻璃。
(2)玻璃纤维的结构
微晶结构假说:
玻璃是由硅酸盐或二氧化硅的“微晶子”组成,在结构上是高 度变形的晶体,在“微晶子”之间由硅酸盐过冷溶液所填充。
网络结构假说:
玻璃是由二氧化硅的四面体、铝氧三面体或硼氧三面体相互连 成不规则三维网络,网络间的空隙由Na、K、Ca、Mg等阳离 子所填充。二氧化硅四面体的三维网状结构是决定玻璃性能的 基础,填充的Na、Ca等阳离子称为网络改性物。
2010年我国玻纤产量超过260万吨。
玻璃纤维的发展现状
2005年以前,全球玻纤行业一直是国外垄断格局。由美国欧文 斯科宁、PPG和法国圣戈班占据60%以上的份额。
近5年来,随着中国三大厂商巨石集团、重庆国际和泰山玻纤每 年30%的持续高速产能投入,中国三强不仅垄断着国内市场,也成 为全球格局中新的寡头。
影响玻璃纤维强度的因素
a.纤维直径和长度对拉伸强度的影响 直径越细,拉伸强度越高; 随着纤维长度的增加,拉伸强度显著下降。
直径(μm) 性能
拉伸强度(MPa)
4 3000~ 3800
5 2400~ 2900
7
9
11
1750~ 2150 1250~1700 1050~1250
玻璃纤维长度(mm)
5 20 90 1560
玻玻璃璃纤 纤维维玻导呈热表璃面系光数纤滑:的0维.圆柱作体,为其横增断强面几材乎是料完整,的圆是形。树脂基复合材料的绝对主体,占应用量
的98%以上。 (2)以单丝直径分类
1、玻璃纤维拉伸强度 池窑拉丝与坩埚拉丝相比较,具有如下优点:
玻玻璃璃材 纤料维及的全玻耐球璃磨性纤玻和维耐在璃折外性电纤能场很的维差作,用制尤下造其,在玻的潮璃纤湿先维环内境驱的下离玻是子璃产纤美生维国迁外移表的而吸具附欧有水一分文定后的能斯加导速电(微性裂能O。纹w的e扩n展s。Corning)公司,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成纤高聚物的分子链间必须有足够的次价力 高聚物的物理-力 高聚物的物理学性能与次价力有密切关系。分子间次价力越大, 学性能与次价力有密切关系。分子间次价力越大,纤维的强度越高 次价力大于20.92kJ/mol的高聚物适宜作纤维材料 20.92kJ/mol的高聚物适宜作纤维材料。 ,次价力大于20.92kJ/mol的高聚物适宜作纤维材料。 成纤高聚物应具有可溶性和熔融性 只有这样才能将高聚物溶解 或熔融成溶液或熔体,再经纺丝、凝固或冷却形成纤维, 或熔融成溶液或熔体,再经纺丝、凝固或冷却形成纤维,否则就不 能进行纺丝。 能进行纺丝。 成纤高聚物高分子链立体结构具有一定的规整性 使其可能形成 最佳的超分子结构。为了制得具有最佳综合性能的纤维, 最佳的超分子结构。为了制得具有最佳综合性能的纤维,成纤高聚 物应具有形成半结晶结构的能力, 物应具有形成半结晶结构的能力,高聚物中无定型区决定了纤维的 弹性、染色性,对各种物质的吸收性等重要性能。 弹性、染色性,对各种物质的吸收性等重要性能。
(2)形态结构
① 纤维多重原纤结构和表面形态 a.多重原纤结构 a.多重原纤结构 大分子链 b.表面形态 b.表面形态 基原纤 微原纤 原纤 大原纤 纤维
② 纤维横截面形状和皮芯结构 a.纤维横截面形状 a.纤维横截面形状 b.皮芯结构 b.皮芯结构
③ 纤维中的孔洞
4. 纤维加工工艺
