萃取法Ca-La在线分离工艺_贾江涛

萃取法Ca-La在线分离工艺_贾江涛
萃取法Ca-La在线分离工艺_贾江涛

萃取法Ca /La 在线分离工艺

X

贾江涛1

 廖春生1

 严纯华1

 曾东海2

 冯余清2

 周 静3 田北超

3

(1.北京大学稀土材料化学及应用国家重点实验室,北京 100871;2.四川银山化工(集团)

股份有限公司,内江 641201;3.四川省稀土工程技术研究中心,成都 610031)

摘 要:本文提出并研究了轻稀土P 507-HCl 体系La /Ce 分离过程中的在线萃镧除钙工艺,对工艺的实施方法、流程控制及分离效果进行了阐述。结果表明:该工艺可节约设备投资,用在线萃取法进行Ca/La 分离。本工艺同样适用于P 204-HCl 等体系的类似工艺流程。

关键词:萃取法;在线分离;Ca /L a

中图分类号:T F 803.23 文献标识码:A 文章编号:1004-0277(1999)04-0012-04

我国有着丰富的稀土资源,其中又以包头稀土矿和冕宁稀土矿为代表的北方矿为最多。该类矿源中富含轻稀土,超过稀土总量的95%。其中La 和Ce 含量约为轻稀土组成的80%以上〔1,2〕

。一方面,近年来由于La 、Ce 应用的不断深入和拓展,光学玻璃、金属冶炼、石油化工和环境保护等领域对单一稀土的应用日益增长,P507(或P204)-HCl 体系的La/Ce 工艺在稀土分离流程中是非常重要的一环;另一方面,Ca 2+、M g 2+

、Zn 2+

、M n 2+

、Pb 2+

等非稀土杂质在酸性磷类萃取剂中受萃取顺序的影响,富集在La /Ce 分离后的LaCl 3中。无论后续工艺是制备结晶LaCl 3?x H 2O,还是用碳酸氢铵沉淀,都不能很好地除去这些杂质。尽管通常进行的P507(或P204)-HCl 体系Ca/La 分

离工艺较好地解决了这个问题,但存在独立进行的两段萃取槽设备利用率低、动力消耗大、设备维护费用高、噪音大、稀土收率低等缺点。

本文借鉴稀土皂和稀土洗涤等相转移原理

〔3~8〕,利用Ca 2+、M n 2+、Pb

2+

等非稀土杂质与

La 3+

在萃取剂中的萃取平衡差异,提出P507(或

P 204)-HCl 体系La /Ce 分离工艺中的萃取法Ca /La 在线分离新工艺,对工艺组成实施、流程控制方法和在线分离效果进行了论述,可望在稀土分离的集约化研究中做一些有益的探索。

1 工艺流程简介

萃取法Ca/La 在线分离工艺如图1

U a :稀土皂U b :除钙级U c :萃取段n :进料级U d :洗涤段U e :反萃段H i :反萃酸H o :反出液W i :洗涤液W ′i :反洗酸W ′o :反洗液W o :废弃水S i :皂化有机相S a 、S b :负载有机相S o :再生有机相F :水相料液

图1 萃取法Ca /L a 在线分离工艺示意图

Fig .1 Flow sheet of Ca /La on -line solvent extraction separation process

1999年8月

Chinese Rar e Ear ths

A ugust 1999

收稿日期:1999-02-21

基金项目:国家自然科学基金(29571003)、杰出青年科学基金(29525101)、教育部高等学校博士学科点专项科研基金、博士后基金、方正

基金、科技部攀登计划和国家重点基础科学研究发展规划项目

作者简介:贾江涛(1969-),男,北京大学稀土材料化学及应用国家重点实验室博士后,发表学术论文20余篇

图1所示从左向右依次为稀土皂、附加除钙级、萃取段、进料级、洗涤段和反萃段。图中S代表萃取有机相,如煤油稀释的P507(或P204)等,箭头所指为该有机相在萃取槽中的走向。其中S i为皂化有机相,经过稀土皂后负载稀土有机相从稀土皂流向萃取段时分为两个支路,一部分直接进入萃取段,另一部分则经过附加除钙级后再与前一部分共同进入萃取段。经过主槽的交换和纯化,最后从洗涤段进入反萃段再生为再生有机相S o。水相流向则呈相反方向流动。反萃酸H i从反萃段右面进入,经过逆流反萃,一方面使有机相得到再生,另一方面将易萃组分从有机相转移到水相,从反萃段左方得到反出液H o。洗涤液W i进入主槽洗涤段右方,与有机相逆向流动,在进料级与水相料液合并后逆向有机相流过萃取段,绕过附加级后进入稀土皂,最后从稀土皂左面流出。反洗酸进入附加除钙级,将进入附加除钙级的支路有机相中的难萃稀土组分反洗进反洗液从附加除钙级澄清室流出。

2 流程控制方法

以水相料液中仅存在A、B两种稀土元素为例, f A、f B分别表示易、难萃组分在原料中的摩尔分数,则有

f A+f B=1(1)

由于两出口分馏萃取体系可同时获得高纯度和高收率的A、B两种稀土元素,有机相和水相出口分数近似等于原料中的摩尔分数f A、f B。不妨设萃取体系中的萃取剂浓度为C E(mo l/L),皂化值为Z(mol/ L),洗涤液、反萃酸和反洗酸皆为C H(m ol/L)的HCl,料液稀土浓度为C F(m ol/L),反出液的余酸为C o(mo l/L);V S、V W、V F、V H(L/m in)分别表示有机相、洗涤液、料液和反萃酸的体积流量;归一化萃取量和洗涤量分别为S和W,二者满足(2)

S-W=f A(2)有机相流量为V S,满足(3)

V S=3S?V F?C F

Z(3)

洗涤液流量为V W,满足(4)

V W=3W?V F?C F

C H

(4)

反萃酸流量为V H,满足(5)

V H=3V F?C F?f A

C H-C o

(5)

当进行附加除钙级的转相后,水相料液、洗涤液和反萃酸的流量不变,但原来水相出口的份额则改由附加除钙级产出。因此有机相在上述基础上增加$V S,其中稀土的物料平衡满足(6)

$V S=3V F?C F?f B

Z

(6)反洗酸流量为V W′,满足(7)

V W′=

3V F?C F?f B

C H

(7)

为了便于控制,同时使反洗酸经过附加除钙级后得到高浓度低酸度的反洗液,原则上经过该级的有机相支流量只需超过$V S即可,实际上有机相支流量控制在$V S~V S+$V S范围均可。上述流量体系还保证了W o中的稀土全部用于稀土皂中皂化有机相的稀土负载,从而水相流出稀土皂时不含稀土而可以排放。

当料液浓度、组分和槽体纯度发生波动时,可参照上述关系作微调,以达到控制要求。

3 结果与讨论

3.1 设备利用同传统Ca/La的比较

与上述萃取法在线除钙的实施相比较,传统的Ca/La尽管La和Ca的分离系数较大决定了萃取主槽不长,但仍为一段独立的萃取槽,不但增加了萃取设备、传动装置、高低位泵槽、稀的洗酸品种,而且须配备相应的岗位及操作人员,维修设备、消耗和噪音等问题也存在不利影响。

萃取法在线除钙的实施在原主槽的管线连接上进行了改进,使得设备的利用率得到充分发挥,省去了传统操作的种种缺陷。由于有机相的流通量较改动前有所增加,因此混合时间有所下降,考虑到萃取槽的级效率强化、洗涤段混合时间大于萃取段和轻稀土萃取平衡时间较短等有利因素,整个流程的改变不会有多少波动。

