大学物理教程第8章 (张文杰 曹阳 著) 中国农业大学出版社

合集下载

《大学物理》 第二版 第八章课后习题答案

《大学物理》 第二版  第八章课后习题答案

习题精解8-1 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图8.3所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图8.3所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅= 通过矩形面积CDEF 的总磁通量为 00ln 22bm ai il bldx x aμμφππ==⎰由法拉第电磁感应定律有0ln cos 2m d il bt dt aφμωεωπ=-=- 8-2 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ= 通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ== 由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-3 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-4 如图8.4所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=∙向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2BAv B dl dl V πε=⨯∙=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-5 如图8.5所示,两段导体AB 和CD 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

大学物理第八章课后习题答案

大学物理第八章课后习题答案

大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。

大学物理教程第8章 (张文杰 曹阳 著) 中国农业大学出版社

大学物理教程第8章 (张文杰 曹阳 著) 中国农业大学出版社

思考题8.1 一根无限长直导线中通有电流I,一矩形线圈与此直线共面,且沿垂直于直线的方向匀速运动,如图8-15所示,试分析线圈中感应电动势的方向。

图8-15思考题8.1用图答:线圈中感应电动势的方向为顺时针方向。

8.2 设有一铜环和一铝环,若二环的形状和大小完全相同,现把它们静止地放置于一交变磁场中,如果通过二环的磁通量随时间的变化率相同,则二环中的感应电流是否相同?感应电动势是否相同(不计自感)。

答:二环中的感应电流不相同,铜环电流大。

二环中的感应电动势是相同的。

8.3 一个线圈的自感系数与哪些因素有关?答:对于一个线圈来说,自感系数的大小取决于线圈的匝数,直径、长度以及圈线芯材料等性质。

8.4 试比较传导电流与位移电流的异同.答:传导电流产生焦耳热,位移电流不产生焦耳热。

两者都可以激发磁场,都遵从安培环路定理。

8.5 电磁波为什么可以在真空中传播?答:电磁波的传播不依靠任何介质,依靠磁场与电场的内在联系。

因为变化的磁场产生变化的电场,变化的电场又产生变化的磁场,它们就这样周而复始的传播下去。

习 题8.1 设有一线圈,共50匝,把它放于变量磁场中,若通过每一匝线圈的磁通量都满足φ=1.010-5(Wb),试求:在t=2.0×10-2s 时,线圈中的感应电动势。

解:tt dtd Nπππε100cos 1057.1100cos 100100.15015--⨯-=⨯⨯⨯-=Φ-= )1057.1100.212V s t (时,--⨯-=⨯=ε8.2 如图8-16所示,一无限长通电直导线中通有电流I=5A ,一金属棒AB 以V=5m/s 的速度平行于长直导线运动。

已知a=10cm,b=50cm ,求棒中感应电动势的大小,哪边电势高?解:依动生电动势公式⎰⋅⨯=BAAB l d B)(υε 设距长直导线x 处的磁感应强度为B,则xIB πμ20=,方向为⊗ 故⎰-=b aAB Bdx υε⎰-=badx x I υπμ20)(100.81050ln 55102ln 2670V a b I --⨯-=⨯⨯⨯-=-=πυμ A 端电势高。

大学物理教程第八章

大学物理教程第八章

第八章 电磁感应
r r φm = ∫ B ⋅ dS
S
例8.1己知矩形框导体的一边ab可以平行滑动,长为 己知 可以平行滑动,长为l=10cm。 。
B=0.10韦伯/ 韦伯 整个矩形回路放在磁感强度为B=0.10韦伯/米2、方向与其 平面垂直的均匀磁场中。 平面垂直的均匀磁场中。若导线ab以恒定速度v=1.0m/s,向 右运动,求闭合回路的感应电动势。 右运动,求闭合回路的感应电动势。 a × × × × × × × × d 由图,通过线框的磁通量为: × × × × × × × × 解:由图,通过线框的磁通量为 r r φ = BS = Blx × × × B × × × ×v ×
在这里,作用在单位正电荷上的非静电力 洛仑兹力为: 在这里,作用在单位正电荷上的非静电力——洛仑兹力为: 洛仑兹力为 r r r∫+ Nhomakorabea−
r r E K ⋅ dl =

