数学史 答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.勾股定理的证明方法来源
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
1.关于勾股定理的证明:
(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,
∴ΔADC ∽ΔA CB.
∴AD∶AC = AC ∶AB,即.
同理可证,ΔCDB ∽ΔACB,
从而有.
∴,即
】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B 三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.
∵AF = AC,AB = AD,∠FAB = ∠GAD,
∴ΔFAB ≌ΔGAD,
∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,
∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.
∵正方形ADEB的面积= 矩形ADLM的面积+ 矩形MLEB的面积
∴,即.
2. 论述数学史对数学教育的意义和作用.
数学史进入课程是数学新课程改革的重要理念之一。在课程变革由结构——功能视角向文化——个人视角转变的过程中,文化融入是师生对课程改革适应性的一个重要因素。对数学学科而言,数学史是数学文化生成的文库性资源,是最具权威的课程资源,具有明理、哲思与求真三重教育价值。
明理:数学知识从何而来?数学史展示数学知识的起源、形成与发展过程,诠释数学知识的源与流;
哲思:数学是一门什么样的科学?数学史明晰数学科学的思想脉络和发展趋势,让学生领悟数学科学的本质,引发学生对数学观问题自觉地进行哲学沉思,有利于学生追求真理和尊崇科学品德的形成;
求真:数学科学有什么用?数学史引证数学科学伟大的理性力量,让学生感悟概念思维创生的数学模式对于解析客观物质世界的真理性,提高学生对数学的科学价值、应用价值、文化价值的认识。
简言之:学习数学史可以帮助人们——
理解数学的本质掌握数学的思想与方法重走数学家数学发现的(思维的)关键性步子
因此,要重视数学史在数学教学中的意义和作用,通过数学教学展现数学知识的发现历程,让学生了解数学知识的来龙去脉,是数学教学的有效策略。展现数学知识的发现过程,不是简单叙述数学史实,重复数学家的“原发现过程”。而是需要教师开展教育取向的数学史研究,从中获得对数学教学的启示,引导学生重走数学发现之路。
体会一:懂得历史:从欧几里得到牛顿的思想变迁历史使人明智,数学史也不例外。古希腊的文明,数学是主要标志之一,其中欧几里得的《几何原本》闪耀着理性的光辉,人们在欣赏和赞叹严密的逻辑体系的同时,渐渐地把数学等同于逻辑,以“理性的封闭演绎”作为数学的主要特征。跟我国古代数学巨著《九章算术》相对照,就可以发现从形式到内容都各有特色和所长,形成东西方数学的不同风格:《几何原本》以形式逻辑方法把全部内容贯穿起来,极少提及应用问题,以几何为主,略有一点算术内容,而《九章算术》则按问题的性质和解法把全部内容分类编排,以解应用问题为主,包含了算术、代数、几何等我国当时数学的全部内容。但是在近代数学史上,以牛顿为代表的数学巨人冲破了“数学=逻辑演绎”的公式,创造地发明了微积分。从中我们可以认识到欧几里得的几何学具有严密的逻辑演绎思维模式,牛顿的微积分具有开放的实践创造思维模式。在我们的学习中同样需要兼顾严的逻辑演绎思维与开放的实践创造思维。
体会二:激发精神:数学大师的执着、爱国学过数学的人应该都知道勾股定理吧!那你知道是谁最早发现的吗?在西方的文献中一直把勾股定理称作毕达哥拉斯定理。他是希腊论证数学的另一位祖师,并精于哲学、数学、天文学、音乐理论;他创立的毕达哥拉斯学派把数学当作一种思想来追求,去追求永恒的真理。你知道被国际公认为“东方第一几何学家”吗当我们学校组织高一段的同学去平阳春游,参观了苏步青的故居后,这个谜团才得以解决。而且对苏步青有了进一步的了解,从他身上发现爱国情怀尤其突出,如在极端恶劣的条件下毅然回国,并以严谨的治学态度、宽厚仁慈的胸怀、苦心孤诣的钻研精神激励着学生,于是才有了潘承洞、王元、陈景润等对哥德巴赫猜想的突出贡献,才有了我国在国际奥林匹克数学竞赛上的一枚枚金牌。
体会三:掌握学法:学习之道在于悟
例如,做菜,用同样的材料和调味品,为什么大厨做出来的就比你做出来的好吃?材料都是一样的啊!这说明除材料外,还有一个东西在起作用——就是在做菜的过程中,如何搭配材料,材料的使用顺序,何时使用材料,如何把握火候等。这些东西在起作用。同理数学知识分为两类:一类是陈述性知识(或者说明性知识),是关于事实本身的知识,例如定义、定理、公理、概念、性质、法则、运算律等等,是关于是什么的一类知识;另一类是程序性知识,指怎样进行认识活动的知识。陈述性知识可通过说明、解释、举例等方式达到理解,是可传授的,易掌握的,通过训练是能够牢固掌握的。程序性知识更多地体现在经验,可传授性差,要靠体验、意会和悟性,而体验是要在过程中生成的,需要逐步积累的。数学学习
的特点给我们两点启示:1、程序性知识比陈述性知识更为重要。(为什么不会解题的原因)2、程序性知识的学习要在应用过程中揣摩,陈述性知识要在训练中加深理解和掌握。
体会四:更新理念:大胆猜想,小心求证在数学史中,有这样一个游戏:汉诺塔游戏。以上的游戏体现了数学中的探索、推理、归纳的思想,合情推理是创新思维的火花,操作探究是创新的基本技能。当面临错综复杂的实际问题时,应能自觉运用数学的思维方式(退到简单入手)去观察和思考问题,并努力寻求用数学解决问题的办法(寻找递推关系)。这种思考方式在解题中非常重要,又如谢宾斯基三角形与雪花曲线:
以上是我在学习《数学史》后的总结,在学习过程中,我们体会到数学的发展并非一帆风顺,它是众多数学先贤前赴后继、辛勤耕耘的奋斗过程,也是克服困难、战胜危机的斗争过程。了解数学史,对于我们把握数学知识之间的关系和联系,领会数学知识所内含的数学思想方法大有好处。
3.数学史上的三次危机
在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;步牛顿又把无穷小量看作零,去掉那些包含它的项,
从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次
数学危机基本解决。
第三次危机罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