数列单元测试卷含答案
数列单元测试卷
数列单元测试卷1.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .3. 等比数列{a n }的前n 项和S n =________;设a =a 11-q (q ≠1),则S n =________.4. 在等比数列{}a n 中,若S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值为________.5. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.6.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n .7. 已知等比数列{a n }的公比q =2,a n =96,前n 项和S n =189,则这个数列共有________项,首项a 1=________. 8. 已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为________.9.等差数列}{n a 中,a 1=2,公差不为零,且a 1,a 3,a 11 恰好是某等比数列的前三项,那么该等比数列公比的值等于_______________________.10. 设等比数列{}a n 的前n 项和为S n ,已知S 4=1,S 8=17,则数列{}a n 的通项公式为________.11 . 已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数n 为________.12. 如果lg x +lg x 2+…+lg x 10=110,那么lg x +lg 2x +…+lg 10x =________. 13.若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .14.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = . 15. 已知nS 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .16.{a n }为等差数列,{b n }为等比数列,a 1=b 1 =1, a 2+a 4 =b 3,b 2b 4=a 3.分别求出{a n }及{b n }的前10项的和S 10及T 10.17.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列.18.在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围.19. 在等比数列{a n }中,S n 为前n 项和,a 1+a n =66,a 2a n -1=128,S n =126,求n 和公比q 的值.20.已知{a n }是首项为a 1,公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否为等比数列?若是,请求出a 1的值;若不是,请说明理由.21.(本小题满分16分)已知数列{a n }满足2122111()2222n n n na a a n N ++++⋅⋅⋅+=∈. (1) 求数列{a n }的通项公式;(2) 求数列{a n }的前n 项和S n .22.设数列{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10.(1)求数列{a n }的通项公式.(2)设数列{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .数列单元测试卷参考答案: 1.3n 23-⨯; 2.2-;3. ⎩⎪⎨⎪⎧a 11-q n1-q q ≠1,na 1q =1.a -aq n4. 16 [提示] 由a 1⎝ ⎛⎭⎪⎫1-q 41-q =1,a 1⎝ ⎛⎭⎪⎫1-q 81-q =3,得1+q 4=3,q 4=2,所以a 17+a 18+a 19+a 20=a 1q 16+a 2q 16+a 3q 16+a 4q 16=q 16=24=16.5. 323⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n [提示] 由⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以{a n a n +1}是首项为a 1a 2=8,公比为q 2=14的等比数列.6. 6[提示]3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 7. 6 3 [提示] 由189=S n =a 1(2n-1),96=a 1·2n -1,得a 1=3,n =6.8. S 3 9.4 10.-1n·2n -15或2n -115 [提示] 设公比为q ,易知q ≠1.由S 4=1,S 8=17,得a 11-q 41-q =1,a 11-q 81-q=17,相除,得q 4+1=17,q =±2.当q =2时,a 1=115,a n =2n -115;当q =-2时,a 1=-15,a n =-1n·2n -15. 11. n =5 [提示] 由a 1+a 2+…+a n ≥1a 1+1a 2+…+1a n ,得a 11-q n 1-q ≥1a 1⎝ ⎛⎭⎪⎫1-1q n 1-1q.又由a 2>a 3=1,得0<q <1且a 1=1q2.代入可得q5-n≤1.又 0<q <1, ∴ n ≤5.12. 2046 [提示] 由题意,得lg x +lg 2x +…+lg 10x =2×1-2101-2=211-2=2046.13.12n - 14.-415. 由0>n a ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n ∴81821122=⇒=--=nn n n n q q q S S , ∴1>q .又 前n 项中的数值最大的项为5411==-n n q a a ,∴321=q a . ∴ .133,21001001-=⇒==S q a16.∵ {a n }为等差数列,{b n }为等比数列, ∴ a 2+a 4=2a 3,b 3b 4=b 32. 而已知a 2+a 4=b 3,b 3b 4=a 3, ∴ b 3=2a 3,a 3=b 32. ∵ b 3≠0, ∴ b 3=12,a 3=14.由 a 1=1,a 3= 14 知{a n }的公差d =-38.∴ S 10=10a 1+10×92d =-558.由b 1=1,b 3= 12 知{b n }的公比为q =22或q =-22. 当q =22时,T 10=b 1(1-q 10)1-q =3132(2+2);当q =-22时,T 10=b 1(1-q 10)1-q =3132(2-2)17. 显然q ≠1,由S 3+S 6=2S 9,得a 11-q (1-q 3)+a 11-q (1-q 6)=2a 11-q (1-q 9), ∴ 1+1+q 3=2(1+q 3+q 6),2q 6+q 3=0. ∴ q 3=-12.∴ a 2+a 5=a 2+a 2q 3=a 2(1+q 3)=a 2⎝ ⎛⎭⎪⎫1-12=12a 2.a 8=a 2q 6=a 2⎝ ⎛⎭⎪⎫-122=14a 2.∴ a 2+a 5=2a 8.∴ a 2,a 8,a 5成等差数列.18. 22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13nn n a S n n N -==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)nn na S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥.19. 在等比数列{a n }中,a 1·a n =a 2·a n -1=128.又a 1+a n =66,解得⎩⎪⎨⎪⎧a 1=2,a n =64或⎩⎪⎨⎪⎧a 1=64,a n =2.若a 1=2,a n =64,S n =126,则qn -1=32,1-q n=63(1-q ).将q n=32q 代入1-q n=63(1-q ),得q =2,n =6. 若a 1=64,a n =2,S n =126,则qn -1=132,32(1-q n)=63(1-q ). 将q n =q 32代入32(1-q n)=63(1-q ),得q =12,n =6.20. (1)由5S 2=4S 4,得 5a 11-q 21-q =4a 11-q 41-q,∴ 5(1-q 2)=4(1-q 4). ∴ q 2=14.又 q >0, ∴ q =12.(2)S n =a 11-q n 1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.若{b n }成等比数列,则12+2a 1=0,∴ a 1=-14.此时b n =⎝ ⎛⎭⎪⎫12n +1,b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12. ∴ {b n }成等比数列.故存在实数a 1=-14,使{b n }成等比数列.21.解:(1)n=1时,2111122a +=,得12a =;………………………2分n ≥2时,21221112222n n n na a a +++⋅⋅⋅+=,①2212121111(1)(1)22222n n n n n na a a ---+--++⋅⋅⋅+==,② ①-②得12nn a n =,2nn a n =⋅, 故2,12,2n nn a n n =⎧=⎨⋅≥⎩,即2n n a n =⋅(n N *∈)………………………8分 (2)1212222nn S n =⨯+⨯++⋅ ③23121222(1)22n n n S n n +=⨯+⨯++-⋅+⋅ ④③-④得1231121212122nn n S n +-=⨯+⨯+⨯++⋅-⋅ ……………12分112(12)2(1)2212n n n n n ++-=-⋅=-⋅--……………14分故1(1)22n n S n +=-⋅+……………16分22.【解】 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1=2,a 1+2d =(a 1+d )2-10,解得d =2或d =-4(舍), 所以a n =2+(n -1)×2=2n . (2)因为y =4sin 2πx =4×1-cos 2πx 2=-2cos 2πx +2,其最小正周期为2π2π=1,故首项为1,因为公比为3,从而b n =3n -1,所以a n -b n =2n -3n -1,故S n =(2-30)+(4-31)+…+(2n -3n -1)=(2+2n )n 2-1-3n 1-3=n 2+n +12-3n 2.。
数列单元能力测试(一)doc
数列单元能力测试(一)命题人 蒋红伟一、选择题(5×10=50分)1.在等比数列{}n a 中,953,16,4a a a 则===( ) A .256 B .-256 C .128 D .-1282.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .63.设数列11,,321,211++⋅⋅⋅++n n ,n n S S n 则项和为的前,⋅⋅⋅等于( ) A .n n -+1 B .n n ++1 C .11-+n D .11++n 4.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .21 5.等差数列{}n a 的各项都是负数且8328232a a a a ++=9,那么它的前10项和n S 等于( )A .-9B .-11C .-13D .-156.等差数列{}n a 中,2=d ,且431,,a a a 成等比数列,则=2a ( ) A .4-B .6-C .8-D .10-7.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( ) A .递增数列 B .递减数列 C .从某项后为递减 D .从某项后为递增8.已知{}n a 满足对一切正整数n 均有n n a a >+1且n n a n λ+=2恒成立,则实数λ的范围是( ) A .0>λ B .0<λ C .1->λ D .3->λ 9.数列{}n a 的通项公式为)34()1(1--=-n a n n ,则=100S ( ) A .-200 B .200 C .400 D .-40010.设502,1,,a a a ⋅⋅⋅是从-1,0,1这三个整数中取值的数列,若95021=+⋅⋅⋅++a a a 且21)1(+a +107)1()1(25022=++⋅⋅⋅++a a ,则,,,21⋅⋅⋅a a 50a 中有0的个数为( )A .10B .11C .12D .13二、填空题(5×5=25分)11.在等比数列{}n a 中, 若,15,393==a a 则15a =___________12.等差数列{}n a 中50,102010==S S ,则30S =13.已知等差数列{}n a 的前17项和,5117=S 则=+-+-1311975a a a a a 14.已知数列{a n }的通项公式n a n n +=2,则其前n 项和=n S15..已知函数f (x )对任意x ∈R ,都有f (x )=1-f (1-x ),则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=___三、解答题(75分)16.(13分)等比数列{}n a 共有偶数项,且所有项之和是奇数项之和的3倍,前3项之积等于27,求这个等比数列的通项公式17.(13分){}n a 是公差为1的等差数列,{}n b 是公比为2的等比数列,n n Q P 、分别是{}n a 、{}n b 的前n 项和且45,41036+==Q P b a (1)求{}n a 的通项公式(2)若6b P n >,求n 的取值范围18.