• 将成纤聚合物的熔体或浓溶液,用纺丝泵( 将成纤聚合物的熔体或浓溶液,用纺丝泵(或称计量 连续、定量而均匀地从喷丝头(或喷丝板) 泵)连续、定量而均匀地从喷丝头(或喷丝板)的毛细孔挤 而成为液态细流,再在空气、 出,而成为液态细流,再在空气、水或特定的凝固浴中固 化成为初生纤维的过程称作“纤维成型” 或称“纺丝” 化成为初生纤维的过程称作“纤维成型”,或称“纺丝”。 •工业上常用的纺丝方法主要有两大类:熔体纺丝法和溶 工业上常用的纺丝方法主要有两大类:熔体纺丝法和 工业上常用的纺丝方法主要有两大类 液纺丝法。 液纺丝法。 • 在溶液纺丝法中,根据凝固方式的不同,又分为湿法 在溶液纺丝法中,根据凝固方式的不同,又分为湿法 纺丝和干法纺丝。 纺丝和干法纺丝。化学纤维生产中绝大部分采用上述三种 纺丝方法。 纺丝方法。 • 此外,还有一些特殊的纺丝方法, 乳液纺丝、 此外,还有一些特殊的纺丝方法,如乳液纺丝、悬浮 纺丝、干湿法纺丝、冻胶纺丝、液晶纺丝、 纺丝、干湿法纺丝、冻胶纺丝、液晶纺丝、相分离纺丝和 反应纺丝法等 用这些方法生产的纤维量很少。 反应纺丝法等,用这些方法生产的纤维量很少。
几种主要成纤聚合物的热分解温度和熔点
聚合物 聚乙烯 等规聚丙烯 聚丙烯腈 聚氯乙烯 聚乙烯醇 聚己内酰胺 聚对苯二甲酸乙二酯 纤维素 醋酸纤维素酯 热分解温度/ 热分解温度/℃ 350~400 ~ 350~380 ~ 200~250 ~ 150~200 ~ 200~220 ~ 300~350 ~ 300~350 ~ 180~220 ~ 200~230 ~ 熔点/ 熔点/℃ 138 176 320 170~220 ~ 225~230 ~ 215 265
湿法纺丝中的扩散和凝固不仅是一般的物理化学过程, 湿法纺丝中的扩散和凝固不仅是一般的物理化学过程, 对某些化学纤维如粘胶纤维还同时发生化学变化。 对某些化学纤维如粘胶纤维还同时发生化学变化。因此 湿法纺丝的成型过程比较复杂, ,湿法纺丝的成型过程比较复杂,纺丝速度受溶剂和凝 固剂的双扩散、凝固浴的流体阻力等因素限制, 固剂的双扩散、凝固浴的流体阻力等因素限制,所以纺 丝速度比熔体纺丝低得多。 丝速度比熔体纺丝低得多。 目前腈纶、维纶、氯纶、 目前腈纶、维纶、氯纶、粘胶纤维以及某些由刚性大分 子构成的成纤聚合物都需要采用湿法纺丝。 子构成的成纤聚合物都需要采用湿法纺丝。
⓶ 其它纺丝方法
⑴ 干湿纺丝法 ⑵ 液晶纺丝-高取向和高强度纤维 液晶纺丝⑶ 冻胶纺无合适溶剂时采用 乳液或悬浮液纺丝法割裂纤维 ⑹ 反应纺丝法 撕裂纤维 ⑺ 裂膜纺丝法 ⑻ 喷射纺丝法
③ 化学纤维后处理 1、目的
由上述各种方法得到的纤维,分子链排列不规整, 由上述各种方法得到的纤维,分子链排列不规整,物理力学性能 不能直接用于织物加工。为此,必须进行一系列后加工, 差,不能直接用于织物加工。为此,必须进行一系列后加工,以改 进纤维结构,提高其性能。 进纤维结构,提高其性能。
(3)干法纺丝 凝固介质为干态的气相 干法纺丝 介质 从喷丝头毛细孔中挤出的纺丝溶液 不进入凝固浴,而进入纺丝甬道。 不进入凝固浴,而进入纺丝甬道。 通过甬道中热空气的作用, 通过甬道中热空气的作用,使溶液 细流中的溶剂快速挥发, 细流中的溶剂快速挥发,并被热空 气流带走。 气流带走。溶液细流在逐渐脱去溶 剂的同时发生浓缩和固化, 剂的同时发生浓缩和固化,并在卷 绕张力的作用下伸长变细而成为初 生纤维。 生纤维。
主要成纤高聚物的相对分子质量
高聚物 聚酰胺-6或-66 聚酰胺 或 聚酯 聚丙烯腈
相对分子质量 16000-22000 16000-20000 50000-80000
高聚物 聚乙烯醇 全同聚丙烯
相对分子质量 60000-80000 180000-300000
缩聚型,HI=1.5-3.0 缩聚型,HI=1.5分子量分布 加聚型,HI=5PP) 加聚型,HI=5-7(PP)
第三节


1. 概述
纤维是指柔韧、纤细,具有相当长度、强度、弹性和吸湿性的丝状物。 纤维是指柔韧、纤细,具有相当长度、强度、弹性和吸湿性的丝状物。
2.