3.2 与草酸沉淀除钙的成本核算比较

稀土盐酸介质的碳酸氢铵沉淀和草酸沉淀反应可用化学方程(8)和(9)表示:

2RECl3+6NH4HCO3+(x-3)H2O=RE2 (CO3)?x H2O↓+6NH4Cl+3CO2↑(8) 2RECl3+3(HCOOH)2?2H2O=RE2(C2O4)3?6H2O↓+6HCl(9)由于碳酸氢铵沉淀时体系的pH接近中性,因此Ca2+等可形成碳酸盐沉淀的非稀土杂质几乎被同时共沉淀,导致沉淀过程中非稀土杂质难以去除。

13

第4期 贾江涛等:萃取法Ca/L a在线分离工艺

必须将待沉淀料液中该类杂质预先分离。萃取法在线除钙正好提供了这样一种可能,除钙料液只需简单利用碳酸氢铵沉淀即可达到产品中杂质含量要求。

草酸沉淀体系则大不相同,尽管从反应方程式上看Ca2+等也生成草酸盐沉淀,但由于反应产物中生成强酸盐酸,因此沉淀起始的弱酸迅速转变为强酸体系。在高酸介质中少量Ca2+等杂质不能生成沉淀或重新溶解而存在于母液中,达到了稀土与这类杂质分离的目的。此时草酸稀土在高酸母液中溶解度较大,降低了稀土的收率。

下面具体以镧为例比较这两种方法的消耗情况。从方程式(9)可知,氯化镧与草酸的计量比为1∶1.5,氧化镧的半分子量为163,草酸分子量为126,则每吨氧化镧需草酸1.2吨。从方程式(8)看,氯化镧与碳酸氢铵、盐酸和氨的计量比皆为1∶3,碳酸氢铵分子量为78,则每吨氧化镧需碳酸氢铵1.4吨。HCl和NH3的分子量分别为36.5和17,则每吨氧化镧另需盐酸(32%HCl)2.1吨、液氨0.3吨。若生成的盐酸在废水中用石灰中和及单独建一段萃取槽除钙投资的资金、利息等成本不计,则两种方法前者的成本以草酸计,后者则以碳酸氢铵、盐酸和液氨之和计算。现行工业草酸单价为4000元/吨,碳酸氨铵、盐酸(32%)和液氨单价分别为500元/吨、600元/吨、2000元/吨,则草酸法可比成本为4800元/吨氧化镧,而萃取法在线除钙结合碳酸氢铵沉淀则仅为2560元/吨氧化镧。这对10000元/吨的氧化镧(99%)价格而言,无疑是一笔巨大的节支和成本降低。

3.3 除钙效果

萃取法除钙得益于Ca2+、M g2+、M n2+、Zn2+、Pb2+、NH+4等和稀土在萃取有机相和水相中的分配,由于离子势等离子性质的差异,两者具有较大的分离系数,使得单级附加级除钙有了可能。

为此我们测定了La/Ce稀土皂和萃取主槽萃取段附近Ca2+和稀土在两相中的浓度分布、分离系数等。用氨水沉淀分离Ca2+等非稀土,然后用滴定法分析其浓度,稀土浓度为标准EDT A滴定法。有机相中金属元素的分析先用盐酸反萃后按水相分析方法测定,结果见表1。

表1 L a/Ce萃取槽3~6级两相稀土、非稀土浓度

(mol/L)及分离系数

Table1 RE and non-RE concentration(mol/L)and

separation factors in La/Ce cascade stage No.3to6

级数C RE C C a C RE C Ca B RE/Ca

30.111 1.5450.05950.048317.1

4 1.0480.6040.1760.0043123.5

5 1.4010.2000.1740.0013518.4

6 1.4640.1310.1740.0012512.5

其中C RE、C Ca、C RE、C Ca分别表示水相和有机相中的稀土和非稀土浓度,B RE/Ca为分离系数,满足(10)

B RE/Ca=

C RE/C Ca

C RE/C Ca

(10)萃取槽中钙等非稀土杂质与稀土的分离系数介于10~25之间,大的分离系数给附加级除钙提供了便利条件。不妨以第6级为例,若没有附加除钙级,则该级水相氧化镧中的氧化钙质量分数为3%,若改为萃取法在线除钙工艺,并将第6级作为附加除钙级,则从有机相中反洗得到的氧化镧氧化钙质量分数下降为0.2%,杂质含量下降十倍以上,效果显而易见。事实上改进后的萃取法在线除钙工艺得到的氧化镧中钙含量可降至0.05%左右,符合国家标准。

另外,除钙后的稀土料液还可制备低钙的其他盐类结晶,极大地增加了工艺的适应性和灵活性。4 结论

1.萃取法在线除钙与传统的Ca/La分离相比,减少了设备投入、原材料品种、岗位和噪音源等负面效应。

2.萃取法在线除钙结合碳酸氢铵沉淀与传统的草酸沉淀除钙有较大的成本优势,而且衔接结晶法也有其低钙的独到之处。

3.可有效地使La中以Ca2+为代表的M n2+、Zn2+、Pb2+、N H+4等非稀土杂质得到分离。

4.该工艺可实现一段萃取槽的多种功能,为化工生产的集约化探索做了有益的尝试。

致谢:本工作的完成是北京大学稀土材料化学及应用国家重点实验室在四川省稀土工程技术研究中心稀土试验厂的试车过程中完成的,在设备的制作、调试和运行过程中得到了银山化工集团股份有限公司有关部门的大力协助,在此

14稀 土 第20卷

表示感谢!参考文献:

〔1〕 徐光宪.稀土(上册,第二版).北京:冶金工业出版

社,1995.

〔2〕 倪嘉缵,洪广言.稀土新材料及新流程进展.北京:科

学出版社,1998.

〔3〕 严纯华,张亚文,廖春生等.CN 1129256A ,1996,8.〔4〕 严纯华,廖春生,贾江涛等.氟碳铈镧矿稀土萃取分离

流程的经济技术指标比较.中国稀土学报,1998,16

(1):66.

〔5〕 Huang C H,L i B G ,Jin T C et al.Solv ent ex tr actio n in

the pro cess industr ies.Elsevier A pplied Science,1993,1:295.

〔6〕 廖春生.重稀土的萃取分离.北京大学博士学位论文,

1996.

〔7〕 臧立新,王琦.稀土皂化技术在轻稀土分离工艺中的

应用.稀土,1995,16(3):28.

〔8〕 郝先库,张丽萍,王琦.P 204-HCl 体系中稀土分离工

艺-外回流技术的引入.稀土,1995,16(1):11.

On -line Solvent Extracting C a from La in La /Ce Separation Process

J ia J iang -tao 1,L iao Chun -sheng 1,Yan Chun -hua 1,Zeng Dong -hai 2

,

Feng Yu -qing 2,Zhou J ing 3,T ian B ei -chao

3

(1.S tate K e y L abor atory of R are Ear th M ater ials Chemistry and Ap plications ,B eij ing 100871;2.Yinshan Chemicals Group

Co ,L td .,N eij iang 641201;3.S ichuan Eng ineer ing R ese arch Centr e of R are Ear th ,Cheng du 610031)

Abstract :On -line solvent ex tr acting Ca fro m L a in P 507-HCl L a /Ce separat ion pr ocess is pr esent ed .T he pro -cess pra ct ice and contr ol wer e also discussed.T he separ atio n r esults sho w that Ca can be separ ated effectively fro m L aCl 3w it h the simple equipment.T he pr ocess can save inv estment on appar atus,impr ov e the qualities o f the pr od-ucts a nd decr ease the no ise pollut ion of the plant.It can be applied t o the similar separ atio n pro cess such as P 204-HCl system.