+

E K dl =

a
b
vBdl = vB ∫ dl = vBl
b
a
以上结果与上例8.1题中,通过回路的磁通量的变化, 以上结果与上例 题中,通过回路的磁通量的变化,用法拉 题中 第电磁感应定律所计算出的感应电动势的结果相同。 第电磁感应定律所计算出的感应电动势的结果相同。
b
r r r (v × B) ⋅ dl 后页用
l
图1 a + + +P + + v ++ + + F+ + +
b
X
如图1, 如图 ,当导体以速度 向右运动 时,导体内的自由电子也以速度 随之向右运动, 随之向右运动,按照洛仑兹力公 自由电子受到的洛仑兹力为: 式,自由电子受到的洛仑兹力为

大学物理第八章

大学物理第八章
—攀枝花学院数理教学部制作 返回本章首页 8.1-预备知识(3)
8.2.1 毕奥—萨伐尔定律 一、引入: dq→dE→E;Idl→dB→B
二、内容:dB k Idl sin 2
r
------(8-1)
0 式中各量均用国际单位制时,k 4 7 2
其中: 0 4 10 N A 为真空磁导率。上式变为: 0 Idl sin dB ------(8-2) 2 4 r 矢量式为: 0 Idl r0 ------(8-3) dB 2 4 r 式中
—攀枝花学院数理教学部制作 返回本章首页 8.1-预备知识(1)
2.磁感应强度(B) (1)引入
需要一个既具有大小又有方向的物理量来定量描述磁场。
(2)实验:运动电荷在磁场中的受力情况
•磁场力F与运动电荷的电量q和速度υ以及电荷 的运动方向有关,且垂直于速度的方向。 •在磁场中的任一点存在一个特殊的方向, 当电荷沿此方向或其反方向运动时所受的 磁场力为零。 •在磁场中的任一点,当电荷沿与上述方向 垂直的方向运动时,电荷所受到的磁场力 最大(计为Fmax),Fmax /qυ是与q、υ无关 的确定值。
引入磁矩: Pm IS ISn ----(8-14)
Pm 为矢量,其大小为IS ,方向与圆电流单位正法线矢
量方向相同。将(8-14)式代入(8-9)式,则有 图8.2.1-2 0 Pm 0 Pm B B 3 ---(8-16) 2 R 2 z 2 3/ 2 ---(8-15) 当z=0时, 2 R


注意:只有当圆电流的面积很小时,或场点距圆电流很远时,才能把 圆电流叫磁偶极子,这时Pm即为磁偶极子的磁矩。另外,(8-14)式对 任意形状的载流线圈都适用。
例[8.2.1-3]

大学物理第八章课后答案 .

大学物理第八章课后答案 .

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷20220)33(π4130cos π412a q q a q '=︒εε解得q q 33-='(2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解:20π4r r q E ε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S qE 0ε=,所以f =S q 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S qE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图 8-6 长l =15.0cmAB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε2220)(d π4d x a xE E llP P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=lQx E 0d ,即QE只有y 分量,∵22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d ll x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E.解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ ∵22cos 221l r l +=θ 12cos cos θθ-= ∴24π4d 22220l r ll r E P ++=ελ P Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r rl r l r lE+++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ ∴2)4(π422220l r l r qrE P ++=ε 方向沿 8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴)(π42200x R Sq +=Φε02εq=[221x R x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,=E8=r cm 时,∑q 3π4p=3(r )3内r -∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.12=r cm时,3π4∑=ρq-3(外r)内3r∴()42331010.4π43π4⨯≈-=rrrEερ内外1CN-⋅沿半径向外.8-11 半径为1R和2R(2R>1R)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r<1R;(2) 1R<r<2R;(3) r>2R处各点的场强.解: 高斯定理0dε∑⎰=⋅qSEs取同轴圆柱形高斯面,侧面积rlSπ2=则rlESESπ2d=⋅⎰对(1) 1Rr<0,0==∑Eq(2) 21RrR<<λlq=∑∴rEπ2ελ=沿径向向外(3) 2Rr>0=∑q∴0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间,nE)(2121σσε-=1σ面外,nE)(2121σσε+-=2σ面外,nE)(2121σσε+=n :垂直于两平面由1σ面指为2σ面.8-13 半径为R的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r<R的小球体,如题8-13图所示.试求:两球心O与O'点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1)ρ+球在O点产生电场010=E,ρ- 球在O 点产生电场d π4π3430320OO r E ερ=∴ O 点电场d 33030r E ερ= ;(2) ρ+在O '产生电场d π4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场003ερ='E OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则03ερrE PO =,03ερr E O P '-=' ,∴00033)(3ερερερd r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p 在外场E 中受力矩E p M⨯=∴ qlE pE M ==max代入数字 4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解:⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A oC O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强r E 0π2ελ=电子受力大小r e eE F e 0π2ελ==∴r v m r e 20π2=ελ 得1320105.12π2-⨯==e mv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷r qU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r 为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴()ix R qx i x U E 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql ll r qU εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===ACABAB AC E E σσ且 1σ+2σS q A= 得,32S q A =σ S q A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R qR qU εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+R qR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电qq 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力0294π432322F r qq F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得S q261==σσ S qd U 2032-=-=εσσ S qd U 2054+=-=εσσ所以CB 间电场S q d U E 00422εεσ+== )2d (212d 02S q U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势rd r d⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势rd r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E ,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl Q D π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F。

