博弈论第三章知识题
博弈论各章节课后习题答案 (3)
E( π 2 ) = θq2( aH − q1H − q2 − c2 ) + (1−θ )q2( aL − q1L − q2 − c2 )
由此得:
1 q2 = 2 [θaH + (1−θ )aL − (θq1H + (1−θ )q1L ) − c2 ]
在均衡时,q1,q2 应满足
1
⎪⎪⎧q1
=
1 2
+ c1
− 2c2
]
企业 2 的策略为:
q*2
=
1 3
[
θaH
+ (1− θ
)aL
+ c1
− 2c2
]
因此博弈的贝叶斯纳什均衡是:当 a=aH 时,企业 1 生产 q1*H ;当 a=aL 时,企业 1 生产 q1*L ,
企业 2 生产 q*2 。
5. 在下面的静态贝叶斯博弈中,求出所有的纯策略贝叶斯纳什均衡。 (1) 自然决定收益情况是由博弈 1 给出,还是由博弈 2 给出,选择每一博弈的概率相等; (2) 局中人 1 了解到自然选择了博弈 1,还是选择了博弈 2,但局中人 2 不知道; (3) 局中人 1 选择行动 T 或 B,同时局中人 2 选择行动 L 或 R; (4) 根据自然选择的博弈,两局中人得到相应的收益。
的定价,qi是企业i的需求量。假设企业生产没有固定成本,并且边际成本为常数c,c<a.假定博弃 重复无穷多次,每次的价格都立即被观察到,企业使用触发策略。求使垄断价格可以作为完美 均衡结果出现的最低贴现因子δ,并解释δ与n的关系。
分以下几个步骤进行。
1)计算纳什均衡 当企业 i 选择价格 pi,其它企业选择价格 pj(j=1,2,…,n,j≠i)时,企业 i 的利润为: πi = (pi − c)qi = (pi − c)(a − pi + b(p1 + p2 + ⋯ + pi−1 + pi+1 + ⋯ + pn )) ,i=1,2,…,n
博弈论 第 三 章 完全信息动态博弈讲解
房地产开发博弈
开发
A hA(1) 不开发
h表示信息集
N hN(1)
需求大
需求小
N hN(2)
需求大
需求小
B hB(1)
开发
不开发
B hB(2)
B hB(3)
开发
不开发 开发 不开发 开发
B hB(4)
不开发
(4,4)
(8,0) (-3,-3)
(1,0) (0,8) (0,0) (0,1) 单 位:百万元
定 义 一 个 展 开 式 博 弈 的 子 博 弈G 由 一 个 决 策 结x 和 所 有 该 决 策 结 的 后继结T(x)( 包 括终点结0 组 成, 它 满 足 下 列 条 件:⑴x 是 一 个 单 点 信 息 结即h(x)={x};⑵对于所有的 x′∈T(x),如果x″∈h(x′),则x″∈T(x)。
(3)
N
1/3
2/3
1
Y1
z1
1
x1
w1
(2,6) (5,6)
2
2
a2 (9,0)
b2 (0,3)
a2 (9,5)
b2 (0,3)
3.3 子 博 弈 与 子 博 弈 完 美
Nash 均衡在原则上适用所有的博弈,但对于预 测 参与人的行为来说,Nash均衡可能并不是 一个 合理的预测, 如房地产博弈:
A
开发
不开 发
A
开发
不开发
B
B
B
B
开发 不开发 开发 不开发 开发 不开发 开发
不开发
有了信息集的概念, 展开式表示也可以用来表 示静态博弈, 如“囚徒的困境 ”博弈可以表 示为:
1
坦白
2
博弈论 第三章 市场竞争博弈
海萨尼简介
• 约翰· 海萨尼于1920年5月出生于匈牙利布达佩斯。海萨 尼1944年于布达佩斯大学获得药理学学士学位。于 1947年获得哲学博士学位。海萨尼具有犹太血统,在第 二次世界大战期间,海萨尼险些被纳粹送往奥地利集中 营。1958年,海萨尼前往美国斯坦福大学,并于1959 年获得斯坦福大学经济学博士学位。1964年,海萨尼开 始在美国伯克利大学任教,直至1990年退休。晚年的海 萨尼受阿兹海默症困扰,于2000年去世。 • 海萨尼对博弈理论最大的突破在于对不完全信息博弈的 研究。海萨尼将博弈参与者分成一些类型,博弈参与者 知道自己的类型,不知道博弈对手的类型,但知道博弈 对手的类型分布。在此基础上,博弈参与者可以形成对 博弈对手类型概率分布的先验判断,进而利用贝叶斯统 计理论对不完全信息博弈进行分析研究。
战略式表达 父亲
一刀两断 同意和好
女 儿
分手 不分手
1,0 0,0
2,2
1,1
扩展式表达
父女威胁
和好
(2,2)
不分手 father 不和好 girl 和好 分手 father
不和好
(1,0) (1,1) (0,0)
扩展式表达
父女威胁
分手 1.声称策略: 威胁是否可 信?