Key words :solvent ex tr act ion;on-line separ ation;Ca/La

15

第4期 贾江涛等:萃取法Ca /L a 在线分离工艺

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。

稀土提取与分离技术 (发)

产业技术情报—————————————————————————————————————————————————————————————2013年12月18日第6期(总第6期) 编者按: 稀土提取及分离技术的基本内容有如下几个方面:稀土矿物的富集、稀土的提取、稀土富集物的制备、稀土元素的分离与提纯、稀土化合物的制备。本期通过专利分析,对稀土提取及分离技术的专利数量、专利国家和地区分布、专利技术布局,以及稀土提取与分离技术国家分布、技术主题、核心专利等进行了分析,并得出以下结论。 本期重点:稀土提取与分离技术专利分析 ●中国在稀土提取与分离技术领域起步较早,但由于我国稀土技术保密规定等 原因,文献报道不多,2006年后迅速发展,专利数量跃居世界第一,但专利影响力(核心专利)很小。 ●稀土提取与分离技术主要集中在提取与分离过程与方法、分离过程中使用的 体系和萃取剂、稀土分离、提取的设备与装置以及对稀土提取过程中废水的处理。 ●日本企业为该技术领域的主要专利持有人,专利均集中在从合金或其他混合 物中回收稀土元素以及提取与分离过程中所使用的萃取剂。此外,日本机构还擅长从一些废料(例如荧光粉材料和磁性材料)中回收稀土金属。 ●中国有5家高校、科研单位和5家企业专利申请量进入全球Top30,分别为 北京大学、北京科技大学、东北大学、内蒙古科技大学、中科院长春应用化学研究所、北京有色金属研究总院、包头稀土研究院、甘肃稀土新材料有限公司等。 ============================================================= 主编:刘细文执行主编:贾苹本期策划:徐慧芳陆彩女陈枢舒联系地址:北京北四环西路33号中科院国家科学图书馆区域信息服务部邮编:100190 电话:82625972邮件地址:xxcykb@https://www.360docs.net/doc/6615433741.html,

稀土分离冶炼工艺流程图

白云鄂博矿床的物质成分 白云鄂博矿床物质成分极为复杂,已查明有73种元素,170多种矿物。其中,铌、稀土、钛、锆、钍及铁的矿物共近60种,约占总数的35%。主要矿石类型有块状铌稀土铁矿石、条带状铌稀土铁矿石、霓石型铌稀土铁矿石、钠闪石型铌稀土铁矿石、白云石型铌稀土铁矿石、黑云母型铌稀土铁矿石、霓石型铌稀土矿石、白云石型铌稀土矿石和透辉石型铌矿石。 稀土生产工艺流程图

白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿 强磁中矿、尾矿 稀土精矿 稀土选矿 火法生产线 汽车尾气净化器 永磁电机 节能灯 风力发电机 各种发光标牌 电动汽车 电动 核磁共振 自行车 磁悬浮 磁选机

稀土精矿硫酸法分解(decomposition of rare earth concentrate by suIphuric acid method) 稀土精矿用硫酸处理、生产氯化稀土或其他稀土化合物的稀土精矿分解方法。本法具有对原料适应性强、生产成本低等优点,是稀土精矿工业上常用的分解方法,广泛用于氟碳铈矿精矿、独居石精矿和白云鄂博混合型稀土矿精矿的分解。主要有硫酸化焙烧一溶剂萃取法、硫酸分解一复盐沉淀法、氧化焙烧一硫酸浸出法三种工艺。 硫酸化焙烧-溶剂萃取主要用于分解白云鄂博混合型稀土矿精矿生产氯化稀土。白云鄂博混合型稀土矿精矿成分复杂,属于难处理矿,其典型的主要成分(%)为:RE2O350~55,P2.5~3.5,F7~9,Ca7~8,Ba1~4,Fe3~4,ThO2约0.2。精矿中放射性元素钍和铀含量低,冶炼的防护要求不高,适于用硫酸化焙烧法分解。 原理经瘩细的稀土精矿与浓硫酸混合后加热焙烧到423~673K温度时,稀土和钍均生成水溶性的硫酸盐。氟碳铈矿与硫酸的主要反应为: 2REFCO3+3H2SO4=RE2(SO4)3+3HF↑+2CO2+2H2O 独居石与硫酸的主要反应是: 2REPO4+3H2SO4=RE2(SO4)3+2H3PO4 Th3(PO4)4+6H2SO4=3Th(SO4)2+4H3PO4 铁、钙等杂质也生成相应的硫酸盐。分解产物用精矿质量12倍的水浸出,获得含稀土、铁、磷和钍的硫酸盐溶液。控制不同的焙烧温度、硫酸用量和水浸出的液固比,即可改变分解效果。当硫酸与稀土精矿的量比为1.5~2.5、分解温度503~523K、水浸出液含RE2O350~70g/L时,钍、稀土、磷、铁等同时进入溶液。上述焙烧和浸出条件主要用于独居石精矿和白云鄂博混合型稀土矿精矿的分解。当硫酸与稀土精矿的量比为1.2~1.4、分解温度413~433K、水浸出溶液含游离硫酸50%时,主要是钍进入溶液,大部分稀土则留在渣中。当硫酸与稀土精矿的量比为1.2~1.4、分解温度573~623K、水浸出液含RE2O350g/L时,则稀土进入溶液,钍和铁等留在渣中。通过控制焙烧和浸出条件,就可使稀土与主要伴生元素得以初步分离。 工艺过程从稀土精矿到获得氯化稀土,主要经过硫酸化焙烧、浸出除杂质和溶剂萃取转型等过程。 (1)硫酸化焙烧。白云鄂博混合型稀土矿精矿粉与浓硫酸在螺旋混料机内混合后,送入回转窑进行硫酸化焙烧分解。控制进料端(窑尾)炉气温度493~,523K,焙烧分解过程中炉料慢慢移向窑前高温带,氟碳铈矿和独居石与硫酸作用生成可溶性的硫酸稀土。铁、磷、钍等则形成难溶于水的磷酸盐。炉料随着向高温带移动温度不断升高,过量的硫酸逐渐被蒸发掉。当炉料运行到炉气温度为11’73K左右的窑前出料端时,炉料温度达到623K左右,并形成5~10mm的小粒炉料,称为焙烧料,从燃烧室侧端排出。 (2)浸出除杂质。焙烧料含硫酸3%~7%,直接落入水浸槽中溶出稀土,而杂质几乎全部留在渣中与稀土分离。制得纯净的硫酸稀土溶液含RE2O340g/L、Fe0.03~0.05g/L、P约0.005g/L、Th<0.001g/L,酸0.1~0.15mol/L。用此溶液生产氯化稀土。 (3)溶剂萃取转型。用溶剂萃取法使硫酸稀土转变成为氯化稀土的过程。这种工艺已用于取代传统的硫酸复盐沉淀、碱转化等繁琐转型工艺。这是中国在20世纪80年代稀土提取流程的一次重大革新。溶剂萃取转型采用羧酸类(环烷酸、脂肪酸)萃取剂,预先用氨皂化,然后直接从硫酸稀土溶液中萃取稀土离子,稀土负载有机相用含HCl6mol/L溶液反萃稀土,制得氯化稀土溶液。萃取和反萃取过程采用共流萃取(见溶剂革取)方式。萃余液pH为7.5~8.0,含RE2O310mg/L 左右,稀土萃取率超过99%。盐酸反萃液含RE2O3250~270g/L,含游离酸0.1~0.3mol/L。采用减压浓缩方式将反萃液浓缩制成氯化稀土。氯化稀土的主要成分(质量分数ω/%)为:RE2O3约46,Fe0.01,P0.003,Th0.0002,SO42-<0.01,Ca1.25,NH4+1~2。1982年中国用上述流程在甘肃稀土公司建成一条年产氯化稀土约6000t的生产线,经过近十年的生产实践证明,工艺流程稳定、操作简单、经济效益好。