大学物理教程第章答案张文杰等主编中国农业大学出社

大学物理教程第章答案张文杰等主编中国农业大学出社

1.5沿曲线运动的物体,以下说法哪种正确:()1.1已知某质点的运动方程是r 二3 t i + 4t -4.9t 2 j (SI )。

这个质点的速度dx 和dy 构成无;它的速率v 二吏二dt '答:这个质点的速度 v =3i (4-9.8t) j ;加速度 a =-9.8j ; dr=3dti (4-9.8t)dtj 。

ds= .9 (4-9.8t)2dt ;它的速率 v = 9 (4-9.8t)2 。

1.2在X 、Y 平面上运动的质点,其运动方程为 r =10cos5t i +10sin5t j ,t 时刻答:t 时刻 的速度V 二-50sin5ti 50cos5tj ;速 率 v=50,;加速度a = -2 5 (0c (5ts s i 51j);该质点作匀速圆周运动。

1.3质点沿半径为R 的圆周匀速率运动,每t 秒转一圈,则在2t 时间间隔中,其平均速度大小与平均速率大小分别为()质点的位移,厶r 是位矢大小的增量, s 是同一时间内的路程。

那么(A) r = r (B) r (C);r(D):s = .;r答:(D )V= ____ ;加速度a =;无穷小时间内,它的位移d r 二dx i +dy j 二dr ,=ds ,贝9 ds = 穷小三角形,令dr 的速度V 二;速率v= ;加速度a=;该质点作运动。

(A)t t答: (B )(B)0, t (C)0,0(D)「,01.4质点作曲线运动, r 是质点的位置矢量,r 是位矢的大小, :r 是某时间内(A) 切向加速度必不为零(B) 法向加速度必不为零(C) 由于速度沿切线方向,法向分速度为零,所以法向加速度也必为零(D) 匀速圆周运动的物体是做变加速运动答:(B)、( D1.6某质点沿直线运动,其加速度是a x = 5t -3,那么,下述正确者为:()(A) 根据公式V x二a x t,它的速度是V x =5〃— 3t(B) 不定积分关系V x二a x dt ,可算得这个质点的速度公式为v x」t3 -3t23 2(C) 因为一个导数有无穷多个原函数,按题给条件,无法确定此质点的速度公式答: (C)1.7质量大的物体转动惯量是否一定比质量小的转动惯量大?为什么?答:质量大的物体转动惯量不一定比质量小的转动惯量大。

《大学物理》教学课件 大学物理 第八章

《大学物理》教学课件 大学物理 第八章
根据电场强度的定义式,若已知静电场中某点的电场强度,则可求出置于该点的点电荷 q 所受的电
场力: F Eq
显然,若 q 0 ,F 与 E 的方向相同;若 q 0 ,F 与 E 的方向相反。
8.2 电场及电场强度
8.2.3 点电荷的场强
如图所示,将检验电荷 q0 放进由点电荷 Q 所激发的电场中的某点 P,用 r 表示 Q 与 P 之间的距离,
40 x(x2 L2 /4)1/2
此电场的方向垂直于带电直线而指向远离直线的一方。
8.2 电场及电场强度
, ,


例题讲解 2
设一均匀带电直线长为 L,电荷线密度为 ,如图 8-5 所示。求该直线中垂线上一点的场强。
有下面几种情况,讨论如下。
(1)当 x L 时, (x2 L2 /4)1/2 L/2 ,即在带电直线中部近旁区域内,有 E 20 x
由于圆环电荷分布关于轴线对称,所以圆环上全部电荷的 dE 分量矢量和为零,
因而 P 点的场强沿轴线方向,且 E q dEx
式中,积分是对环上全部电荷 q 的积分。
8.2 电场及电场强度
, ,


例题讲解 3
设均匀带电圆环的半径为 R,圆环所带的电荷量为 q,圆环轴线上任一给定点 P 与环心的距离为 x。
由于电荷分布关于 OP 直线对称,所以全部电荷在 P 点的场强沿 y 轴方向的分量之和为零,
因而
P
点的总场强
E
应沿
x
轴方向,于是有 dE
dEx
dE cos
xdl 4 0 r 3
8.2 电场及电场强度
, ,