(0,0)
一刀两断
father 和好
广告费100万广告费20万广告费100广告费20广告博傻偏离最优广告费用的恶果广告竞争什么企业需要更多的广告名称广告费用占销售额的比例名称广告费用占销售额的比例农产品098化妆品15食盐001酒类10制糖业019药品031医疗器15体育用137洗涤剂洗发水12石油088服装饮料20鞋子不同产品广告费用占销售额的比例调查广告竞争什么企业需要更多的广告名称广告费用占销售额的比例名称广告费用占销售额的比例农产品098化妆品15食盐001酒类10制糖业019药品031医疗器15体育用137洗涤剂洗发水12石油088服装饮料20鞋子不同产品广告费用占销售额的比例调查1
第三章扩展型博弈论
如果甲先行动,但在博弈开始前商铺主乙有一次行动A的机会, 请利用子博弈完美纳什均衡概念分析下述两种情况下的博弈结果
(1)A:商铺主乙逢人便说自己一定要进货,无论对方如何行 动他都不会改变这个决定;
(2)A:商铺主乙与某个嘲笑他说大话的第三者丙打赌:如果 自己到时不进货,向丙支付1500元;如果自己到时候进货,丙 向他支付100元。并且,乙将这个赌局通知甲。
甲
甲
进 乙
不进 乙
进 乙
不进 乙
进
不进 进
不 进
进
不进 进
不 进
(-1000,-1000) (0,1000) (0,0)(-1000,-900)
(0,1100)(0,-1500)
(1000,0)
(1000,-1500)
作业: 阅读“蜈蚣博弈”
拍卖人拿出一张10元钞票,请大家给这张
钞票开价,无底价,竞拍者可无限制的轮 流叫价,每次叫价的增幅以5毛为单位,出 价最高者可以得到这张10元钞票,但出价
即每阶段都选“不坦白”,A总得益贴现为
2 ( 2 ) ( 2 ) 2 .. . 2
当
1(6) 2 1 1
1 时,A选“不坦白”是最优的,即
当
1 5
时,A在没有人先选“坦白”时选“不坦白”是最优的,并且A 在之后每阶段都选“不坦白”是最优的选择。
乙
甲
坦白 不坦白
坦白 -6,-6 -1,-8
最高和次高者都要向拍卖人支付出价数目 的费用。
——苏比克拍卖模型
第四节
重复博弈
重复博弈
单次博弈重复进行构成的博弈过程,但博 弈方的行为和博弈结果不一定是单次博弈 的简单重复,其中,单次博弈可称为阶段 博弈
博弈论课后习题
Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。
博弈论第三章习题
问题1:如果开金矿博弈中第三阶段乙选择打官司后的结果尚不能肯定,即下图中a 、b 数值不确定。
试讨论本博弈有哪几种可能的结果。
如果本博弈中的“威胁”和“承诺”是可信的,a 或b 应满足什么条件?①0a <,不借—不分—不打;②01a <<,且2b >,借—不分—打;③1a >,且2b >,借—不分—打(,)a b ;④0a >,且2b <,借—分—(2,2)问题2:三寡头市场需求函数Q P -=100,其中Q 是三个厂商的产量之和,并且已知三个厂商都有常数边际成本2而无固定成本。