萃取分离工艺参数设计

萃取分离工艺参数设计 ——最优化串级萃取工艺设计 1、确定原料和处理能力 根据市场需求现状和发展趋势、本地稀土资源状况和开采能力、企业投资和融资能力大小等因素,确定稀土生产线的原料来源、基本配份、年处理能力。 2、确定产品方案 产品品种和规格要符合主流要求,适销对路,既不要盲目求高而增加分离难度和成本,又不能没有市场竟争能力而遭淘汰。 3、确定分离工艺流程 稀土分离时往往按“四分组”效应首先将原料分为轻、中、重稀土富集物。 分组的切割位置通常选择边界元素间分离系数(或等效分离系数)较大、并保持易萃取组分比例均衡,同时兼顾产品要求、设备条件、工艺衔接、操作稳定性和可行性等因素,以降低生产成本、提高流程的稳定性。 (1)工艺采用了具有世界先进水平分离提纯技术,确保产品质量稳定,纯度较高。 (2)工艺流程在实施过程中容易控制,比较灵活,可以根据市场的不同需求,生产不同规格的产品,充槽投资较省,化工辅料消耗降低,有利于降低产品成本。 (3)整个工艺流程较短,可连续化操作,稀土机械损失少,稀土的总收率高。 (4)实现产品“系列化”“高纯化”“单一化”“规模化”,经济指标较好,市场适应能力较强。 4、最优化串级萃取工艺设计 4.1 确定萃取体系和测定分离系数β 针对要分离的问题,选择一个合适的萃取体系,进行单级试验,确定最适宜的有机相配比、皂化度、料液和洗液的浓度和酸度等。测定萃取段和洗涤段的平均分离系数β和β'。 B A E E =β (1)

' '' B A E E =β (2) 若β和β'值相差不大,通常采用数值较小的β值进行计算。 4.2 确定分离指标 根据料液组成,确定分离切割线位置,确定易萃组分A 和难萃组分B ,B f 为料液中组分B 的摩尔分数,1A B f f =-为料液中组分A 的摩尔分数。 根据市场需求确定产品分离指标,若A 为主要产品,规定其纯度An m p +,回收率为A Y ,则A 的纯化倍数和B 的纯化倍数为: (1) n m n m A A A B P P a f f ++-= (3) (1) A A a Y b a Y -= - (4) 出口水相B 的纯度1B P 和A 的纯度1A P 为: 1B B A B bf P f bf = + (5) 111A B P P =- (6) 出口有机相和出口水相分数A f '和B f ': n m A A A A f Y f P +'= (7) 1 B A f f ''=- (8) 若B 为主要产品,规定其纯度为1B P ,回收率为B Y ,则: 1 1(1) B B B A P P b f f -= (9) (1) B B b Y a b Y -= - (10)

稀土生产与分离工业工艺流程

稀土生产与分离工业工艺流程 一、稀土选矿 选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。 当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将 大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~ 65%Fe2O3的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO 含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。 二、稀土冶炼方法 稀土冶炼方法有两种,即湿法冶金和火法冶金。 湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。

第二章----提取分离和结构鉴定

第二章 提取---是指根据天然产物中各种化学成分的溶解性能,选择对有效成分溶解度大而对其他成分 溶解度小的溶剂,用适当的方法将所需要的化学成分尽可能完全地从药材组织中溶解提出的过程。溶剂提取法:利用天然产物化学成分在特定溶剂中溶解的性质,将其从原材中提取出来。多数情况下采用溶剂法。 溶剂提取法的原理:溶剂在渗透、扩散作用下,溶剂渗入药材组织细胞的细胞膜进入细胞内部,溶解可溶性的溶质,形成细胞内外溶质的浓度差,从而带动溶质做不断往返的运动,将溶质渗出细胞膜,直到细胞内外溶液中被溶解的化学成分的浓度达到平衡,达到提取所需化学成分的目的。溶剂选择的依据-----“相似者相溶”原则 常用溶剂按照极性大小分为三类:水溶性(糖类、氨基酸、蛋白质、盐类)、亲水性(苷类如:黄酮、三萜、甾体与糖的结合体)、亲脂性(未成盐的生物碱,未成苷的黄酮、蒽醌、萜类、甾体)。优缺点,能溶生么物质。 水:极性最强:优点:安全,经济易得缺点:水提取液(尤其是含糖及蛋白质者)易霉变,难以保存,且不易浓缩和滤过。 亲水性有机溶剂:指甲醇、乙醇、丙酮等极性较大且能与水相互混溶的有机溶剂。(故不能萃取)优点:提取范围较广,效率较高,提取液易于保存,滤过和回收。缺点:易燃,价格较贵,有些溶剂毒性较大。 亲脂性有机溶剂:与水不相混溶,具较强选择性,如石油醚、苯、乙醚、氯仿、乙酸乙酯等。优点:提取液易浓缩回收缺点:穿透力较强,需长时间反复提取,毒性大,易燃,价格较贵,设备要求高。 影响提取效果的因素 :溶剂提取的效果主要取决于选择合适的溶剂和提取方法。此外,原料的粉碎程度,提取温度, 浓度差,提取时间,操作压力,原料与溶剂的相对运动等因素也不同程度地影响提取效果。 原料的粉碎程度:原料经粉碎后粒度变小,浸出速度加快,但粉碎度过高,并不利于浸出,一般而言粒度以20-60目为适。浸出温度:扩散速度加快有利于浸提,并且温度适当升高,可 使原料中的蛋白质凝固、酶破坏而增加浸提液的稳定性,但温度过高,会破坏不赖热的成分,并且导致浸提液的品质劣变。一般浸出温度控制在60-100℃。浓度差:浓度差越大,扩散推动力越大,越有利于提高浸出效率。浸提时间:原料中的成分随提取时间延长,提取的得率增加,一般而言,热提1~3h,乙醇加热回流提取1~2h。

稀土萃取分离技术

稀土溶剂萃取分离技术 摘要 对目前稀土元素生产中分离过程常用的分离技术进行了综述。使用较多的是溶剂萃取法和离子交换法。本文立足于理论与实际详细地分析了溶剂萃取分离法。 关键词稀土分离萃取 前言 稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。“稀土”一词系17种元素的总称。它包括原子序数57—71的15种镧系元素和原子序数39的钇及21的钪。由于钪与其余16个元素在自然界共生的关系不大密切,性质差别也比较大,所以一般不把它列入稀土元素之列。 中国、俄罗斯、美国、澳大利亚是世界上四大稀土拥有国,中国名列第一位。中国是世界公认的最大稀土资源国,不仅储量大,而且元素配分全面。经过近40余年的发展,中国已建立目前世界上最庞大的稀土工业,成为世界最大稀土生产国,最大稀土消费国和最大稀土供应国。产品规格门类齐全,市场遍及全球。产品产量和供应量达到世界总量的80%一90%[1]。 稀土在钢铁工业有色金属合金工业、石油工业、玻璃及陶瓷工业、原子能工业、电子及电器工业、化学工业、农业、医学以及现代化新技术等方面有多种用途。由于稀土元素及其化合物具有不少独特的光学、磁学、电学性能,使得它们在许多领域中得到了广泛的应用。但由于稀土元素原子结构相似,使得它们经常紧密结合并共生于相同矿物中,这给单一稀土元素的提取与分离带来了相当大的困难[2]。 常用稀土分离提取技术 萃取分离技术:包含溶剂萃取法、膜萃取分离法、温度梯度萃取、超临界萃取、固—液萃取等萃取方法。 液相色谱分离技术:包含离子交换色谱、离子色谱技术、反相离子对色谱技术、萃取色谱技术、纸色谱技术、以及薄层色谱技术。 常用方法为溶剂萃取法和离子交换法[3]。 稀土溶剂萃取分离技术