例题讲解 2
设一均匀带电直线长为 L,电荷线密度为 ,如图 8-5 所示。求该直线中垂线上一点的场强。

大学物理第8章-89页精选文档

大学物理第8章-89页精选文档
(2)导体表面处的电场强度 的方向,都与导体表面垂直.
en

E
e +
+
+
+
τ
+
+
师大家教lzzedu
第8章 静电场中的导体和电介质
静电平衡条件
(1) Eint0
(2) Es 导体表面

导 体 是 等 势 体
导体内部电势相等
U AB AE Bdl0
导体 表面是 等势面
第8章
静电场中的导体与电介质
师大家教lzzedu
内容:
第8章 静电场中的导体和电介质
1. 静电场中的导体 2. 电容器 电容 3. 静电场中的电介质 4. 有电介质时的高斯定理 5. 静电场的能量 能量密度
重点:导体的静电平衡条件、电学性质及电场的求解
难点:电介质存在时电场的求解
师大家教lzzedu
师大家教lzzedu
第8章 静电场中的导体和电介质
尖端放电现象的利用 < 避雷针 >
带电云层接近地面时,地上物体因静电感应带上异号电荷, 且比较集中地分布在突出物体上,如高大建筑物、树等。电荷 积累到一定程度,带电云层和物体之间会发生强烈放电,即雷 击。
避雷针是金属制成的尖端导体,置于建筑物顶端并用粗导 线与埋在地下的金属板连接,以保持与大地接触良好.当带电 云层接近时,通过避雷针和接地导线这条通路不断进行放电, 避免因电荷大量累积而发生雷击.
第8章 静电场中的导体和电介质
高压 带电 蔽腔内电场
接地空腔导体 将使外部空间不受 空腔内的电场影响.
接地导体电势为零
问:空间各部 分的电场强度如何 分布 ?
第8章 静电场中的导体和电介质

大学物理上 第8章课件全

大学物理上 第8章课件全

统一变量:
x a ctg
2 2 2
dx a csc d
2 2 2
r a x a csc
Ex cosd 4 0 a (sin 2 sin 1 ) 4 0 a Ey sin d 4 0 a (cos1 cos 2 ) 4 0 a
E Ey 2 0 a
练习:P.207 8-10 (a)
dE
y
dE
x
dq
o

A
dq
已知:
, , L , a . 求:AB所受无限长带电
'
'
L
B
a
直线的力 F

dq ' o A
a
B x
解:建立如图坐标.
在AB上坐标
x 处取电荷元
x
L
dq 'dx .
同学们好!
第三篇 相互作用和场
本篇特点: 1. 研究对象不再是分离的实物,而是在空间连续分布 的场,用空间函数(如 E , U , B 等)描述其性质。 2. 场不具有不可入性,所以叠加原理地位重要。
3. 更多地运用高等数学手段,如用求空间矢量的通量 和环流的方法来描述场的规律。
4. 在四种基本相互作用中,电磁相互作用理论最成熟, 所以电磁相互作用和电磁场是全篇重点。 5. 电相互作用是电磁学的基础,也是重点和难点。
O R 2
x R
E
q 4 0 r
2
x
练习:无限大均匀带电平面的电场。
已知电荷面密度 。 为利用例三结果简化计算。 将无限大平面视为半径 R 的圆盘 ——由许多 均匀带电圆环组成 。 x 思路:

大学物理第8章

大学物理第8章

第二节 电场 电场强度
2. 场强叠加原理
若电场是由点电荷系q1,q2,q3,…,qn共同产生的,则 根据静电力的叠加原理,试验电荷q0在电场中任一点P处所受 到的静电力等于各个点电荷q1,q2,q3,…,qn单独存在时所 受力F1,F2,F3,…,Fn的矢量和,即
第二节 电场 电场强度
式(8- 6)表明,在点电荷系的电场中,某点 的电场强度等于各个点电荷单独存在时在该点所产 生的场强的矢量和.这称为场强叠加原理.
第二节 电场 电场强度
二、 电场强度
为了定量描述电场,我们 从电场物质性表现——位于静 电场中的任何带电体都会受到 电场的作用力,引入描述电场 的物理量.电场的分布是空间连 续的,在电场中放入的电量足 够小的点电荷q0,称为试验电 荷,逐点观察电场中场点的受 力情况.如图8- 2所示
图8- 2 试验电荷在场中不同位置 的受力情况
(8- 3) 在国际单位制中,电场强度的单位为伏/米(V/m).
第二节 电场 电场强度
三、 电场强度的计算 1. 点电荷电场中的场强
设真空中有一点电荷q,求 该电荷所产生的电场强度分布.
如图8-3所示,以点电荷所 在处为原点O,在距离点电荷为r 的任意一场点P处放入一试验电 荷q0,根据库仑定律,其所受的 作用力为
第一节 电荷 库仑定律
【例8-1】
试比较氢原子中电子与原子核之间的库仑力与万有引力.电 子的质量为9.1×10-31kg,氢原子核的质量为1.67×10-27kg.
解:氢原子的原子核是质子,它的电荷为e,电子的电荷为e,设电子与氢原子核的距离r,根据库仑定律得
第一节 电荷 库仑定律
三、 静电力叠加原理
第三节 电通量 静电场的高斯定理