如果厂商1和厂商2同时决定产量,厂商3根据厂商1和厂商2的产量决策,问它们各自的产量和利润是多少?1123111231(100)2(98)q q q q q q q q q π=----=---2123221232(100)2(98)q q q q q q q q q π=----=---3123331233(100)2(98)q q q q q q q q q π=----=---331230,(98)/2q q q q π∂=⇒=--∂ 代入,11212122(98)/2,(98)/2q q q q q q ππ=--=--(a ,b ) (0,4)12120,0q q ππ∂∂==∂∂,得***12398/3,49/3q q q ===***1234802/9,2401/9πππ===。
问题3:设两个博弈方之间的三阶段动态博弈如下图所示。
(1)若a 和b 分别等于100和150,该博弈的子博弈完美纳什均衡是什么?(2)T N L --是否可能成为该博弈的子博弈完美纳什均衡路径,为什么?(3)在什么情况下博弈方2会获得300单位或更高的得益?(1)博弈方1在第一阶段选择R ,在第三阶段选择S ,博弈方2在第二阶段选择M 。
(2)不可能。
T N L --带来的利益50明显小于博弈方1在第一阶段R 的得益300;无论a 和b 是什么数值,该路径都不能构成Nash 均衡,不能成为子博弈完美Nash 均衡。
博弈论第三章混合策略纳什均衡.
§剪刀、石头、布的游戏
• 因此,秘决在于—— • 自己的策略选择不能预先被对手方知道或猜 测到,在该博弈的多次重复中,博弈方一定 要避免自己的选择具有规律性; • 观察对手方策略选择是否具有规律或者偏好, 预先猜测对手策略,从而采用针对性策略赢 得这个博弈。
§ 第三章 混合策略纳什均衡
• 纯策略(pure strategies):如果一个策略规 定参与人在一个给定的信息情况下只选择一 种特定的行动。 • 混合策略(mixed strategies):如果一个策 略规定参与人在给定的信息情况下,以某种 概率分布随机地选择不同的行动。 • 在静态博弈里,纯策略等价于特定的行动, 混合策略是不同行动之间的随机选择。
支付等值法?政府选择救济策略?政府选择不救济策略1???1??1????4113?????????gv期望效用0??????????1??????100gv期望效用如果一个混合策略是流浪汉的最优选择那一定意味着政府在救济与不救济之间是无差异的即
§ 第三章 混合策略纳什均衡
• • • • • • • 混合策略与期望支付 计算混合策略纳什均衡的三种方法 支付最大值法 支付等值法 反应函数法 多重纳什均衡及其甄别 混合博弈在现实经济中的运用案例
策略 得益 博弈方1 (0.8,0.2) 2.6 博弈方2 (0.8,0.2) 2.6
夫妻之争的混合策略纳什均衡
看看这个博弈有几个均衡?