萃取法Ca-La在线分离工艺_贾江涛

萃取法Ca /La 在线分离工艺 X 贾江涛1  廖春生1  严纯华1  曾东海2  冯余清2  周 静3 田北超 3 (1.北京大学稀土材料化学及应用国家重点实验室,北京 100871;2.四川银山化工(集团) 股份有限公司,内江 641201;3.四川省稀土工程技术研究中心,成都 610031) 摘 要:本文提出并研究了轻稀土P 507-HCl 体系La /Ce 分离过程中的在线萃镧除钙工艺,对工艺的实施方法、流程控制及分离效果进行了阐述。结果表明:该工艺可节约设备投资,用在线萃取法进行Ca/La 分离。本工艺同样适用于P 204-HCl 等体系的类似工艺流程。 关键词:萃取法;在线分离;Ca /L a 中图分类号:T F 803.23 文献标识码:A 文章编号:1004-0277(1999)04-0012-04 我国有着丰富的稀土资源,其中又以包头稀土矿和冕宁稀土矿为代表的北方矿为最多。该类矿源中富含轻稀土,超过稀土总量的95%。其中La 和Ce 含量约为轻稀土组成的80%以上〔1,2〕 。一方面,近年来由于La 、Ce 应用的不断深入和拓展,光学玻璃、金属冶炼、石油化工和环境保护等领域对单一稀土的应用日益增长,P507(或P204)-HCl 体系的La/Ce 工艺在稀土分离流程中是非常重要的一环;另一方面,Ca 2+、M g 2+ 、Zn 2+ 、M n 2+ 、Pb 2+ 等非稀土杂质在酸性磷类萃取剂中受萃取顺序的影响,富集在La /Ce 分离后的LaCl 3中。无论后续工艺是制备结晶LaCl 3?x H 2O,还是用碳酸氢铵沉淀,都不能很好地除去这些杂质。尽管通常进行的P507(或P204)-HCl 体系Ca/La 分 离工艺较好地解决了这个问题,但存在独立进行的两段萃取槽设备利用率低、动力消耗大、设备维护费用高、噪音大、稀土收率低等缺点。 本文借鉴稀土皂和稀土洗涤等相转移原理 〔3~8〕,利用Ca 2+、M n 2+、Pb 2+ 等非稀土杂质与 La 3+ 在萃取剂中的萃取平衡差异,提出P507(或 P 204)-HCl 体系La /Ce 分离工艺中的萃取法Ca /La 在线分离新工艺,对工艺组成实施、流程控制方法和在线分离效果进行了论述,可望在稀土分离的集约化研究中做一些有益的探索。 1 工艺流程简介 萃取法Ca/La 在线分离工艺如图1 。 U a :稀土皂U b :除钙级U c :萃取段n :进料级U d :洗涤段U e :反萃段H i :反萃酸H o :反出液W i :洗涤液W ′i :反洗酸W ′o :反洗液W o :废弃水S i :皂化有机相S a 、S b :负载有机相S o :再生有机相F :水相料液 图1 萃取法Ca /L a 在线分离工艺示意图 Fig .1 Flow sheet of Ca /La on -line solvent extraction separation process 1999年8月 Chinese Rar e Ear ths A ugust 1999 收稿日期:1999-02-21 基金项目:国家自然科学基金(29571003)、杰出青年科学基金(29525101)、教育部高等学校博士学科点专项科研基金、博士后基金、方正 基金、科技部攀登计划和国家重点基础科学研究发展规划项目 作者简介:贾江涛(1969-),男,北京大学稀土材料化学及应用国家重点实验室博士后,发表学术论文20余篇

稀土生产工艺流程图矿的开采技术

稀土生产工艺流程图 白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿 强磁中矿、尾矿 稀土精矿 稀土选矿 碱 法生产线 酸法生产线 火法生产线 碳酸稀土 硫酸体系萃取 盐酸体系萃取

钕铁硼永磁体 荧光粉磁致冷材料存贮光盘稀土玻璃镍氢电池 钐钴永磁体 汽车尾气净化器永磁电机节能灯 风力发电机各种发光标牌电 动汽车电动核磁共振 自行车 磁悬浮 磁选机

稀土矿的开采技术和稀土矿开采方法介绍 稀土矿在地壳中主要以矿物形式存在,其赋存状态主要有三种:作为矿物的基本组成元素,稀土以离子化合物形式赋存于矿物晶格中,构成矿物的必不可少的成分。这类矿物通常称为稀土矿物,如独居石、氟碳铈矿等。作为矿物的杂质元素,以类质同象置换的形式,分散于造岩矿物和稀有金属矿物中,这类矿物可称为含有稀土元素的矿物,如磷灰石、萤石等。呈离子状态被吸附于某些矿物的表面或颗粒间。这类矿物主要是各种粘土矿物、云母类矿物。这类状态的稀土元素很容易提取。 常用的稀土矿开采技术 离子型稀土的技术是我国完全拥有的自主知识产权。赣州有色冶金研究所是我国离子吸附型稀土矿的发现、命名和二代稀土提取工艺科技成果的主要享有单位。时任赣州有色冶金研究所分管科研副所长、后任所长的丁嘉榆同志,作为离子型稀土矿第二代提取工艺的发明及应用的主要参与者、领导者,对这一事件的历史发展进程有着刻骨铭心的记忆。应记者之约,丁嘉榆同志对这一历史事件进行了全面地、系统地回顾和总结。时至1970年,在过去长达175年的稀土矿产资源开发利用史中,人们发现自然界中含稀土元素及其化合物的矿物多达 200 种。但真正实际有工业利用价值的稀土矿物原料却为数不多,数量约十种左右。主要有独居石、铈硅石、氟碳铈矿、硅铍钇矿、磷钇矿、褐帘石、铌钇矿、黑稀金矿。但这些矿物中却大部份含有一定数量的铀或钍,而且稀土矿物均以固态、矿物相矿物性态存在,它们往往是与放射性元素共生或伴生。 稀土矿开采方法介绍