中国农业大学大学物理下章8静电场2011wang

中国农业大学大学物理下章8静电场2011wang

dE dq
ˆ , E dE r
r
例3. 真空中有一均匀带电直线,长为L, 电荷的线密度为 λ ,线外一点P,距直线 距离为a,p点和直线两端的连线与直线之 间的夹角为θ1、θ2。求:P点的场强。
l
2
x

p
λ Ex (sin θ2 sin θ1 ) 4πε0 a λ Ey (cos θ1 cos θ2 ) 4πε0 a
2.高斯定理的证明
(1) 点电荷q的电场 A. 任意闭合曲面S 包围点电荷q时
e E dS
s
r
dS 4r
2
q
q 4 0 r q
2
S
S
s

q 4 0 r
2
dS 4 r
s 0
q
2
0
B.任意闭合曲面S 不包围点电荷q时 e E dS 0
E
p

q
r
l
q
E
p 4 0 r
3
例3. 真空中有一均匀带电直线,长为L, 电荷的线密度为 λ ,线外一点P,距直线 距离为a,p点和直线两端的连线与直线之 间的夹角为θ1、θ2。求:P点的场强。
l
2
x

p
λ Ex (sin θ2 sin θ1 ) 4πε0 a λ Ey (cos θ1 cos θ2 ) 4πε0 a
qq0 ˆ r 2 4 0 r 1
q
q0
r
p
(2)用场强叠加原理计算 E
1)离散型电荷分布 点电荷系产生的电场 qi ˆ E Ei r 2 i i i 4 0 ri 2)连续型电荷分布 连续带电体产生的电场 dq ˆ dq dE r , E dE 2 4 0 r

教师用习题解答第9章大学物理教程 (张文杰 曹阳 著) 中国农业大学出版社

教师用习题解答第9章大学物理教程 (张文杰 曹阳 著) 中国农业大学出版社

思 考 题9.1 为什么要引进视见函数?答:辐射通量虽然是一个反映光辐射强弱程度的客观物理量,但是,它并不能完整地反映出由光能量所引起的人们的主观感觉——视觉的强度(即明亮程度).因为人的眼睛对于不同波长的光波具有不同的敏感度,不同波长的数量不相等的辐射通量可能引起相等的视觉强度,而相等的辐射通量的不同波长的光,却不能引起相同的视觉强度.所以用视见函数概念反映人的眼睛对于不同波长的光波具有不同的敏感度.它表示人眼对光的敏感程度随波长变化的关系.9.2 在杨氏双缝实验中,若将入射光由正入射改为斜入射,则屏幕上干涉图样如何改变?答:干涉条纹沿着垂直条纹的方向整体移动。

9.3 将劈尖由空气中放入折射率为n 的介质中,条纹间距如何变化? 答:条纹间距变小。

9.4 在单缝的夫琅禾费衍射中,单缝宽度对衍射图样有何影响? 答:单缝宽度越小衍射图样的中央亮纹越宽。

9.5什么是缺级?产生缺级的条件是什么?答:当衍射角θ满足光栅方程λθk b a ±=+sin )(时应产生主极大明条纹,但如果衍射角又恰好满足单缝衍射的暗纹条件λk a '±=sin ,那么这时这些主极大明条纹将消失,这种现象就是缺级。