纤维的分类与特征
大多数是不溶于水的有机高分子化合物,少数是无机物。根据来源 大多数是不溶于水的有机高分子化合物,少数是无机物。 可以分为天然纤维和化学纤维两大类。 可以分为天然纤维和化学纤维两大类。 黏胶纤维 纤维素纤维 铜氨纤维 人造纤维 醋酸纤维 蛋白质纤维 化学 纤维 合成纤维 锦纶系列纤维 涤纶系列纤维 腈纶系列纤维 聚乙烯醇系列纤维 聚烯烃纤维 含氯纤维 耐高温纤维 其他纤维
2、后加工过程
⑴ 短纤维的后处理 集束,牵伸,水洗,上油,干燥,热定性,卷曲,切断, 集束,牵伸,水洗,上油,干燥,热定性,卷曲,切断,打包等 ⑵ 长丝后处理 拉伸,加捻,复捻,热定性,络丝,分级,包装等。 拉伸,加捻,复捻,热定性,络丝,分级,包装等。 ⑶ 弹力丝的加工-假捻法 弹力丝的加工⑷ 膨体纱的加工
在化学纤维生产中, 在化学纤维生产中,无论是纺丝还是后加工都需进行上 油。上油的目的是提高纤维的平滑性、柔软性和抱和力,减 上油的目的是提高纤维的平滑性、柔软性和抱和力, 的目的是提高纤维的平滑性 小摩擦和静电的产生,改善化学纤维的纺织加工性能。 小摩擦和静电的产生,改善化学纤维的纺织加工性能。 除上述工序外,某种纤维的加工中,还有水洗、脱硫、 除上述工序外,某种纤维的加工中,还有水洗、脱硫、 漂白和酸洗工序,为了赋予纤维某些特殊性能.还可通过某 漂白和酸洗工序,为了赋予纤维某些特殊性能. 些特殊处理,提高纤维的抗皱性、耐热水性和阻燃性等。 些特殊处理,提高纤维的抗皱性、耐热水性和阻燃性等。
④ 纤维加工过程中结构的变化
⑴ 纺丝过程中的取向与结晶 ① 流动取向机理 ② 形变取向机理
⑵ 拉伸过程中纤维结构的变化 ① 非结晶高聚物纤维的拉伸取向 ② 结晶高聚物纤维的拉伸取向
⑶ 热定型过程中纤维结构的变化
通过拉伸,在外力作用下可以使分子链 通过拉伸, 段或整个高分子链,结晶高聚物的晶带、 段或整个高分子链,结晶高聚物的晶带、 晶片、晶粒等, 晶片、晶粒等,沿外力作用的方向 进行有序排列,提高纤维的使用性能。 进行有序排列,提高纤维的使用性能。
(2) 湿法纺丝 凝固介质为液体 纺丝溶液经混合、过滤和脱泡等纺前准备后,送至纺丝机, 纺丝溶液经混合、过滤和脱泡等纺前准备后,送至纺丝机, 通过纺丝泵计量,经烛形滤器、鹅颈管进入喷丝头( 通过纺丝泵计量,经烛形滤器、鹅颈管进入喷丝头(帽),从喷 丝头毛细孔中挤出的溶液细流进入凝固浴, 丝头毛细孔中挤出的溶液细流进入凝固浴,聚合物从中析出成 为初生纤维。 为初生纤维。
纤维的主要性能指标 纤度
支数 细度 旦
断裂强度 断裂伸长率 弹性模量 回弹率 吸湿性
3. 成纤高聚物的特征
(1)分子结构 高聚物的品种很多,但并不是所有高聚物都能用于纺丝, 高聚物的品种很多,但并不是所有高聚物都能用于纺丝,而是具有如下特征 的高聚物都能进行纺丝。 的高聚物都能进行纺丝。 成纤高聚物均为线型高分子 用这类高分子纺制的纤维能沿纤维纵轴方向拉 伸而有序排列。当纤维受到拉力时,大分子能同时承受作用力,使纤维具有较高 伸而有序排列。当纤维受到拉力时,大分子能同时承受作用力, 的拉伸强度和适宜的延伸度及其他物理-力学性能。 的拉伸强度和适宜的延伸度及其他物理-力学性能。 成纤维高聚物具有适宜的分子量和分布 线型高聚物分子链的长度对纤维的 物理-力学性能影响很大,尤其是对纤维的机械强度、 物理-力学性能影响很大,尤其是对纤维的机械强度、耐热性和溶解性的影响更 大。相对分子质量的高低均不好,高者不易加工,低者性能不好。常见的主要成 相对分子质量的高低均不好,高者不易加工,低者性能不好。 纤高聚物的相对分子质量如下表所示。 纤高聚物的相对分子质量如下表所示。
纺丝成型后得到的初生纤维其结构还不完善, 纺丝成型后得到的初生纤维其结构还不完善,物理力学性 能较差,还不能直接用于纺织加工,必须经过一系列的后加 能较差,还不能直接用于纺织加工, 工。后加工随化纤品种、纺丝方法和产品要求而异,其中主 后加工随化纤品种、纺丝方法和产品要求而异, 要的工序是拉伸和热定型。 要的工序是拉伸和热定型。 拉伸的目的是使纤维的断裂强度提高,断裂伸长率降低, 拉伸的目的是使纤维的断裂强度提高,断裂伸长率降低, 的目的是使纤维的断裂强度提高 耐磨性和对各种不同形变的疲劳强度提高。 耐磨性和对各种不同形变的疲劳强度提高。 热定型的目的是消除纤维的内应力, 热定型的目的是消除纤维的内应力,提高纤维的尺寸稳定 的目的是消除纤维的内应力 性,并且进一步改善其物理力学性能。 并且进一步改善其物理力学性能。
相关文档
最新文档