生物分离工程第四章综合测试

第四章萃取 一、名词解释 萃取:是利用液体或超临界流体为溶剂提取原料中目标产物的分离纯化操作。 反萃取:通过调节水相条件,将目标产物从有机相转入水相的萃取操作成为反萃取。 分配系数:在恒温恒压条件下,溶质在互不相容的两相中达到分配平衡时,其在两相中的浓度之比为一常数,该常数称为分配系数。即K=溶质在萃取相中的浓度/溶质在萃余相中的浓度=C2/C1。 分离因子:萃取剂对溶质A和B的选择或分离能力可以用分离因子表示。即α=(C2A/CIA)/(C2B/C1B)=KA/KB (C:浓度;下标1,2分别表示萃余相和萃取相;A、B:溶质;α越大,A和B越容易分离,分离效果越好) 超临界流体:物质均具有其固有的临界温度和临界压强,在P-T相图上称为临界点,在临界点以上物质处于即非液体也非气体的超临界状态,这时的物质称为超临界流体。 化学萃取:化学萃取是指利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性复合因子实现水溶性溶质向有机相的分配,主要用于一些氨基酸和极性较大的抗生素的萃取。 双水相体系:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相水分均占有很大比例,即形成双水相系统。 萃取因子:即萃取平衡后萃取相和萃余相中质量之比。用E表示。 盐效应:由于同一双水相系统中添加不同的盐产生的相间电位不同,故分配系数与静电荷数的关系因无机盐而异,这称为盐效应。 二、选择 1.萃取利用的是物质在两相之间的___B___不同来实现分离或纯化。 A.溶解度比 B.分配系数 C.分离系数 D.稳定常数 2.下列搭配中不适合双水相萃取的是____C__。 A.聚乙二醇/磷酸盐 B.葡聚糖/甲基纤维素 C.聚乙二醇/丙三醇 D. 聚乙二醇/葡聚糖 3.荷电溶质分配系数的对数与溶质的净电荷数成___A___关系,称为______。 A.正比/盐效应 B.指数/塞曼效应 C.非线性/道南效应 D.反比/法拉第效应 4.对于超临界流体萃取,溶解萃取物时通常__C____;分离萃取物时通常______。 A.降压降温/加压加温 B.降压加温/加压降温 C.加压降温/降压加温 D.加压降温/降压加温 5. 对于液液萃取时的两相,下列名词中搭配正确的是_A B D_____。 A.上相/下相 B.萃取相/萃余相 C.萃取相/料液相 D.溶剂相/物料相 6. 下列说明中正确的是__BC__。

液-液萃取分离法

液-液萃取分离法 【摘要】液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。如果被萃取组分是有色化合物,则可以取有机相宜接进行光度测定,这种方法称为萃取光度法。萃取光度法具有较高的灵敏度和选择性。 【关键字】液—液萃取分离法、亲水性、分配系数、螯合剂 液—液萃取分离法又称溶剂萃取分离法,简称萃取分离法。这种方法是利用与水不相混溶的有机溶剂同试液一起震荡,这时,一些组分进入有机相中,另一些组分仍留在水相中,从而达到分离富集的目的。 一. 萃取分离法的基本原理及重要参数 1.萃取过程的本质:根据物质对水的亲疏性不同,通过适当的处理将物质从水相中萃取到有机相,最终达到分离。 亲水性物质:易溶于水而难溶于有机溶剂的物质。如:无机盐类,含有一些亲水基团有机化合物常见的亲水基团有一OH,一SO3H,一NH2,=NH 等.疏水性或亲油性物质:具有难溶于水而易溶于有机溶剂的物质。如:有机化合物常见的疏水基团有烷基如一CH3,一C2H3,卤代烷基,苯基、萘基等物质含疏水基团越多,相对分子质量越大,其疏水性越强2.分配系数和分配比 (1)分配系数 分配系数的含义:用有机溶剂从水相中萃取溶质A时,如果溶质A在两相中存在的型体相同,平衡时溶质在有机相的活度与水相的活度之比称为分配系数,用KD表示。萃取体系和温度恒定,KD为一常数。在稀溶液中可以用浓度代替活度。 (2)分配比 分配比的含义:将溶质在有机相中的各种存在形式的总浓度CO和在水相中的各种存在形式的总浓度CW之比,称为分配比. 示例:CCl4——水萃取体系萃取OsO4在水相中Os(VIII)以OsO4,OsO52-和HOsO5-三种形式存在在有机相中以OsO4和(OsO4)4两种形式存在。 (3)分配系数与分配比 当溶质在两相中以相同的单一形式存在,且溶液较稀,KD=D。如: CCl4——水萃取体

稀土分离方法概述

稀土分离方法概述 姓名:任嘉琳班级:应化1102 学号:1505110619 摘要:近年来我国许多单位,在稀土分离工艺研究中,取得新的成果,重点是南方离子吸附性稀土矿,特点是单一稀土或部分稀土的分离转向整个镧系元素的全分离,从偏重技术指标到转为重视技术经济指标 关键词:稀土全分离单一分离 引言:稀土元素氧化物是指元素周期表中原子序数为57 到71 的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc)和钇(Y)共17 种元素的氧化物。稀土具有4f电子亚层,丰富的跃迁能级,大的原子磁距,多变的配位数,在光电磁材料中显示不可替代的作用,被誉为“工业维生素”。我国是稀土大国,所拥有的稀土储量占世界总工业储量的80%以上,由于稀土元素电子结构相似,化学性质相似,分离十分困难,但是为了探索功能材料。探索其本质特征,发现新的功能体系,拓展应用领域,必须解决分离稀土的难题[1]现在,常用的方法有溶剂萃取和离子交换。除Pm以外的16个稀土元素都可以提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。 1.萃取分离 轻稀土(P204弱酸度萃取)—镧、铈、镨、钕和钷; 中稀土(P204低酸度萃取)—钐、铕、钆、铽和镝; 重稀土(P204中酸度萃取)—钬、铕、铒、铥、镱、镥和钪。 2.萃取工艺 (1)分步法[2] 从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉

萃取分离法习题

萃取分离法习题 1、目前常用的萃取方法有哪几种?各有何特点? 2、衡量萃取完全的指标是什么?其影响因素有哪些? 3、衡量萃取速度的指标是什么?其影响因素有哪些? 4、衡量萃取分离效率的指标是什么?它在评价一个萃取分离方法中的作用是什么? 5、试述萃取剂的选择原则。 6、试述萃取溶剂的选择原则。 7、说明分配系数、分配比和分离因数三者的物理意义 8、在形成螯合物的萃取体系中PH1/2表示了什么?它的大小由什么因素决定的?对于PH1/2相差较大的离子,应如何使它们分离?对于PH1/2相差较小的离子又如何使它们分离?分别举例加以说明。 9、什么是盐析剂?为什么盐析剂作用可以提高萃取效率? 10、当HgI2溶液中有I-存在时,形成HgI3-和HgI42-。试推导用有机溶剂萃取HgI2时,HgI2的分配比与[I-]间的关系。 11、A和B化合物的分配比分别为9和2,通过多次萃取可以将它们分开吗?为什么? 12、试计算:当所用提取溶剂与被萃液的相比(R)分别为0.5,1,2时的萃取率E(假设萃取体系的分配比D为1)。由上述计算,可说明什么问题。 13、当三氟乙酰丙酮分配在CHCl3和水中时得到如下的结果:当溶液的PH值为1.16时,分配比为2.00;当PH值为6.39时,分配比为1.40。求它在氯仿和水中的分配系数K D 和离解常数K i。 14、用8-羟基喹啉为萃取剂,用氯仿为溶剂,萃取分离Fe3+,Co2+,Mn2+时,已知它们萃取曲线的PH1/2值分别为1.5、5.2、6.7。问这三种离子是否可用这样的溶剂萃取法进行分离?如果可以,萃取分离时溶液的PH值应控制在什么范围内?(分离完全时β≧104)。 15、若一次萃取的E1=50%,欲达到En=99%,需连续萃取几次?欲达到En=99.9%,又必须连续萃取几次? 16、什么是反胶束萃取?反胶团萃取的特点有哪些?它在蛋白质分离中有何应用? 17、什么是双水相萃取?双水相构成体系有哪些?它在生物分离中有何应用? 18、影响反胶束萃取和双水相萃取的因素有哪些? 19、(1)简述超临界流体萃取的原理和应用,在超临界流体萃取中应注意哪些操作条件? (2)简述超声辅助萃取、微波协助萃取以及固相萃取和固相微萃取技术的原理、特点、操作条件和应用。 20、设计方案,用超临界流体萃取法分离提取银杏内酯的分析方案。 21、设计方案,用超声法或微波协助萃取法分离提取山楂总黄酮的分析方案。 22、设计方案(包括方法、试剂、主要工艺流程等),用固相萃取或固相微萃取技术分离提取牛蒡苷元的分析方案。