(本小题满分13分) (2012重庆文)已知{}n a 为等差数列,且13248,12,a a a a +=+=(1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足22,1175243=+=⋅a a a a (1)求通项n a(2)若数列{}n b 是等差数列且cn S b nn +=,求非零常数c (3)求)()36()(1++∈⋅+=N n b n b n f n n的最大值20.(12分)已知数列{}n a 的各项均为正整数,且满足11),(22521=∈+-=++a N n na a a n n n 又(1)求4321,,,a a a a 的值并由此推测出{}n a 的通项公式(不要求证明) (2)设n n n S a b ,,11-==n b b b +⋅⋅⋅++21,求n S21.(12分)某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利?(2)若干年后,有两种处理方案:方案一:年平均获利最大时,以26万元出售该渔船;方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算?数列单元能力测试(一)参考答案ABCCD BDDAB11.75 12.120 13.3 14. 2)1(221++-+n n n 15.3 16.解:设数列共有2n 项,奇数项和为1S ;由已知21111332,,n S S S qS S q =∴+=∴= 又()3121113327323222,,,.n n n a qa q a a --=∴=∴==⋅=⋅17.(1)2+=n a n (2)10≥n18. (Ⅰ)na =2n (Ⅱ)6k =【解析】(Ⅰ)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩ 解得12,2a d ==所以1(1)22(1)2n a a n d n n =+-=+-= (Ⅱ)由(Ⅰ)可得1()(22)(1)22n n a a n n nS n n ++===+ 因12,,k k a a S + 成等比数列,所以212k k a a S += 从而2(2)2(2)(3)k k k =++ ,即 2560k k --=解得6k = 或1k =-(舍去),因此6k = . 19.(1)34-=n a n (2)21-=c (3)491 20.(1)12+=n a n (2)1-21. 解:(1)由题意知,每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数n 的关系为f (n ),则++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n .由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<<n .∵n ∈N ,∴n =3,4,5,…,17.即第3年开始获利. (2)方案一:年平均收入)49(240)(nn n n f +-==. 由于1449249=⋅≥+nn n n ,当且仅当n =7时取“=”号.∴ 1214240)(=⨯-≤n n f (万元). 即前7年年平均收益最大,此时总收益为12×7+26=110(万元). 方案二:f (n )=22n -+40n -98=-22)10(-n +102.当n =10时,f (n )取最大值102,此时总收益为102+8=110(万元). 比较如上两种方案,总收益均为110万元,而方案一中n =7,故选方案一.。
中职数列单元测试题及答案
中职数列单元测试题及答案一、选择题(每题2分,共10分)1. 等差数列的通项公式是:A. \( a_n = a_1 + (n-1)d \)B. \( a_n = a_1 + nd \)C. \( a_n = a_1 + (n-1) \times 2d \)D. \( a_n = a_1 + n \times 2d \)2. 等比数列的前n项和公式是:A. \( S_n = a_1 \times \frac{1 - r^n}{1 - r} \)B. \( S_n = a_1 \times \frac{1 - r^n}{r - 1} \)C. \( S_n = a_1 \times \frac{1 - r^n}{1 + r} \)D. \( S_n = a_1 \times \frac{1 - r^n}{r + 1} \)3. 已知等差数列的第3项为6,第5项为10,求第1项a1和公差d:A. \( a_1 = 2, d = 2 \)B. \( a_1 = 4, d = 1 \)C. \( a_1 = 2, d = 1 \)D. \( a_1 = 4, d = 2 \)4. 等比数列中,若第3项为8,第5项为32,则该数列的公比r为:A. 2B. 4C. 8D. 165. 一个数列的前5项分别为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定答案:1-5 A B A B C二、填空题(每题2分,共10分)6. 等差数列中,若第4项为-1,第7项为6,则第10项为________。
7. 等比数列中,若首项为2,公比为3,第5项为__________。
8. 已知数列{an}的通项公式为an = 2n - 1,求第6项a6的值为________。
9. 等差数列的前n项和公式为Sn = n(a1 + an)/2,若S5 = 40,a1 = 4,求第5项a5的值为________。
(完整版)数列单元测试卷含答案
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
数列》单元测试题(附答案解析).doc
《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
数列单元测试题及答案解析
数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。
A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。
A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。
5. 等比数列的前n项和公式为:S_n = _______。
三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。
7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。
四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
答案解析:一、选择题1. 答案:A。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。
2. 答案:B。
解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。
3. 答案:C。
解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。
二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。
解析:等差数列前n项和的公式。
5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。
解析:等比数列前n项和的公式。
三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。
7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。
四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。
高二数列单元测试题及答案
高二数列单元测试题及答案一、选择题(每题3分,共15分)1. 已知数列{an}是等差数列,且a3=5,a5=9,则a7的值为:A. 13B. 11B. 9D. 72. 等比数列{bn}的首项b1=2,公比q=3,求该数列的第5项b5:A. 486B. 243C. 81D. 1623. 已知数列{cn}的前n项和S(n)=n^2,求第5项c5:A. 14B. 15C. 16D. 174. 若数列{dn}满足d1=1,且对于任意的n≥2,有dn=2dn-1+1,该数列为:A. 等差数列B. 等比数列C. 非等差也非等比数列D. 几何数列5. 对于数列{en},若e1=2,且en+1=en+n,求e5的值:A. 12B. 14C. 16D. 18二、填空题(每题4分,共20分)6. 已知数列{fn}是等差数列,且f1=3,f3=9,求公差d。
__________7. 已知数列{gn}是等比数列,且g1=8,g3=64,求公比q。
__________8. 若数列{hn}的前n项和S(n)=n^2+n,求第3项h3。
__________9. 已知数列{in}满足i1=1,且对于任意的n≥2,有in=in-1+n,求i3的值。
__________10. 若数列{jn}的前n项和S(n)=n^3,求第2项j2。
__________三、解答题(每题10分,共30分)11. 已知数列{kn}是等差数列,首项k1=1,公差d=2,求数列的前10项和S(10)。
12. 已知数列{ln}是等比数列,首项l1=1,公比q=4,求数列的前5项和S(5)。
13. 已知数列{mn}的前n项和S(n)=2n^2-n,求数列的第n项mn。
四、综合题(每题25分,共25分)14. 某工厂生产的产品数量按照等差数列增长,若第1年生产100件,每年增长50件。
求第5年的产量,并求前5年的总产量。
答案:一、选择题1. A2. C3. B4. A5. B二、填空题6. d=27. q=48. h3=109. i3=510. j2=9三、解答题11. S(10)=10×1+(10×9)/2×2=11012. S(5)=1+4+16+64+256=34113. mn=2n^2-n-1四、综合题14. 第5年产量为100+4×50=250件,前5年总产量为100+150+200+250+300=1000件。
数列的概念单元测试题+答案 百度文库
一、数列的概念选择题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .1602.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+3.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-4.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+5.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252436.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120217.数列{}n a 满足 112a =,111n n a a +=-,则2018a 等于( )A .12B .-1C .2D .38.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .20759.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .1211.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4513.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .14014.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a 15.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019 C .11010 D .1100916.数列{}n a 满足1111,(2)2n nn a a a n a --==≥+,则5a 的值为( ) A .18B .17C .131D .1617.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6 B .7C .8D .918.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-19.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3D .320.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .2019二、多选题21.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =22.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=023.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .325.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 26.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 27.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列28.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =29.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-30.