丈夫 时装 时装 妻 子 2, 1 足球 0, 0
足球
0, 0
1, 3
夫妻之争
存在两个纯策略均衡
丈夫 时装 时装 妻 子 2, 1 足球 0, 0
• 在这个博弈中,检查成本C越高,纳税人逃税的概率 越大;罚款F越高,纳税人逃税的概率越小;应纳税 款越大,纳税人逃税的概率反而越小。 • 应纳税款越大,纳税人逃税的概率反而越小?这 跟我们的假设有关,假定一检查逃税行为就会被 发现;假定检查成本一定,而不是跟应交税额有 关,即应交税额越大,检查成本越高;不考虑纳 税人在应交税额高时贿赂税务人员的积极性越高 的情况。如果放开这些假设,其结果就有可能与 现实更贴近。纳税税款越高,纳税人逃税的概率 越高。
混合策略纳什均衡
博弈论 第三章 混合策略纳什均衡
r*=R(q)
反应对应曲线
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
再看乙的最优反应,记为q*=R(r): 观察π乙(p甲, p乙)= 2q(2r-1)-(2r-1)
若r 1 / 2 2r 1 0, q越大越好 1, q* R( r ) [0,1], 若r 1 / 2 2r 1 0,无论q选什么都无影响 0, 若r 1 / 2 2r 1 0, q越小越好
博弈论 第三章 混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
先看甲的最优反应,记为r*=R(q): 观察π甲(p甲, p乙)= 2r(1-2q)+(2q-1)
若q 1 / 2 1 2q 0, r越小越好 0, r* R( q) [0,1], 若q 1 / 2 1 2q 0,无论r选什么都无影响 1, 若q 1 / 2 1 2q 0, r越大越好
解:Max π甲(p甲, p乙) r Max π乙(p甲, p乙) q
f.o.c. 2r-1=0
r*=1/2
混合策略纳什均衡是甲在策略空间{红,黑}上以概率分布 p甲*= (1/2,1/2)进行选择,乙也在策略空间{红,黑}上以概率p乙*= (1/2,1/2)进行选择
博弈论 第三章 混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、支付最大化法
例:扑克牌对色游戏(p77)
无纯策略NE 给定混合策略p甲=(r,1-r); p乙=(q,1-q) π甲(p甲, p乙)=r[q(-1)+(1-q) 1]+ (1-r)[q1+(1-q)(-1)] = 2r(1-2q)+(2q-1) π乙(p甲, p乙)=q [r1+(1-r)(-1)]+ (1-q)[r(-1)+(1-r)1] =2q(2r-1)-(2r-1) f.o.c. 1-2q=0 q*=1/2
博弈论吉本斯第三章习题答案
(1 +
tp
)×
x
− x
c
−
c x
>
(−1) ×
x
− x
c
+
c x
(1) 与(2)联立,
=〉 tp
>
2c x−c
−2
=
p ---------------------(2)
c = p 带入(1)
仅供参考!!
-2-
E-mail:beckham.23@
Gibbons《博弈论基础》第三章习题解答(部分)
2c − 2x + 2c = cx − c2 c2 + (4 − x)c − 2x = 0
c = −4 + x + 16 + x2 2
x − c = 2x + 4 − x − 16 + x2 = 1 + 4 − 16 + x2
x
2x
2
2x
其中,4 − 16 + x2 = 1 ×
1
= 1×
1
2x
2 4 + 16 + x2 x
3.5
假设参与者 1 的私人信息为 tc ,参与者 2 的私人信息为 tp 。 tc ,tp ∈ (0, x)
正面
反面
正面
1+ tc , -1 -1, 1+ t p
-1, 1
1, -1
反面
当 tc > c 时,参与者 1 选正面;当 t p > p 时,参与者 2 选择反面
因此,参与者 1 选择正面的概率为 x − c ,选背面的概率为 c ;
2
4+ x
混合策略纳什均衡
第二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77)
先看甲的最优反应,记为r*=R(q): 观察π甲(p甲, p乙)= 2r(1-2q)+(2q-1)
若q 1 / 2 1 2q 0, r越小越好 0, r* R( q) [0,1], 若q 1 / 2 1 2q 0,无论r选什么都无影响 1, 若q 1 / 2 1 2q 0, r越大越好
纯策略(确定性)
q*=R(r)
(陈明德语) r 1 3/4
r*=R(q)
0 1/4 1 q (钟信德语)
博弈论 第三章 混合策略纳什均衡
第三节 寻找多重纳什均衡
二、反应对应法:情侣博弈
支付的帕累托优势:初步印象 π陈明=r(4q-1)+2(1-q),π钟信=q(4r-3)+(3-2r) r*=0, q*=0 纯策略(确定性)
第三节 寻找多重纳什均衡
例:情侣博弈
两个(多个)纯策略纳什均衡 问题:纳什均衡找完了吗?有无混合策略纳什均衡?