萃取与分离技术 萃取基本概念及分离方法

模块三萃取技术 学习目标 知识目标 1.掌握萃取操作的基本知识、三角形相图、相平衡关系、单级萃取操作的工艺计算;掌握萃取操作的适用场合;掌握萃取操作、常见事故及其处理方法。 2.理解萃取过程的基本原理,理解萃取操作过程的控制与调节。 3.了解各种萃取操作的基本流程,了解各种萃取设备的结构、特点及其选择方法。能力目标 1.能够用三角形相图表示萃取操作过程,分析萃取操作过程的影响因素,并 能够进行萃取剂的选择,液—液萃取操作的选择。 2.能够了解萃取操作的开停车,常见事故及其处理方法。 素质目标 1.培养学生工程技术观念; 2.培养学生独立思考的能力,逻辑思维的能力; 3.培养学生能应用所学知识解决工程实际问题的能力。 任务单 东方化工集团有限分司,乙酸水溶 液中回收乙酸,这一过程中使用萃取 的方式进行,要求处理量为每批1t, 其中乙酸含量为50%(质量百分率 下同),要求最终乙酸的组成达70% 以上。完成下列任务: (1)确定回收方法; (2)选用适宜的萃取剂; (3)选用合适的萃取设备; (4)计算萃取剂用量。

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取: 萃取剂: 萃取相: 萃余相: 萃取液: 萃余液: 溶质: 原溶剂(稀释剂): 溶解溶解度曲线: 连接线(共轭线): 共轭液层(共轭相): 辅助曲线: 临界混熔点: 分配曲线: 分配系数: 萃取操作的分类及适用场合 萃取操作的分类 适用场合 建议选用分离方法 得分

萃取基本概念及分离方法的任务单(18-1) 班级________组别_____姓名__________组员名单______________________ 基本概念 常用术语萃取:利用混合物中的各组份在溶剂中的溶解度的不同,而达到混合物分离的目的。萃取剂:萃取剂:所选用的溶剂。 萃取相:以萃取剂为主溶有溶质的相。E 萃余相:以原溶剂为主溶质含量较低的相。R 萃取液:除去萃取相中的溶剂而得到的液体。E’ 萃余液:除去萃余相中的溶剂而得到的液体。R’ 溶质:混合物中被分离出的组份。A 原溶剂(稀释剂):原混合物中与溶剂不互溶或仅部分互溶的组份。 溶解溶解度曲线:将代表诸平衡液层的组成坐标点连接起来的曲线。 连接线(共轭线):萃取相E和萃余相R两点的联线。 共轭液层(共轭相):二元混合物中加入适量的萃取剂,即形成了二个液层萃取相E和萃余相R,把达到平衡时的两个液层称为“共轭液层或共轭相”。 辅助曲线:分别过共轭液层的两点作三角形任意两条边的平行线,其交点的连线。 临界混熔点:辅助曲线与溶解度曲线的交点。 分配曲线:将三角形相图中各组相对应的平衡液层中溶质A的浓度转移到x-y直角坐标上,所到的曲线。 分配系数:组份在萃取相E中浓度与其在萃余相R中的浓度之比值。 萃取操作的分类及适用场合 萃取操作的分类物理萃取:利用溶剂对欲分离的组份具有较大的溶解能力,溶质通过扩散作用转移到溶剂中,从而达到分离的目的的过程。 化学萃取:由于化学作用,溶剂选择性地与溶质化合或络合,从而帮助溶质重新分配,达到分离目的的过程。 适用场合(1)原料液中各组分间的相对挥发度接近于1或形成恒沸物。若采用蒸馏方法不能分离或很不经济; (2)原料液中需分离的组分含量很低且为难挥发组分。若采用蒸馏方法须将大量稀释剂汽化,能耗较大; (3)原料液中需分离的组分是热敏性物质。这种物料蒸馏时易于分解、聚合或发生其它变化。 (4)高沸点有机物的分离。用萃取方法代替技术很高的真空蒸馏、分子蒸馏,可降低能量消耗。 建议选用分离方法 得分

稀土萃取工考试中级试卷(上)

稀土萃取工中级工理论知识合并卷 一、判断题(正确的请在括号内打“√”,错误的请在括号内打“×”每题1分,共60分) 1.>包头稀土精矿稀土元素的配分CeO2>60%。() 答案:× 2.>澄清室的主要目的是使非稀土杂质进入水相。() 答案:× 3.>萃取法的优点是产品的纯度高、生产成本较低、试剂消耗量小、易于实现连续化大规模生产。 () 答案:√ 4.>分配比D值越小,表示萃取率越低。() 答案:√ 5.>环境温度低对萃取生产没有影响。() 答案:× 6.>钪的元素符号是Sr。() 答案:× 7.>轻稀土包括La、Ce、Pr、Nd、Sm。() 答案:× 8.>三价稀土氢氧化物的碱性随离子半径缩小而增强。() 答案:× 9.>稀土氧化物熔点高,具有酸性。() 答案:× 10.>稀土元素按硫酸复盐的溶解度可分为三组。() 答案:√ 11.>稀土元素共有15个。() 答案:× 12.>相是体系中具有相同物理性质和化学组成的均匀部分,相与相之间的界面可以用机械方法 将两相分离。() 答案:√ 13.>有机相与水相之间的界面用机械方法无法分开。() 答案:×14.>在潮湿、或金属容器中电器电压不能超过12伏。() 答案:√ 15.>照明用的行灯电压不超过12伏。() 答案:× 16.>氢氧化稀土能溶于磷酸。() 答案:× 17.>稀土元素是典型的金属元素,镥为最活泼的稀土金属。() 答案:× 18.>包头稀土精矿酸法分解工艺水浸液可用氢氧化钠调配酸度除铁等杂质。() 答案:× 19.>氯化稀土不易潮解。() 答案:× 20.>氧化钕的颜色为紫红色。() 答案:× 21.>氧化镨的颜色为绿色。() 答案:× 22.>在低酸度下,P507萃取稀土的饱和容量随水相酸度增加而下降。() 答案:√ 23.>工业盐酸除铁采用阳离子树脂。() 答案:× 24.>包头稀土精矿与烧碱反应生成易溶于水的氢氧化物,而氟和磷等杂质生成不溶于水的物质。() 答案:× 25.>氯化稀土晶体吸湿性很差,暴露在空气中不会吸水潮解。() 答案:× 26.>氢氧化铈的颜色为黄色。() 答案:√ 27.>稀土与碳酸氢氨反应生成碳酸盐沉淀,能达到稀土与铁、钙等杂质的分离。() 答案:× 28.>包头稀土精矿与烧碱反应不能采用电场加热。() 答案:× 29.>浓缩氯化稀土时,溶液中氯化铵含量高不会影响结晶。() 答案:× 30.>常用的3#凝聚剂是酰胺类有机物。()