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <32.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2233.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项34.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.2.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+,如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.3.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-=== ∴{}n b 是以6为周期的周期数列,且60S =,∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.4.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.5.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当n <2时,a n +1-a n >0,即a n +1>a n ;当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.6.C【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:11nn n a a a +=+, ∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=, 得1n a n=, 则202012020a =, 故选:C 【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.7.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.8.C解析:C由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n a f n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D.本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.B解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.11.A解析:A 【分析】将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =,343a =,454a =,565a =,故可得1223,12a a ==, 343a =,454a =,565a =, 故可归纳得1+=n n a n. 故选:A. 【点睛】本题考查简单数列通项公式的归纳总结,属基础题.12.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论.∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.13.B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B14.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.15.C解析:C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n n a n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.16.C解析:C 【分析】根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+ 故选:C 17.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C18.C解析:C 【分析】根据选项进行逐一验证,可得答案. 【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯ 所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确. 故选:C19.C解析:C【分析】根据题设条件,得到数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=,再由2020336644a a a ⨯+==,即可求解.【详解】由题意,数列{}n a 中,13a =,26a =,且21n n n a a a ++=-, 可得3214325436547653,3,6,3,3,a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,可得数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=, 所以20203366443a a a ⨯+===-. 故选:C. 【点睛】本题主要考查了数列的递推关系式,以及数列的周期性的应用,其中解答中得出数列的周期性是解答的关键,着重考查了推理与运算能力,属于基础题.20.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.二、多选题21.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.22.ABD 【分析】对于A ,由题意得bn =an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.25.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确;当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.26.ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <,所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.27.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD28.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.29.AD 【分析】设等差数列的公差为,根据已知得,进而得,故,. 【详解】解:设等差数列的公差为,因为所以根据等差数列前项和公式和通项公式得:, 解方程组得:, 所以,. 故选:AD.解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.30.AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列, 故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.31.AD 【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,结合等差数列的性质可知,,该等差解析:AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.32.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.33.ACD 【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ; 【详解】 由已知解析:ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.34.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.35.AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】考查等差数列的有关量的计算以及性质,基础题.。
高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)
第四章 数列 单元过关检测 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________ 题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知数列{a n }的前4项为:l ,−12,13,−14,则数列{a n }的通项公式可能为( ) A .a n =1n B .a n =−1nC .a n =(−1)n nD .a n =(−1)n−1n【答案】D 【解析】 【分析】分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式 【详解】正负相间用(−1)n−1表示,∴a n =(−1)n−1n.故选D . 【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律. 2.记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为( ) A .1 B .-1C .2D .-2【答案】A【分析】利用等差数列{a n }的前n 项和与通项公式列方程组,求出首项和公差,由此能求出数列{a n }的公差. 【详解】∴S n 为等差数列{a n }的前n 项和,a 3∴3∴S 6∴21∴∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩∴ 解得a 1∴1∴d ∴1∴ ∴数列{a n }的公差为1. 故选A ∴ 【点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.3.已知数列{}n a ,满足111n n a a +=-,若112a =,则2019a =( ) A .2 B .12C .1-D .12-【答案】C 【分析】利用递推公式计算出数列{}n a 的前几项,找出数列{}n a 的周期,然后利用周期性求出2019a 的值. 【详解】111n n a a +=-,且112a =,211121112a a ∴===--,32111112a a ===---, 111a ===,所以,()a a n N *=∈,则数列{}n a 是以3为周期的周期数列,20193672331a a a ⨯+===-∴. 故选C. 【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4.在等比数列{}n a 中,6124146,5a a a a ⋅=+=,则255a a =( ) A .94或49B .32C .32或23 D .32或94【答案】A 【分析】根据等比数列的性质得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得414,a a 的值,分类讨论求解,即可得到答案. 【详解】由题意,根据等比数列的性质,可得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得41423a a =⎧⎨=⎩或41432a a =⎧⎨=⎩,当41423a a =⎧⎨=⎩时,则1014432a q a ==,此时201022559()4a q q a ===;当41432a a =⎧⎨=⎩时,则1014423a q a ==,此时201022554()9a q q a ===,故选A. 【点睛】值是解答的关键,着重考查了运算与求解能力,属于基础题. 5.等比数列{}n a 中( ) A .若12a a <,则45a a <B .若12a a <,则34a a <C .若32S S >,则12a a <D .若32S S >,则12a a >【答案】B 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.6.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .5110【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.7.函数()2cos 2f x x x =-的正数零点从小到大构成数列{}n a ,则3a =( )A .1312π B .54π C .1712πD .76π 【答案】B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.8.已知函数3()13xxf x =+(x ∈R ),正项等比数列{}n a 满足501a =,则 1299(ln )(ln )(ln )f a f a f a +++=A .99B .101C .992D .1012【答案】C 【详解】因为函数31()()()11331x x xf x f x f x ---==∴+-=++(x ∈R ), 正项等比数列{}n a 满足2501995011a a a a =∴==,9921ln ln ln ln ...0a a a a +=+=则1299(ln )(ln )(ln )f a f a f a +++=992,选C二、多选题A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 10.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=【答案】BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n nn n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和.