一、支付最大化法
给定混合策略p陈明=(r,1-r); p钟信=(q,1-q) Max π陈明(p陈明, p钟信)=r[3q+(1-q) ]+ (1-r)[0+2(1-q)] =r(4q-1)+2(1-q) r Max π钟信(p陈明, p钟信)=q (2r+0)+ (1-q)[r+3(1-r)] =q(4r-3)+(3-2二节 混合策略纳什均衡的求解方法
二、反应对应法
例:扑克牌对色游戏(p77) 无纯策略NE 给定混合策略p甲=(r,1-r); p乙=(q,1-q)
经济博弈论(第三章)
第三章完全信息动态博弈上一章介绍了完全信息静态博弈,本章在前面的基础上探讨完全信息动态博弈。
现实社会经济活动的决策大多数是有先后顺序的行为而不是同时选择的行为,而且后行者能够看到先行者的决策内容,在先行者的决策结果之后再定夺自己的策略。
这样的经济行为比比皆是,如商业活动中的讨价还价,拍卖活动中的轮流竞价,资本市场上的收购兼并和反收购兼并都是如此。
依次选择与一次性同时选择有很大的差异,因此这种决策问题构成的博弈也是从时间序列上有别于静态博弈的,我们称之为“动态博弈”(Dynamic Games)。
例如下象棋通常需要两个参与人,我们定义为红方和黑方,红方先走,黑方后走,这是一个典型的完全信息动态博弈。
动态博弈由于添加了时间因素,因而更加贴近现实。
根据博弈方是否相互了解得益情况,可分为“完全信息动态博弈”和“不完全信息动态博弈”,根据是否所有博弈方都对自己选择前的博弈过程完全了解,可分为“完美信息动态博弈”和“不完美信息动态博弈”。
在本章中,我们首先对博弈的扩展式表达给出完整的定义,为动态博弈的分析奠定基础;其次,我们从扩展式表述博弈的纳什均衡分析逐步深入到子博弈精炼纳什均衡,为动态博弈的分析提供可行的方法,接下来介绍两种完全信息动态博弈经典模型;最后,分析具有无穷次的重复博弈,推导出无名氏定理。
3.1 博弈的扩展式表述在动态博弈中,博弈方的行动是有先后次序的,且后行动者在自己行动之前能够观测到先行动者的行动,每个博弈方的一次选择行为常称为一个“阶段”(Stage )。
动态博弈中也可能存在几个博弈方同时选择的情况,这时博弈方的同时选择构成一个阶段。
一个动态博弈至少有两个阶段,因此动态博弈有时也称为“多阶段博弈”(Multistage Games )。
此外,也有把动态博弈称为“序列博弈”(Sequential Games )的,这也是由动态博弈中的次序特征引出来的。
设有一个商人要从A 地向B 地运输一批货物。
经典:博弈论-完全信息动态博弈
2、博弈的扩展式表述的要素
博弈的扩展式表述包含以下要素: (1) 参与人集合:i=1,2,…,n。此外,用N代表虚拟
参与人——自然。 (2) 行动顺序:谁在什么时候行动。 (3) 参与人的行动空间: (4) 参与人的信息集: (5) 参与人的策略集: (6) 参与人的支付函数: (7)外生事件的概率分布。
博弈的收益矩阵
(1)高需求
开发 开发商A 不开发
(2)低需求
开发 开发商A 不开发
开发商B
开发
不开发
2, 2
4, 0
0, 4
0, 0
开发商B
开发
不开发
-1, -1
1, 0
0, 1
0, 0
博弈分类
按开发商博弈的先后顺序分: 静态博弈:两个开发商同时决策,或后决策者不
能观察到先行动者的行动。 动态博弈:博弈有先后顺序,且后决策者能观察
完全信息动态博弈图示:N A B
开发 (2,2)
高需求
○
A
N
低需求
开发 不开发 开发 不开发
不开发 (4,0)
开发 (0,4) B 不开发 (0,0)
开发 (-1,-1) 不开发 (1,0)
开发 (0,1) 不开发 (0,0)
(4)不完全信息动态情形:ANB
开发商A不清楚市场的需求状态,决定是否开发; 开发商B 在观察到市场需求和A的决策后决定是否开发。
到先行动者的行动后再行动。 按开发商是否知道市场需求状态分:
完全信息博弈:若两个开发商都知道市场需求状 态(高需求或低需求)。
不完全信息博弈:由自然决定市场的需求状态, 两开发商不知道。 共同知识:在市场各种可能状态和各开发商不同策 略组合下的得益矩阵是双方的共同知识。
博弈论及应用3
Cont..