黄酮类化合物的提取分离方法

一.黄酮类化合物的提取分离方法 1.1 按所用溶剂不同分类 (1)热水提取法(以水作溶剂)---------- 灵芝多糖热水提取 (2)有机溶剂萃取法-----------生产茶多酚工业试验、乳酸 (3)碱提取酸沉淀法.---------- 橙皮苷、黄芩苷、芦丁等都可用此法提取. 2.按提取条件不同分类 (1)回流提取法----------从苦楝树皮中提取苦楝素 (2)索式提取法----------柑橘属类黄酮 (3)微波辅助提取法----------采用微波辅助法从黎蒿中提取黄酮类化合物 (4)超声提取法----------提取山楂中黄酮类物质 (5)超滤法----------黄岑甙 (6)酶提取法----------采用纤维素酶对红景天进行酶解处理,可提高黄酮类物质的浸出率 (7)超临界流体提取法----------竹叶黄酮、从干姜片中提取挥发油 3.1 PH 梯度萃取法:石榴果皮褐变产物、葛花总异黄酮 3.2高效液相色谱分析法:五味子、葛根 3.3高速逆流色谱分离法:甘草、分离蜜环菌发酵液乙醇提取部位 4.4柱色谱法 (1)硅胶柱色谱:姜黄素 (2)聚酰胺柱色谱:紫锥菊 (3)葡聚糖凝胶柱色谱:回心草、茵陈蒿 (4)大孔吸附树脂分离法:川草乌、三七总皂甙 二. 槐米中芸香苷(芦丁)的提取方法有哪些?(设计) 方法:渗漉法、煎煮法、回流提取法 (1) 槐米粗粉20g 提取液 药渣 滤液 沉淀 热水或乙醇重结晶 芸香苷结晶 碱溶酸沉法提取分离槐米中芸香苷的流程图 (2)取30g 槐花米,置于250mL 烧杯中,加入0.4%硼砂沸水200ml ,在搅拌下缓缓加入石灰乳调节pH=8~9,在此pH 下保持微沸20~30min ,趁热用棉花滤过,残渣再加水,同上法再煎一次,趁热抽滤。合并滤液,在60~70℃下用浓盐酸调至pH=4—5,静置。 提 碱 取 溶 分 酸 离 沉

稀土的生产工艺流程图

稀土生产工艺流程图 白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿 强磁中矿、尾矿 稀土精矿 稀土选矿 碱法生产线 酸法生产线 火法生产线 氯化稀土 萃取稀土 碳酸稀土 硫酸体系萃取 稀土合金 稀土硅铁 盐酸体系萃取 转型 钍产品 金属镧 金属铈 金属镨 金属钕 金属镝 金属钐 熔盐电解 电池级混合稀土金属 钕铁硼永磁体 抛光粉 荧光粉 磁致冷材料 存贮光盘 稀土玻璃 镍氢电池 钐钴永磁体 汽车尾气净化器 永磁电机 节能灯 风力发电机 各种发光标牌 电动汽车 电动 核磁共振 自行车 磁悬浮 碳酸 铈酸铈氧化镧 氧化镨 氧化铈 氧化钕 氧化镝 氧化铕 氧化釓 氧化铽 氧化钐 重稀土富 集物 氧化钕 少钕碳酸稀土 钐铕钆富集物 酸泡 碱分解 酸溶 浓硫酸强化焙烧水浸冶炼合金 低温浓硫酸焙烧水浸 分组氯化稀土 石油催化裂化剂 汽车催化 净化剂 剂

磁选机 看稀土原矿生产新闻中有离子型稀土矿原矿“堆浸工艺”这个词,是怎样的工艺?怎么翻译成英文或日文? 堆浸提金是指将低品位金矿石或浮选尾矿在底垫材料上筑堆,通过氰化钠溶液循环喷淋,使矿石中的金、银溶解出来。含金贵液用活性炭吸附、锌置换沉淀或直接电解沉积等方法回收金,提金后的尾渣经消毒后排放。堆浸法提金具有工艺简单、操作容易、设备少、动力消耗少、投资省、见效快、生产成本低等特点。堆浸用于处理0.5-3g/t的低品位矿石,金的回收率50-80%,甚至能达到90%。因此,堆浸法使原来认为无经济价值的许多小型金矿、低品位矿石、尾矿或废石现在都能得以经济回收。我国在二十世纪八十年代将堆浸法广泛用于工业生产。堆浸法适合处理以下几种矿产资源:1、规模较大,以前认为不能利用的低品位金银矿;2、矿山开采过程中剥离的低品位含金“废石”;3、地质坑探和矿山掘进中采掘出的中低品位含金矿石;4、含金品位稍高,但规模较小,不宜建机械化选厂的金银矿; 5、采用常规氰化法处理经济上不利的金矿; 6、含金的冶炼烧渣、高品位尾矿和含有金的大型废石场。堆浸提金生产工艺主要由堆浸场地的修筑、矿石的预处理(破碎或制粒)、筑堆、喷淋浸出、含金贵液中金的回收以及废矿堆的消毒、卸堆等几部分组成。堆浸的生产成本:尾矿堆浸成本度大约在30-40元/吨,原矿堆浸成本大约在40-50元/吨. 我想问一下现在离子型稀土矿的开采方法是什么方法成本怎样计算需要什么试剂????????????? 离子型稀土第一代提取工艺,可简述为"异地提取工艺",或归结为"池浸工艺"。其主要工艺过程为:表土剥离→开挖含矿山体、搬运矿石→浸矿池→将按一定比例(浓度要求)配置的电解质溶液作为"洗提剂"或"浸矿剂",加入浸矿池,溶液对池中含"离子相"稀土矿石进行"渗滤洗提"或"淋洗" →溶液中活泼离子与稀土离子交换,"离子相"稀土从含矿载体矿物中交换出来,成为新状态稀土;加入"顶水",获含稀土母液;母液经管道或输液沟流入集液池或母液池,然后进入沉淀池;浸矿后废渣从浸矿池中清出,异地排放→在沉淀池中加入沉淀剂、除杂剂,使稀土母液中稀土除杂、沉淀,获混合稀土;池中上清液经处理后,返回浸矿池,作"洗提剂"循环使用→混合稀土经灼烧,获纯度≥92%的混合稀土氧化物。由上可见,本工艺过程中的技术关键词是:"表土剥离"、"开挖含矿山体"、"矿石搬运"、"浸矿池"、"洗提剂"、"异地渗滤洗提"、"离子交换"、"含稀土母液"、"尾砂异地排放"、"母液池"、"沉淀池"、"沉淀剂、除杂剂"、"沉淀、除杂"、"混合稀土"、"上清液返回"、"灼烧"、"REO≥92%混合稀土氧化物"。 "池浸工艺"与传统的生产工艺相比较,其第一、二、三道工序过程相似于矿产资源开采中传统的采矿专业的各作业工序;第三、四、五道工序过程相似于传统选矿专业和湿法冶金专业相结合的各作业工序;自第五道工序过程以后的各工序,属于传统湿法冶金专业的各作业工序。其中,第三道工序中的"浸矿池",起着联系传统采矿、选矿专业作业的作用,类似于矿山选厂的"原矿仑";而第五道工序中的"沉淀池",却起着联系传统选矿、湿法冶金专业作业的作用,类似于湿法冶金企业的"原料仑"。 由此,相似于传统选矿专业的主要选别过程,是在"浸矿池"中完成,而且作为本工艺的中间制品,在此获得含稀土的母液;而属于传统湿法冶金专业的典型湿法冶金过程,则主要在"沉淀池"中进行,并由此获得"稀土精矿"的初级产品--"混合稀土";再经灼烧处理后即可获得"稀土精矿"终级产品--REO≥92%的混合稀土氧化物。 进而言之,上述作业过程中,先后在三个典型的作业过程中,分别获得了"中间制品"、"初级产品"和"终级产品"。亦即,在"浸矿池"中,通过离子交换,制得含稀土的母液;在"沉淀池"中,通过沉淀,制

相关文档
最新文档