【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的 等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确; 因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题.11.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <【答案】AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.12.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,1a a =+,记这2n 个数的和为S .下列结论正确的有( )1112131.n a a a a ⋯⋯ 2122232.n a a a a ⋯⋯ 3132333.n a a a a ⋯⋯……123.n n n nn a a a a ⋯⋯A .3m =B .767173a =⨯C .()1313j ij a i -=-⨯ D .()()131314n S n n =+- 【答案】ACD 【分析】根据等差数列和等比数列通项公式,结合13611a a =+可求得m ,同时确定67a 、ij a 的值、得到,,A B C 的正误;首先利用等比数列求和公式求得第i 行n 个数的和,再结合等差求和公式得到D 的正误. 【详解】对于A ,2213112a a m m =⋅=,6111525a a m m =+=+,2235m m ∴=+,又0m >,3m ∴=,A 正确;对于B ,612517a m =+=,666761173a a m ∴=⋅=⨯,B 错误;对于C ,()111131i a a i m i =+-=-,()111313j j ij i a a mi --∴=⋅=-⋅,C 正确;对于D ,第i 行n 个数的和()()()()()1131133131122n n n i a m i i S m-----'===--,()()()()()()3111131258313131312224n n nn n S n n n +∴=-⨯+++⋅⋅⋅+-=-⨯=+-⎡⎤⎣⎦,D 正确. 故选:ACD .本题考查数列中的新定义问题,解题关键是能够灵活应用等差和等比数列的通项公式和求和公式,将新定义的数阵转化为等差和等比数列的问题来进行求解.三、填空题13.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________. 【答案】20 【分析】先由条件求出1,a d ,算出n S ,然后利用二次函数的知识求出即可 【详解】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++即1235a d +=,①2461113599a a a a d a d a d ++=+++++=即1333a d +=,②由①②联立得139,2a d ==-所以()()22139(2)40204002n S n n n n n n -=+⨯-=-+=--+故当20n =时,n S 取得最大值400 故答案为:20等差数列的n S 是关于n 的二次函数,但要注意n 只能取正整数.14.《九章算术》中有一个“两鼠穿墙”的问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”其大意为:“今有一堵墙厚五尺,两只老鼠从墙的两边沿一条直线相对打洞穿墙,大老鼠第一天打洞1尺,以后每天是前一天的2倍;小老鼠第一天也打洞1尺,以后每天是前一天的12.问大、小老鼠几天后相遇?各自打洞几尺?”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =_____尺.【答案】2n +1﹣21﹣n【分析】写出两只老鼠打洞的通项公式,利用分组求和即可得解. 【详解】根据题意大老鼠第n 天打洞12n na 尺,小老鼠第n 天打洞112n n b -⎛⎫= ⎪⎝⎭尺,所以11111242122n n n S --⎛⎫=+++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭111221112nn ⎛⎫- ⎪-⎝⎭=+--112122n n -⎛⎫=-+- ⎪⎝⎭1212n n -=+-故答案为:1212n n -+- 【点睛】此题考查等比数列的辨析,写出通项公式,根据求和公式求和,关键在于熟练掌握相关公式,涉及分组求和.15.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】n a =【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式. 【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j jOA B i i OA B j jS OA a SOA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得n a =故答案为: n a 【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.设等差数列{}n a 的前n 项的和为n S ,且462S =-,675S =-,求: (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前14项和.【答案】(1)323n a n =-;(2)147. 【分析】(1)由已知条件列出关于1,a d 的方程组,求出1,a d 可得到n a ;(2)由通项公式n a 先判断数列{}n a 中项的正负,然后再化简数列{}n a 中的项,即可求出结果. 【详解】解:(1)设等差数列{}n a 的公差为d ,依题意得11434622656752a d a d ⨯⎧+=-⎪⎪⎨⨯⎪+=-⎪⎩,解得120,3a d =-=,∴()2013323n a n n =-+-⨯=-; (2)∵323n a n =-,∴由0n a <得8n <,22(20323)3433432222n n n n n S n n -+--===-∴123141278141472a a a a a a a a a S S ++++=----+++=-223433431414772222⎛⎫=⨯-⨯-⨯-⨯ ⎪⎝⎭()()7424372143147=---=.【点睛】此题考查等差数列的基本量计算,考查计算能力,属于基础题. 18.数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+ (1)设1n n n b a a +=-,证明数列{}n b 是等差数列(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)证明过程见详解;(2)21n nS n =+. 【分析】(1)先化简得到()()2112n n n n a a a a +++---=即12n n b b ,再求得1211b a a =-=,最后判断数列{}n b 是以1为首项,以2为公差的等差数列.(2)先求出数列{}n b 的通项公式21n b n =-,再运用“裂项相消法”求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nS 即可. 【详解】解:(1)因为2122n n n a a a ++=-+,所以()()2112n n n n a a a a +++---= 因为1n n n b a a +=-,所以12nn b b ,且1211b a a =-=所以数列{}n b 是以1为首项,以2为公差的等差数列. (2)由(1)的()11221n b n n =+-⨯=-,所以()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以12233411111n n n S b b b b b b b b +=++++11111111111121323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111.22121n n n ⎛⎫=-= ⎪++⎝⎭ 【点睛】本题考查利用定义求等差数列的通项公式、根据递推关系判断数列是等差数列、根据“裂项相消法”求和,还考查了转化的数学思维方式,是基础题.19.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析 【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可;若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.【详解】 解:选①因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+,因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n nS ⎛⎫=-⎪⎝⎭, 且81814323n n S ⎛⎫=-<<⎪⎝⎭ 综上,n S 存在最大值,且最大值为4. 选②因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ),因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-,则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值. 【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 20.已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)()12326n n T n +=-⨯+【分析】(1)利用1(2)n n n a S S n -=-≥,11a S =,可得{}n a 为等比数列,利用等比数列的通项公式即可求得通项公式n a ;(2)利用错位相减法求和即可求n T . 【详解】(1)当1n =时,11122a S a ==-,解得12a =,当1n >时,由22n n S a =-可得1122n n S a --=-,1n >两式相减可得122n n n a a a -=-,即12nn a a -=, 所以{}n a 是以2为首项,以2为公比的等比数列,所以1222n nn a -=⋅=(2)由(1)(21)2nn b n =-⋅,23123252(21)2n n T n =⨯+⨯+⨯++-⋅,则23412123252(23)2(21)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,两式相减得2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯()112118(12)2(21)226(21)2232612n n n n n n n n -++++-=+--⨯=---⨯=--⋅--,所以()12326n n T n +=-⨯+.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a S n --≥⎧=⎨=⎩求解,考查学生的计算能力.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T . 【答案】(1)32n a n =-;(2)10002631T =. 【分析】(1)利用1n n n a S S -=-可求出; (2)根据数列特点采用分组求和法求解. 【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦,将1n =代入上式验证显然适合,所以32n a n =-. (2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题. 22.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设()1n n n b a =-,求1ni i b =∑.【答案】(1)32n a n =-;(2)13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【分析】(1)利用1a ,412a ,9a 成等比数列∴可得221132690a a d d +-=, 若选①:由535S =得:127a d +=,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选②:由13310a a +=可得152d a =-,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选③:由113n a n a +=+,可表示出419a a =+,9124a a =+,结合1a ,412a ,9a 成等比数列∴即可解出1a 和d 的值,即可求出{}n a 的通项公式; (2)由(1)可得()()132n n b n =--,分n 为奇数和偶数,利用并项求和即可求解.【详解】 {}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+, 整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得:2230d d --=,解得3d =或1d =-(舍) 所以11a =,所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得:2111762450a a -+=,即 ()()11117450a a --=解得:113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意; 若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得:113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩, 32n a n =-,(2)()()132n n b n =--, ()()()()()12311231111111n n n i n n i b a a a a a --==-+-+-+-+-∑ ()()()()114710135132n n n n -=-+-++--+-- 当n 为偶数时,13322n i i n n b ==⨯=∑, 当n 为奇数时,()11131322n i i n n b =--=-+-⨯=∑, 所以13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数. 【点睛】关键点点睛:本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1n n n b a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.。