两个条件联立得...)2,1,0(=''±=k k k λ,即所缺的级数由光栅常数d 和缝宽a 的比值决定。

9.6 偏振现象反映光波的什么性质? 答:偏振现象表明光波是横波。

9.7 试解释我们看到的天空是蓝色的而宇航员看到的天空却是黑色的?答:我们看到的天空是蓝色的是由于空气对太阳光散射造成的。

而在宇宙空间中,物质的分布密度极低,对太阳光的散射也就基本不存在,所以宇航员看到的天空是黑色的。

习 题9.1 某汽车前灯发光强度为75,000cd ,光束发散立体角为5Sr ,求其发出的光通量。

解:发光强度I 为光通量F 对立体角Ω的微分Ωd dFI =所以375000575000=⨯===⎰∆ΩΩI Id F lm9.2 一光源辐射出555nm 和610nm 的光,两者的辐射通量分别为2W 和1W ,视见函数分别为1.000和0.503,求光源发出的总光通量各为多少?解:(1)1366000.12683)()(683=⨯⨯==λΦλV F lm52.343503.01683)()(683=⨯⨯==λΦλV F lm9.3 一氦氖激光器发出1⨯10-2W 的激光束,其波长为6.328⨯10-7m ,激光束的立体角为3.14⨯10-6Sr ,已知该激光的视见函数为0.24。

大学物理第八章第2讲教材

大学物理第八章第2讲教材

L -自感:与回路形状、大小、匝数和周围介质
的磁导率有关(与电流无关) L 的意义:若I = 1 A,则 L 自感系数在数值上等于回路中通过单位电流时, 通过自身回路所包围面积的磁通链数。 1)自感的计算 若线圈有 N 匝, 磁通匝数 NΦ 注意 无铁磁质时, 自感仅与线圈形状、磁介质及 N 有关.
8-3 一 自感电动势
自感和互感 自感
A B
K合上灯泡A先亮 ,B后亮 K断开 B会突闪
K 自感现象:当一个回路中电流发生变化时, 在自身回路中,磁通量发生变化,从而引起感应 电动势的现象(自感电动势)
日光灯, 镇流器就应用了自感 设回路中通有电流 I ,则穿过自身回路面积 的磁通量 I写成 LI
3)自感的计算方法
设回路通以电流
I
计算 B
设回路通以电流

I
由式得 L
I
当电流变化时计算
L
L
dI dt
由式得 L
例1、一长密绕直螺线管,长为 l ,横截面为 S, 线圈总匝数为 N ,管中介质磁导率 ,求其自感 解 先设电流 I 根据安培环路定理求得 H B
Φ
S
L .
磁场能量
Wm wm dV
V
V
B dV 2
2
类比
静电场 C
稳恒磁场
储能器件
1 2 We CV 2
1 2 Wm LI 2
L
通过平板电容器得 出下述结论 储存在场中
1 we D E 2
通过长直螺线管得 出下述结论
在电磁场中
w we wm 普遍适用
1 wm B H 2
L

自感线圈磁能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题8.1 一根无限长直导线中通有电流I,一矩形线圈与此直线共面,且沿垂直于直线的方向匀速运动,如图8-15所示,试分析线圈中感应电动势的方向。

图8-15思考题8.1用图答:线圈中感应电动势的方向为顺时针方向。

8.2 设有一铜环和一铝环,若二环的形状和大小完全相同,现把它们静止地放置于一交变磁场中,如果通过二环的磁通量随时间的变化率相同,则二环中的感应电流是否相同?感应电动势是否相同(不计自感)。

答:二环中的感应电流不相同,铜环电流大。

二环中的感应电动势是相同的。

8.3 一个线圈的自感系数与哪些因素有关?答:对于一个线圈来说,自感系数的大小取决于线圈的匝数,直径、长度以及圈线芯材料等性质。

8.4 试比较传导电流与位移电流的异同.答:传导电流产生焦耳热,位移电流不产生焦耳热。

两者都可以激发磁场,都遵从安培环路定理。

8.5 电磁波为什么可以在真空中传播?答:电磁波的传播不依靠任何介质,依靠磁场与电场的内在联系。

因为变化的磁场产生变化的电场,变化的电场又产生变化的磁场,它们就这样周而复始的传播下去。

习 题8.1 设有一线圈,共50匝,把它放于变量磁场中,若通过每一匝线圈的磁通量都满足φ=1.010-5(Wb),试求:在t=2.0×10-2s 时,线圈中的感应电动势。

解:tt dtd Nπππε100cos 1057.1100cos 100100.15015--⨯-=⨯⨯⨯-=Φ-= )1057.1100.212V s t (时,--⨯-=⨯=ε8.2 如图8-16所示,一无限长通电直导线中通有电流I=5A ,一金属棒AB 以V=5m/s 的速度平行于长直导线运动。