《数列》单元测试题(含答案)
《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C)3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A)它的首项是2-,公差是3 (B )它的首项是2,公差是3-(C )它的首项是3-,公差是2 (D )它的首项是3,公差是2-3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )217 4.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S =5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A)0 (B )3- (C )3 (D )23 6.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B)170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D)81a a +和54a a +的大小关系不能由已知条件确定8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210 (B )220 (C )216 (D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )(A )289 (B )1024 (C )1225 (D )1378二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是 . 12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km高度的气温是8.5℃,5km 高度的气温是-17。
高中数列单元测试题及答案
高中数列单元测试题及答案一、选择题(每题3分,共15分)1. 等差数列的首项为a1,公差为d,第n项an可以表示为:A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 + n(n-1)d/2D. an = a1 - (n-1)d2. 等比数列的首项为a1,公比为q,第n项bn可以表示为:A. bn = a1 * q^(n-1)B. bn = a1 * q^nC. bn = a1 + (n-1)qD. bn = a1 - (n-1)q3. 已知数列{an}的前n项和为Sn,若Sn = 2n^2 - 3n + 5,求a5:A. 4B. 7C. 10D. 134. 一个等差数列的前5项和为75,且第5项为25,求首项a1:A. 5B. 10C. 15D. 205. 一个等比数列的前3项和为13,且第3项为8,求首项a1:A. 1C. 3D. 4二、填空题(每题4分,共20分)6. 等差数列2, 5, 8, 11, ...的第10项是________。
7. 等比数列3, 6, 12, 24, ...的第6项是________。
8. 若数列{an}的通项公式为an = 3n - 2,求第20项的值是________。
9. 若数列{bn}的前n项和公式为Sn = n^2 + 1,求第5项b5的值是________。
10. 若数列{cn}的前n项和公式为Sn = 2^n,求第3项c3的值是________。
三、解答题(每题10分,共30分)11. 已知等差数列的前10项和为S10 = 440,求首项a1和公差d。
12. 已知等比数列的前5项和为S5 = 61,且第5项为32,求首项a1和公比q。
13. 求数列1, 1/2, 1/3, 1/4, ...的前n项和公式。
四、综合题(每题25分,共25分)14. 某工厂生产的产品数量构成等差数列,第一年生产了100件,每年生产量增加50件。
等差数列单元测试题+答案 百度文库
一、等差数列选择题1.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .320 2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .143.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )A .6-B .2-C .1-D .04.定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为12n ,又2n n a b =,则1223910111b b b b b b +++=( ) A .817 B .1021C .1123 D .9195.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 6.在等差数列{a n }中,a 3+a 7=4,则必有( )A .a 5=4B .a 6=4C .a 5=2D .a 6=27.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29B .38C .40D .588.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83C .143D .1039.题目文件丢失!10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .15111.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.已知等差数列{}n a 的公差d 为正数,()()111,211,n n n a a a tn a t +=+=+为常数,则n a =( )A .21n -B .43n -C .54n -D .n 13.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )A .9B .12C .15D .1814.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .815.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10016.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10017.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2218.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .919.已知数列{x n }满足x 1=1,x 2=23,且11112n n nx x x -++=(n ≥2),则x n 等于( ) A .(23)n -1B .(23)n C .21n + D .12n + 20.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦22.已知数列{}n a 满足:12a =,当2n ≥时,)212n a =-,则关于数列{}n a 的说法正确的是 ( )A .27a =B .数列{}n a 为递增数列C .221n a n n =+-D .数列{}n a 为周期数列23.题目文件丢失!24.题目文件丢失!25.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+26.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6527.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 28.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d >B .0d <C .80a =D .n S 的最大值是8S或者9S29.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+30.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{}na n是递增数列 D .数列{}3n a nd +是递增数列【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。
(必考题)高中数学选修二第一单元《数列》测试卷(有答案解析)
一、选择题1.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .102.数列{}n a 中,112a =,()*,m n m n a a a m n +=∀∈N ,则6a =( ) A .116B .132C .164D .11283.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个4.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =5.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩6.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项 7.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2058.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201829.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207510.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .211.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知、、A B C 三点共线 (O 在该直线外),数列{}n a 是等差数列,S n 是数列{}n a 的前n 项和.若12012OA a OB a OC =⋅+⋅,则2012S =____________.16.等差数列{}n a 中,若15939a a a ++=,371127a a a ++=,则数列{}n a 前11项的和为__________. 17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.设数列{}n a 满足15a =,且对任意正整数n ,总有()()13344n n n a a a +++=+成立,则数列{}n a 的前2020项和为______.19.已知n S 为等差数列{}n a 的前n 项和,且675S S S >>,给出下列说法: ①6S 为n S 的最大值;②110S >;③120S <;④850S S ->.其中正确的是______.20.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________. 三、解答题21.已知{}n a 为等差数列,123,,a a a 分别是表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数都不在表的同一列.请从①1,②1,③1的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在.并在此存在的数列{}n a 中,试解答下列两个问题: (1)求数列{}n a 的通项公式;(2)设数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S ,若不等式4nn S a λ+≥对任意的*n ∈N 都成立,求实数λ的最小值.22.在各项均为正数的等比数列{}n a 中,1212a a +=,34108a a +=, (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n n b na =,求数列{}n b 的前n 项和n S .23.数列{}n a 各项均为正数,其前n 项和为n S ,且满足221n n n a S a -=(1)求数列{}n a 的通项公式; (2)设4241n n b S =-,求数列{}n b 的前n 项和nT ,并求使21(3)6>-n T m m 对所有的*n N ∈都成立的最大正整数m 的值.24.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <. 25.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由. 26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭, 又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.2.C解析:C 【分析】由,m n 的任意性,令1m =,可得112n n a a +=,即数列{}n a 是首项为12,公比为12得等比数列,即可求出答案. 【详解】由于*,m n ∀∈N ,有m n m n a a a +=,且112a =令1m =,则1112n n n a a a a +==,即数列{}n a 是首项为12,公比为12得等比数列,所以111111222n n n n a a q --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭,故6611264a ⎛⎫==⎪⎝⎭ 故选:C. 【点睛】关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由,m n 的任意性,令1m =,即可知数列{}n a 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.3.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使100n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.4.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.5.B解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.6.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.7.C解析:C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
数列单元能力测试(二)
数列单元能力测试(二) 命题人 蒋红伟一、选择题(5×10=50分)1.已知数列)13(2,,4,10,2-n ,则8是此数列的第( )项:A .10B .11C .12D .13 2.等比数列{}n a 满足6,152415=-=-a a a a ,则公比q 的值为( )A .2B .21C .1D .2或213.等差数列{a n } 中,已知a 3+a 4+a 9+a 14+a 15=10,则S 17=( )A .34B .68C .170D .514.一张报纸,其厚度为a ,面积为b ,将此报纸对折7次,这时报纸的厚度和面积分别是( )A .b a 81,8B .b a 641,64 C .b a 1281,128 D .b a 2561,256 5.已知数列{}n a 各项都为正数,并且有294a a ⋅=,则2122210l o gl o g l o g a a a+++的值为( )A .10B .20C .30D .406.已知数列33,2,+x x x 是一个等比数列中的连续三项,则x 的值为( )A .0或3B .0C .3D .27.已知122,62,32===cb a ,则c b a 、、是( )A .是等差数列但不是等比数列B .是等比数列但不是等差数列C .既是等差数列又是等比数列D .既不是等差数列也不是等比数列8.数列{}n a 的通项公式为12121,,n n na nb a a a =+=++⋅⋅⋅+则数列{}n b 的前n 项和为( ) A .12(2)n n -+ B .12n n -+ C .3232(1)(2)n n n +-++ D .32342(1)(2)n n n +-++ 9.(2010·海淀区)已知f (x )为偶函数,且f (2+x )=f (2-x ),当02≤≤-x 时,f (x )=2x ,若n ∈N *,a n =f (n ),则a 2010=( )A .2010B .4C .14D .-4 10.若方程250x x m -+=与2100x x n -+=的四个实根适当排列后,恰好组成一个首项为1的等比数列,则n m :的值为( )A .4B .2C .12D .14二、填空题(5×5=25分)11.一个皮球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,当它第10次着地时,其经过的路程为_____________________12.等比数列{}n a 中,,70,1333241=+=+a a a a 则这数列的公比为________ 13.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为___________14.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=__________15.已知n S 是等差数列{}n a 的前n 项和,且,55,1554==S a 则过点),4(),,3(43a Q a P 的直线的斜率是______三、解答题(75分)16.(13分)已知数列{}n a 的通项公式为n a n 225-=,求:(1)求证数列{}n a 为等差数列; (2)求数列{}n a 前n 项和的最大值.17.(13分)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数。
新人教版高中数学选修二第一单元《数列》测试卷(有答案解析)
一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.在各项为正的递增等比数列{}n a 中,12664a a a =,13521a a a ++=,则n a =( ) A .12n +B .12n -C .132n -⨯D .123n -⨯3.天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推. 在戊戌年你们来到成都七中,追逐那光荣的梦想. 在1980年庚申年,我国正式设立经济特区,请问:在100年后的2080年为( ) A .辛丑年B .庚子年C .己亥年D .戊戌年4.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .475.数列{}n a 满足1n n a a n +=+,且11a =,则8a =( ). A .29B .28C .27D .266.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n = C .13(1)n a n n =--D .{}3n S 是等比数列7.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .110248.已知数列{}n a 的前n 项和是n S ,前n 项的积是n T . ①若{}n a 是等差数列,则{}1n n a a ++是等差数列; ②若{}n a 是等比数列,则{}1n n a a ++是等比数列; ③若n S n ⎧⎫⎨⎬⎩⎭是等差数列,则{}n a 是等差数列; ④若{}n a 是等比数列,则()2n n T ⎧⎫⎨⎬⎩⎭是等比数列.其中正确命题的个数有( ) A .1个B .2个C .3个D .4个9.“跺积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、三角垛等.现有100根相同的圆柱形铅笔,某同学要将它们堆放成横截面为正三角形的垛,要求第一层为1根且从第二层起每一层比上一层多1根,并使得剩余的圆形铅笔根数最少,则剩余的铅笔的根数是( ) A .9B .10C .12D .1310.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]11.已知数列{}n a 的前n 项和为n S ,且21n nS a =-,则66(S a = ) A .6332B .3116C .12364D .12712812.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.已知数列{}n a 的前n 项和22n S n =,*n N ∈.求数列{}n a 的通项公式为______.设2(1)n n n n b a a =+-,求数列{}n b 的前2n 项和n T =______.14.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=______.15.已知数列{}n a 满足11a = 132n n a a +=+,则{}n a 的通项公式为__________________. 16.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.17.已知函数()1eex f x x=+(e 是自然对数的底数),设(),2020,1,2020,4041n f n n a f n n ≤⎧⎪=⎨⎛⎫> ⎪⎪-⎝⎭⎩,*n N ∈,数列{}n a 的前n 项和为n S ,则4039S 的值是______.18.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.19.等比数列{}n a 中,11a =,且2436a a a +=,则5a =________. 20.数列{}n a 中,n S 为{}n a 的前n 项和,()()*1n n n n a a a n N+-=∈,且3aπ=,则4tan S 等于______.三、解答题21.设等差数列}{n a 的公差为0d >,n *∈N .且满足3616a a +=,4563a a ⋅=. (1)求数列}{n a 的通项公式. (2)记数列11n n n b a a +=,求}{n b 的前n 项和n T . 22.已知数列{}n a 是递增的等比数列且149a a +=,238a a =,设n S 是数列{}n a 的前n 项和,(1)求n a 和n S ; (2)数列11n n n a S S ++⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,若不等式n T λ≤对任意的*n N ∈恒成立,求实数λ的最大值.23.已知等差数列{}n a 的前n 项和为n S ,若2512a a +=,424S S =. (1)求数列{}n a 的通项公式n a 及n S ; (2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .24.已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,28b =,1334b b -=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T ≥,若存在,求出k 的最小值;若不存在,说明理由.从①420S =,②332S a =,③3423a a b -=这三个条件中任选一个补充到上面问题中并作答.(注:如果选择多个条件分别解答,按第一个解答计分.)25.已知数列{}n a 的前n 项和为n S ,且对任意*n N ∈,n a ,n S ,2n 成等差数列. (1)求数列{}n a 的通项公式;(2)设数列n b 是首项为1,公比为q 的正项等比数列. (i )求数列{}n b 的前n 项和n T .(ii )若数列1{2}n n b a +-为单调递增数列,求q 的取值范围.26.已知正项等比数列{}n a 满足2139nn a +=⋅,3log n n b a =,且n b ,n c ,4n +成等差数列.(1)求数列{}n c 的通项公式;(2)求数列()1n n c n b ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前100项和100T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n na a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n ⎛⎫=- ⎪⎝⎭.故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.B解析:B 【分析】设其公比为q ,由等比数列通项公式得34a =,进而得2333221a a a q q++=,解得2q =±或12q =±,再根据数列单调性即可得2q ,进而得12n na【详解】{}n a 为等比数列,设其公比为q ,()3362312611364a a a a q a q a ∴====,则34a =,13521a a a ∴++=,2333221a a a q q∴++=, 即2244421q q++=, 解得2q =±或12q =±, 又{}n a 各项为正且递增,2q ∴=,3313422n n n n a a q ---∴==⨯=.故选:B . 【点睛】本题解题的关键是先根据题意得34a =,进而将13521a a a ++=转化为2333221a a a q q++=求q ,考查运算求解能力,是中档题. 3.B解析:B 【分析】由题意可得:数列天干是以10为公差的等差数列,地支是以12为公差的等差数列,以1980年的天干和地支分别为首项,即可求出答案. 【详解】由题意可得:数列天干是以10为公差的等差数列, 地支是以12为公差的等差数列,从1980年到2080年经过100年,且1980年为庚申年, 以1980年的天干和地支分别为首项, 则1001010÷=余数0,则2080年天干为庚,100128÷=余数为4,则2080年地支为子, 所以2080年为庚子年. 故选:B 【点睛】关键点点睛:本题的关键点是由题意得出数列天干是以10为公差的等差数列,地支是以12为公差的等差数列,1980年为庚申年,计算1001010÷=余数0,则2080年天干为庚,100128÷=余数为4,则2080年地支为子,所以2080年为庚子年. 