已知a=10cm,b=50cm ,求棒中感应电动势的大小,哪边电势高?解:依动生电动势公式⎰⋅⨯=BAAB l d B)(υε 设距长直导线x 处的磁感应强度为B,则xIB πμ20=,方向为⊗ 故⎰-=b aAB Bdx υε⎰-=badx x I υπμ20)(100.81050ln 55102ln 2670V a b I --⨯-=⨯⨯⨯-=-=πυμ A 端电势高。

图8-16 习题8.2用图8.3 如图8-17 所示,一导线abc 被弯成图示形状,现将此导线放于匀强磁场中,且导线以V 的速度匀速向右移动。

已知ab=bc=L ,磁感应强度为B ,导线弯折角度为α。

试求ac 导线上的感应电动势。

解:设导线上的感应电动势为ac ε,则ac ε=ab ε+bc ε=⎰⋅⨯b al d B )(υ+⎰⋅⨯c bl d B )(υ=0+)2cos(απυ-⎰LBdl=αυsin BL8.4 如图8-18所示,一无限长直导线通有电流I=5.0A ,一矩形单匝线圈与此长直导线共面。

设矩形线圈以V=2.0m/s 的速度垂直于长直导线向右运动。

已知:l=0.40m, a=0.20m, d=0.20m ,求矩形线圈中的感应电动势。

解:=εAB ε+BC ε+CD ε+DA ε依动生电动势公式⎰+-⋅⨯=l d B)(υε知AB ε=CD ε=0,BC ε=11l B υ-,DA ε=12l B υ-,其中)(2201l a IB +=πμ,aIB πμ202=, 故:)20.020.0120.01(40.00.25102)11(27210+-⨯⨯⨯⨯=+-=-l a a Il πυμε=2.0)(106V -⨯ 方向为顺时针方向。

图8-17 习题8.3用图图8-18 习题8.4用图8.5在上题中,若线圈保持不动,而长直导线中的电流变为交变电流i=10(100πt )A,求线圈中的感应电动势。

解:如解8.5图,长直导线的磁感应强度为riB πμ20=,选回路的绕行方向为顺时针 方向,则通过窄条面积ds 的磁通量为dr l riBds d 102πμ==Φ 通过矩形线圈的磁通量为dr l rid l a a1022πμ⎰⎰+=Φ=Φ al a l i 210ln 2+=πμ则:dtd Φ-=εdt di a l a l 210ln 2+-=πμ t ππ100cos 1001020.020.020.0ln40.01027⨯⨯+⨯⨯-=-)(100cos 1074.13V t π⨯-=8.6 一半径为R 的铜盘,被置于匀强磁场中,磁场的方向与盘面垂直。

现铜盘以每秒n 转的速度绕过圆心且垂直于盘面的转轴旋转,求盘中心与边缘之间的电动势。

解:可以把铜盘想象为由无数根沿半径方向并联的铜杆组合而成,每根铜杆的感应电动势是由于该铜杆切割磁力线的结果。

设圆盘中心点为O ,边缘一点为A, 依动生电动势公式⎰+-⋅⨯=l d B)(υε,有:202)(nR B ldl nB l d B RAOππυε==⋅⨯=⎰⎰解8.5图8.7 如图8-19 所示,一半径为R 的半圆形导线OP 被放在匀强磁场B 中,现在令OP 导线以速度匀速向右移动,求导线中的感应电动势。

解:如解8.7图,可设想半圆形导线OP 在宽为2R 的静止的半矩形导线上移动,二者构成一闭合回路,设在任一瞬时,OP 在x 处,取回路的绕行方向为顺时针方向,则:B R Rx )212(2π+=Φ从而,dt d Φ-=εdtdxBR 2-=υBR 2-= 8.8 在半径为R 的圆柱体内,充满磁感应强度为B 的均匀磁场,一长为l 的金属棒PQ 置于该磁场中,如图8-20 所示。

设磁场随t 的变化率dtdB>0为已知。

求:棒中感应电动势的大小,并指出哪边电势高。

解:设想用导线连接OP 与OQ ,此两段导线与PQ 构成一闭合回路,取回路的绕行方向为顺时针方向,则依法拉第电磁感应定律知,闭合回路的感应电动势为dtd Φ-=ε dt dB S-==-22)2(2l R l dt dB -由于OP 、OQ 沿半径方向,与通过该处的感生电场的方向垂直,故0=⋅l d E k,OP 、OQ 两段均无电动势,因此上述闭合回路的电动势就是PQ 中的电动势。

QD 端电势高。

图8-19 习题8.7用图图8-20 习题8.8用图解8.7图8.9 如图8-21所示,一导线被弯成α角的V 形,其上有一可自由滑动的直导线MN ,且MN ⊥OX 。