4.B解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.5.A解析:A 【分析】由已知得11n n n a a -=--,运用叠加法可得选项. 【详解】 解:由题意知:1n n a a n +=+,11n n a a n -∴-=-,即:211a a -=,322a a -=,,11n n n a a -=--,把上述所有式子左右叠加一起得:(1)12n n n a -=+, 88(81)1292a ⨯-∴=+=. 故选:A. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式1(1)n a a n d =+-,或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a ,是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n −1项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n −1项商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且k ≠1,k ≠0).一般化方法:设()1n n a m k a m -+=+,得到()11b b k m m k =-=-,, 可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于112(),n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,m ≠0),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;(7)1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用(6)中的方法求解即可.6.C解析:C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;1113S a ==,113S =,公差3d =,所以133(1)3n n n S =+-=,所以13n S n =,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错.7.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n n a a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解.8.D解析:D 【分析】结合等比数列、等差数列的定义,对四个命题逐个分析,可选出答案. 【详解】对于①,设等差数列{}n a 的公差为d ,则()()121n n n n a a a a ++++-+=()()1212n n n n a a a a d +++-+-=为定值,故{}1n n a a ++是等差数列,即①正确;对于②,设等比数列{}n a 的公比为q ,则12111n n n n n n n n a a a q a qq a a a a +++++++==++为定值,故{}1n n a a ++是等比数列,即②正确;对于③,等差数列n S n ⎧⎫⎨⎬⎩⎭的首项为111S a =,设公差为d ,则数列n S n ⎧⎫⎨⎬⎩⎭的通项公式为nS n=()11a n d +-,所以()11n S na n n d =+-, 则2n ≥时,1n n n a S S -=-()()()()111112na n n d n a n n d =+---+--⎡⎤⎣⎦()121a n d =+-,由1a 符合()121n a a n d =+-,可知{}n a 的通项公式为()121n a a n d =+-,则()()11121222n n a a a n d a n d d -⎡⎤-=+--+-=⎣⎦为定值,即{}n a 是等差数列,故③正确;对于④,设等比数列{}n a 的公比为q ,则()()()211231111n n n T a a a a a a q a q a q -===()12311n n a q ++++-()121n n n a q-=,所以()()12122211n n nnn n n T a q a q --⎡⎤==⎢⎥⎢⎥⎣⎦, 则()()2112221211n n n n n n a q q a q T T ----==为定值,即()2n n T ⎧⎫⎨⎬⎩⎭是等比数列,故④正确. 所以正确命题的个数有4个. 故选:D. 【点睛】本题考查等比数列、等差数列的判定,考查学生的推理能力,属于中档题.9.A解析:A 【分析】设只能堆放n 层,由已知得从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +,根据等差数列的前n 项和公式可求得选项. 【详解】设只能堆放n 层,则从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +, 于是()11002n n +≤,且()110012n n n +-<+,解得13n =,剩余的根数为131410092⨯-=. 故选:A. 【点睛】 本题考查数列的实际应用,关键在于将生活中的数据,转化为数列中的基本量,属于中档题.10.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞)故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.11.A解析:A 【分析】利用数列递推关系:1n =时,1121a a =-,解得1a ;2n 时,1n n n a S S -=-.再利用等比数列的通项公式与求和公式即可得出. 【详解】21n n S a =-,1n ∴=时,1121a a =-,解得11a =;2n 时,1121(21)n n n n n a S S a a --=-=---,化为:12n n a a -=.∴数列{}n a 是等比数列,公比为2.56232a ∴==,66216321S -==-.则666332S a =. 故选:A . 【点睛】本题考查数列递推关系、等比数列的通项公式与求和公式,考查推理能力与计算能力,属于中档题.12.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
数列单元测试题答案
数 列 单 元 测 试 卷(时间:120分钟 满分:150分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=( )A .7B .8C .15D .162.设{a n }是公差为-2的等差数列,若a 1+a 4+a 7+…+a 97=50,则a 3+a 6+a 9+…+a 99等于( )A .82B .-82C .132D .-1323.已知数列{a n }中a 1=1以后各项由公式a n =a n -1+1n (n -1)(n ≥2)给出,则a 4=( )A.74 B .-74 C.47D .-474.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为( )A .4 B.14 C .-4 D .-145.已知-9,a 1,a 2,-1成等差数列,-9,b 1,b 2,b 3,-1成等比数列,则(a 2-a 1)b 2等于( )A.98 B .-98C .8D .-8 6.等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-667.已知等差数列{a n }中,|a 4|=|a 8|,公差d <0;S n 是数列{a n }的前n 项和,则( )A .S 5>S 6B .S 5<S 6C .S 6=0D .S 5=S 68.已知数列{a n }中,a 3=2,a 7=1,若⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 11=( )A .0 B.12 C.23D .29.设M ⎝⎛⎭⎫cos π3x +cos π4x ,sin π3x +sin π4x (x ∈R )为坐标平面上一点,记f (x )=|OM →|2-2,且f (x )的图象与射线y =0(x ≥0)交点的横坐标由小到大依次组成数列{a n },则|a n +3-a n |=( )A .24πB .36πC .24D .36二、填空题:10.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为 。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列单元测试卷注意事项:1. 本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分.2. 答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置第I 卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有 项是符合题目要求的. 1.数列3,5,9,17,33 ,…的通项公式 a n 等于()A. 2nB . 2n + 1C . 2n — 1D. 2n +12•下列四个数列中,既是无穷数列又是递增数列的是B. — 1,2,一 3,4 ,1 1 12,一 4,一 8,D. 1,2, 3,…,n3..记等差数列的前n 项和为S,若a=1/2 , S = 20,则该数列的公差d = __________________ .( ________________________________________________________________________ ) A. 2B.3 C . 6 D . 74. 在数列{a n }中,a 1 = 2,2 a n +1 — 2a n = 1,贝U a 101 的值为( )A. 49B.50 C. 51 D . 525.等差数列{a n }的公差不为零,首项 a 1= 1,a 2是日和a 5的等比中项,则数列的前 10项之和是( )A. 90B.100 C . 145D. 1906.公比为2的等比数1 13,4,A.1列{a n}的各项都是正数,且a3an= 16,则a5=()A. 1 B.2 C27. 等差数列{a n}中,a2+ a5+ a8= 9,那么关于x 的方程:x + (a4 + a6)x + 10= 0( )B. 有两个相等实根1&已知数列{a n}中,a3= 2, a7 = 1,又数列—一是等差数列,则an等于()1十a n1 2A. 0B. -C. - D . - 12 39.等比数列{a n}的通项为a n = 2・3n-1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n},那么162是新数列{b n}的()A.第5项B. 第12项C .第13项 D.第6项10.设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则亞]+3% +a ba + ■+a b lo =A. 1 033B.1 034 C . 2 05711.设S n为等差数列a n的前n项和,且a1 1, S7 28 .记b n超过x的最大整数,如0.9 0, lg99 1.则bn的值为()A.11B.1C.约等于1D.2形,如下图所示:则第七个三角形数是()A无实根C. 有两个不等实根D. 不能确定有无实根D. 2 058Iga n,其中x表示不12.我们把1,3,6,10,15 ,…这些数叫做三角形数, 因为这些数目的点可以排成一个正三角A. 27B.28 C 29 D . 30第II卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13. ______________________________________________________________ 若数列{刘满足:a i= 1, a n+1 = 2a n(n€ N),则前8项的和S = _______________________ (用数字作答).14. __________________________________________________ 数列{a n}满足a i= 1, a n= a n—1 + n(n》2),贝U a s= __________________________________ .15. 已知数列{a n}的前n项和S= —2n2+n+ 2.则{a n}的通项公式a n= _________16. 在等差数列{a n}中,其前n项的和为S,且S6V S7, S7> S8,有下列四个命题:①此数列的公差d v 0;②S9 一定小于S6;③a7是各项中最大的一项;④S7 - 1定是S n中的最大项.其中正确的命题是__________ .(填入所有正确命题的序号)三•解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17. (12分)(1)(全国卷)记S为等差数列{a n}的前n项和.若a4+a5=24,S6=48,求S n1⑵已知{b n}是各项都是正数的等比数列,若b1= 1,且b2,尹3,2b1成等差数列,求数列{b n}的通项公式.18. (12分)等比数列{a n}中,已知a1 = 2, a4 = 16,(1)求数列{a n}的通项公式;(2)若a3, a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.19. (12 分)已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a 3,a 1成等比数列,求数列{|a n|}的前10项和.20. (12 分)数列{a n }的前 n 项和为 S ,数列{b n }中,b i = a , b n = a n 一a n —1(n 》2),若 a n + S =n , C n = a n 一 1.