设此导线处于磁场中,B 满足下式:t kx B ωcos =,若MN 以速度V 匀速向右运动,取t=0时x=0,试求:导体框架内的感应电动势。

解:取一面元(图中阴影部分) dx x ds αtan =,取回路的绕行方向为 逆时针方向,则通过ds 的磁通量为tdx Kx Bds d ωαcos tan 2==Φ当MN 运动到t x υ=处时,通过闭合回 路的磁通量为=Φ=Φ⎰d tdx Kx tωαυcos tan 20⎰tdx t K ωαυcos tan 3133=故导体框架内的感应电动势为dtd Φ-=ε)cos sin 31(tan 233t t t t K ωωωαυ-=8.10 一长直螺线管,半径为1.0cm ,长为30.0cm ,上面均匀密绕1000匝线圈,求:①此螺线管的自感系数。

②若t 时,此线圈内放入μr =5000的铁芯,则此时线圈的自感系数为多大? ③若此螺线管内通有的电流以2.0A/s 的速率变化,求线圈中的自感电动势。

解:(1)长直螺线管内部的nI B 0μ=,故:==ΦBs nIs 0μ=Φ==I N IL ψ0Nns 0μ2201r N lπμ= )(103.11030)100.1(10001043122270H L ----⨯=⨯⨯⨯⨯⨯⨯=ππ (2))(5.610220H L r N lL r r ===μπμμ (3)dtdI LL -=ε 当1=r μ时,)(106.230V dt dIL L -⨯-=-=ε 当5000=r μ时,)(13V dtdIL L -=-=ε图8-21 习题8.9用图8.11 一长直螺线管,当线圈中通有5.0A 的恒定电流时,通过每匝线圈的磁通量是10μWb ,当电流以2.0A/s 的速率变化时,产生的自感电动势为2.0mv 。

求此螺线管的自感系数与总匝数。

解:dt dI L L -=ε,故:)(100.10.2100.233H dt dI L L --⨯=⨯==ε,而I N L Φ=0,故:263100.510100.5100.1⨯=⨯⨯⨯=Φ=--LI N 8.12 一圆柱形纸筒,其上密绕两组线圈,匝数分别是N 1和N 2,若筒的长度为l ,半径为R ,求两组线圈的互感系数(设筒内为空气)。

解:在1N 组线圈内通电流1I ,则通过2N 的磁通链为1221Φ=N ψ=l s I N N /1102μ=Φ==112121I N I M ψl s N N /102μ=l R N N /2102πμ 8.13 一螺绕环,其上密绕两组线圈,匝数分别是N 1和N 2,若螺绕环的横截面的半径为a ,中心线的半径为R ,且R >>a ,求二线圈的自感L 1和L 2及二线圈的互感M 。

解:设在1N 组线圈内通电流1I ,在2N 组线圈内通电流2I ,由于R >>a ,故二线圈均可视为密绕螺绕环。

线圈1的电流1I 产生的磁感应强度为R N I B πμ21101=,此磁场在线圈1中的磁通量为 S B 111=Φ21102a RN I ππμ=21102a RN I μ=磁通链为11111Φ=N ψ221102a RN I μ=线圈1的自感系数为1111I L ψ=22102a RN μ=同理,线圈2的自感系数为2222I L ψ=22202a RN μ=线圈1的电流1I 在线圈2中的磁通量为S B 121=Φ21102a RN I μ=,磁通链为21221Φ=N ψ212102a RN N I μ=故二线圈的互感系数121I M ψ=21202a RN N μ=8.14 一半径为r ,截面积为2.0cm 2圆形小线圈,共30匝,现把它放在半径为R=20cm 共50匝的大圆形线圈的中心,如图8-22 所示,二线圈同心且共面,求两线圈的互感系数;若大线圈中电流的变化率为10A/s ,求小线圈中感应电动势的大小。

解:在大圆形线圈中通电流2I ,则在大圆形线圈中心处的磁感应强度为RN I B 2220μ=因为R >>r ,故小线圈处的磁感应强度可认为是RN I B 2220μ=,穿过小线圈的磁通链为 =12ψ11S B N 21rB N π=212I M ψ=21202r R N N πμ=)(104.910202100.250301047247H ----⨯=⨯⨯⨯⨯⨯⨯⨯=π8.15 一无限长直导线,截面的半径为R ,设有电流I 均匀地流过此导线,如图8-23 所示,求单位长度导线内所储藏的磁能。

相关文档
最新文档