(1)求证:数列{C n }是等比数列;⑵求数列{ b n }的通项公式.21. (12 分)(全国卷)设数列 a n 满足二 +3二+…+ (2n -1 ) -:•: =2 n .(1 )求a n 的通项公式;n + 12 a n *22. (12 分)数列{a n }满足 a 1= 1, a n +1= n (n € N ).a n + 2 (1)证明:数列{彳}是等差数列; ⑵求数列{a n }的通项公式a n ;(3) 设b n = n ( n + 1) a n ,求数列{ b n }的前n 项和 S(2)求数列n— 的前n 项和.2n 1数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分) 1.数列3,5,9,17,33 ,…的通项公式 a n 等于()A. 2nB. 2n + 1 C . 2n -1D. 2n +1解析:选B 由于3 = 2+ 1,5 = 22 + 1,9 = 23 + 1,…,所以通项公式是 a n = 2“+ 1,故选B.2•下列四个数列中,既是无穷数列又是递增数列的是3. _____________________________________________________________________ 记等差数列的前 n 项和为S,若a 1=1/2 , S = 20,则该数列的公差 d = __________________________ .( ) A. 2B.3 C . 6 D . 7解析:选 B S 4— $ = a 3 + a 4= 20 — 4 = 16,a 3 + a 4— S = (a 3— aj + (a 4—比)=4d = 16 — 4= 12, d = 3.4.在数列{a» 中,a 1 = 2,2 a n +1 — 2a n = 1,贝U a 101 的值为(解析:选 D •/ 2a n +1— 2a n = 1,a n + 1 — a n = 2 ,1 •••数列{a n }是首项a 1= 2,公差d = §的等差数列, 1• - a 〔01 = 2 + 2(101 — 1) = 52.5.等差数列{a n }的公差不为零,首项 a 1= 1, a 2是ai 和a 5的等比中项,则数列的前10项之1 13,4,C. — 1, 1 12,—4,解析:选C A 为递减数列, B 为摆动数列,D 为有穷数列.A. 49B.50 C 51 D . 52A.1 8,D 1 , 2, 3,…,和是()A. 90B.100 C 145 D. 190解析:选B 设公差为d , 2•••(1 + d ) = 1x (1 + 4d ), •/ d * 0,•-d = 2,从而 S o = 100.6.公比为2的等比数列{a n }的各项都是正数,且 a 3a ii = 16,则a 5=( )A. 1B.2 C . 4 D . 8解析:选A 因为a 3an = a 1 2,又数列{a n }的各项都是正数,所以解得 a ?= 4,由a ?= a 5・22 =4a 5,求得 a 5= 1.7. 等差数列{a n }中,a 2+ a 5+ a s = 9,那么关于 x 的方程:x + (a 4 + a 6)x + 10= 0( )A.无实根B.有两个相等实根C.有两个不等实根 D.不能确定有无实根解析:选 A 由于 a 4 + a 6= a 2+ a s = 2a 5,即卩 3a 5= 9, • a 5= 3,方程为x 2+6x + 10= 0,无实数解.1&已知数列{a n }中,a 3= 2,a 7 = 1,又数列是等差数列,则 乩等于()1十a n1 2A. 0B.C. 3 D . — 11 1 2• bn = b 3 + (11 — 3)d = 3十8X 24= 3, 3 1即得 1 + an = , an =9•等比数列{a n }的通项为a n = 2・3n —:现把每相邻两项之间都插入两个数,构成一个新的 数列{ b n },那么162是新数列{ b n }的( )A.第5项B. 第12项 C .第13项D.第6项1 11 11解析:选B 设数列{ b n }的通项b n =',因{ b n }为等差数列,匕3= = ~,匕7 = =~ 1 十 a n 1 十 a 3 31 十 a 7 2公差d =1 24,解析:选C 162是数列{a n}的第5项,则它是新数列{b n}的第5+ (5 —1) X 2= 13项.10•设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则亚]+*% +a b a+ ■■-+ a b lo =A . 1 033 B.1 034 C . 2 057 D. 2 058解析:选A 由已知可得a n= n+ 1, b n= 2n T,于是ab n= b n+ 1 , 因此並】+並卫+电工+…十业1口=0 1 9(b i+ 1) + (b2+ 1) +•••+ (b°+ 1) = b+ b2+-+ b10 +10= 2 + 2 +•••+ 2 + 10101 —2= ■+ 10 = 1 033.1-211.设S n为等差数列a n的前n项和,且31 1,S7 28 .记b n解得d 1.所以{a n}的通项公式为a n n.bn=[lg11 ]=1,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是a3 = 4, a5一a4= 5,法二:由图可知第n个三角形数为-―吐^lg a n,其中x表示不超过X的最大整数,如0.90 , lg99 1.则bn的值为(A.11B.1C. 约等于1D.2解析:设{a n}的公差为d,据已知有1 x 721d 28,12.我们把1,3,6,10,15A. 27B.28 C .29 D . 30解析:选B法一::a1 = 1, a2 = 3, a3= 6, a4= 10, a5 = 15, a2 —a1 = 2, a3 —a2 = 3, a4 —…a6 —a5= 6, a6= 21, a^ —a6 = 7, a7= 28.28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a }满足:a i = 1, a n +1 = 2a n (n € N),则前8项的和S 8 = ____________ (用数字作答). 解析:由a i = 1, a n +i = 2a n ( n € N)知{a n }是以1为首项,以2为公比的等比数列,由通项公答案:25514. 数列{a n }满足 a 1= 1, a n = a n -1 + n (n 》2),贝U a s = __________ .解析:由 a n = a n -1+ n (n 》2),得 a n — a n -1 = n .贝U a 2-a 1= 2, a 3-a 2 = 3, a 4-a 3= 4, a s -a 4= 5,把各式相加,得 a s - a 1= 2+ 3+ 4 + 5= 14,•- a 5= 14 + a 1 = 14+ 1 = 15.答案:15215. 已知数列{a n }的前n 项和S n =- 2n +n + 2.则{ a n }的通项公式 a n = ______[解]•/ S n =- 2n + n + 2,当 n 》2 时,S T = - 2( n - 1) + ( n - 1) + 2=-2n 2+ 5n — 1,--a n S n S n - 1=(-2n 2 + n + 2) - ( - 2n 2+ 5n - 1)=-4n + 3.又 a 1 = Si = 1,不满足 a n =- 4n + 3,•数列{a n }的通项公式是1, n = 1,a n =-4n + 3, n 》2.16. 在等差数列{a n }中,其前n 项的和为S n ,且S s < S, S> S,有下列四个命题: ① 此数列的公差d < 0;a 7= 7X8 ~2~式及前n 项和公式知 a 1 S s = 1-q 8 1 • 1- 281 -2 =255.28.②S9 一定小于S6;③a7是各项中最大的一项;④S7 - 1定是S n中的最大项.其中正确的命题是__________ .(填入所有正确命题的序号)解析:T S7> S6, 即卩S6< S6+ a7,••• a?> 0.同理可知a8< 0.--d= a8—a7< 0.又T S9—S6= a7 + a8 + a9 = 3a8< 0,•- S9< S6.•••数列{a n}为递减数列,且a7>0, a8<0,•可知S7为S n中的最大项.答案:①②④三、解答题(共4小题,共50分)17. (12分)⑴(全国卷)记S为等差数列{a n}的前n项和.若玄4+甘24$6=48,求S n1⑵已知{b n}是各项都是正数的等比数列,若b i= 1,且b2, 2b3,2b i成等差数列,求数列{b n}的通项公式.解:(1)设等差数列首项为a1,公差为d,则a4+a s=2a1+7d=24,①S6=6a1+ d=6a1+15d=48,②.2由①②得d=4.a 1 =-22S=-2n+n(n-1)x 4/2=2n -4n⑵由题意可设公比为q,则q>0,1由b1 = 1,且b2, ^b3,2b1成等差数列得b3= b2 + 2b,•q2= 2 + q,解得q= 2或q=—1(舍去),故数列{b n}的通项公式为b n= 1X2n—1= 2n—1.18. (12分)等比数列{a n}中,已知a1 = 2, a4 = 16,(1)求数列{a n}的通项公式;(2)若a3, a s分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S.解:(1)设{a n}的公比为q,由已知得16= 2q3,解得q= 2,•a n= 2.(2) 由(1)得a3= 8, a s= 32,则 b 3 = 8, b 5= 32.设{b n }的公差为d ,b i + 2d = 8, 则有b i + 4d = 32,b i =— 16,解得d = 12.从 b n =— 16+ 12( n — 1) = 12n — 28,所以数列{b n }的前n 项和c n — 16+ 12 n — 28 2S= = 6n — 22 n.19. (12 分)已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;⑵ 若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 贝U a 2=a 1+d,a 3=a 1+2d,所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5, ^或 a n =-4+3(n-1)=3n-7.故 a n =-3n+5,或 a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件记数列{|a n |}的前n 项和为S.Si 0=|a 1 |+|a 2|+|a 3|+|a 4|+ ......... +|a 1o |=4+1+(3 X 3-7)+(3 X 4-7)+ ……+(3 X 10-7)=5+[2 X 8+8 X 7 X 3/2]=10520. (12 分)数列{a n }的前 n 项和为 S,数列{b n }中,b = a, b n = a n — a n —1( n 》2),若 a n + S =n , C n = a n — 1.(1)求证:数列{C n }是等比数列;⑵求数列{ b n }的通项公式.故 |a n |=|3n-7|= -3w +7,11 = J\ 3?1-7,71 > 3. 由题意得解:⑴ 证明:T a i = S i , a n + S n = n ①,1a i + S = i ,得 a i = 又 a n +1 + S+1 = n + i ②,①②两式相减得 2( a n +1 — i) = a n — i ,故数列{6}是等比数列. 1(2) ••• c i = a i — 1 = — 2,a n = C n + 1 = 1 — 2^1又 b i = a i = 2,所以b n = 2n .21. (12分)(全国卷)设数列 a n 满足匚+3厂+…+ (2n -1 V . =2 n . (1 )求a n 的通项公式;解:(1)因为e |+3.;:+…+ (2n -1 )二、=2n ,故当 n 》2 时,■- _+3『:—(—'-3 ) - - _ =2 (n -1 )两式相减得(2n -1 )『=2所以‘‘I. ” (n 》2)又因题设可得 匚=2.从而{”加.}的通项公式为= ---------------- .dL 旳I —J-(2)记{ }的前n 项和为即 1 2, 也即6+1 (2)求数列n — 的前n 项和. 2n 1故当n 》2时,1 1 n n .2 2由("知一一=———-22. (12 分)数列{a n }满足 a i = 1, a n +1 = — (n € N).a n + 2 (1)证明:数列 ©是等差数列; ⑵求数列{a n }的通项公式a n ;(3)设b n = n ( n + 1) a n ,求数列{ b n }的前n 项和S.n + 1 n n +1 n 2 2 2 2即——=-+ 1,即——一一=1. a n + 1 a n a n +1 a n2•••数列{#是公差为1的等差数列.(3) 由(2)知 b n = n ・2n .S= 1 • 2+ 2 ・2 3+ 3 ・2 4+-+ n ・2 n , 2S = 1,+ 2 ・2 3+…+ (n — 1)・2 n + n ・2 相减得 —S= 2 + 22+ 23+…+ 2n — n ・2 n + 1 n + 1=2 + — 2 — n ・2 + ,n + 1 • S= (n — 1)・2+ 2.3n 2(2)由(1)知 = + (n — 1) x 1= n +1, a n a 1则n + 12 a n 解:(1)证明:由已知可得 ch + 1 a n 2 +1 a n + 2'…a n = 2nn + 1。