将式(1)代入企业1的的得益函数 u 1 (q1, q2) = 6 q1- q1 q2-q12 =3 q1 – q12 /2 max q1 (3 q1 – q12 /2) 一阶条件: 3 - q1*= 0 有 q1*=3 (单位), q2*=3 - q1* /2 = 1.5 (单位), 使 u 1= 4.5 , u 2 = 2.25 使市场总产量 Q =q1+q2=4.5, 得二企业总得益 U = u 1 + u 2 =4.5+2.25=6.75
子博弈完美纳什均衡能够排除均衡策略中不 可信的威胁和承诺,因此是真正稳定的。 逆推归纳法是求完美信息动态博弈子博弈完 美纳什均衡的基本方法。
3.4 几个经典动态博弈模型
3.4.1 寡占的斯塔克博格(Stackelberg) 模型 3.4.2 讨价还价博弈 3.4.3 委托—代理理论 3.4.4委托—代理理论(续)
3.4.1 寡占的斯塔克博格(Stackelberg) 模型
假设市场上有两个厂商,决策内容是产量, 一个是领头(leader)企业,一个是跟随 (follower)企业。领头企业先选择自己的 产量,跟随企业根据领头企业的产量选择, 选择自己的产量。 显然,他们选择有先有后,所以是一个 动态博弈。
斯塔克博格(Stackelberg)模型
房地产开发( Ⅱ )
A
开发
如果B在决策时并不
不开发
N
需求大
N
需求小
知道自然的选择,那么其
信息集就由原来的四个减 少为两个。博弈过程如图 所示。
B
开发
B B
B
不开发
(4,4)
(8,0)(-3,-3) (1,0) (0,8) (0,0)(0,1) (0,0)
博弈论与信息经济学不完全信息静态博弈
参加人i懂得自己旳类型 i i ,条件概率 pi pi (i i ) 描述 给定自己属于 i 旳情况下,参加人i有关其他参加人类型 i i旳不拟定性。我们用 G {A1,, An ;1,,n ; p1,, pn ;u1,,un} 代表这个博弈。
j
bi
aj cj
bi
aj cj
ui (vi bi ) P bi b j v j
1 2 (vi
bi ) P
bi
bj
vj
(vi
bi )
bi
aj cj
求导得:bi vi
1 2
vi
1 2
aj
由于bi vi
ci vi
ai
ci
1 2 , ai
1 2 aj
0
综上所述,bi vi
贝叶斯均衡是一组战略组合源自(a1.,a
2
.)
,使得对于每一
种
i
和每一种可能旳 ci
,战略
a
i
(.)最大化参加人
i
旳期望
效用函数
Ec
j
ui
(ai
,
a
j
ci
,
ci
)
。令
z
j
Pa j c j 1为均衡状
态下参加人 j 提供旳概率。最大化行为意味着,只有当参加
人 i 预期参加人 j 不提供时,参加人 i 才会考虑自己是否提
懂得(成本ci 是参加人 i 旳类型)。 c1和 c2 具有相同旳、独立旳定义在[c, c]
上旳分布函数,且是共同知识。
吉本斯-博弈论基础答案
1 2 的收益贴现到t期可得 1 − δ (a − c) / 8 , 1 2 2 触发战略有效的条件是: 1 − δ (a − c ) / 8 > (a − c) / 4 ,得到: δ > 1/ 2
(可参见谢识予的《经济博弈论》习题解答) 。 2.14 略 2.15 (1)垄断的产量、价格、利润: π=Q(a-Q)-CQ 利润最大化时:a-2Q=C,从而 Q=(a-c)/2. 此时价格为(a-c)/2。 (2)古诺均衡下的产量、价格、利润: π=(a-∑qi) qi -cqi
(*)
因 此 当 增 加 S 时 , U1 ( I c − S ) 会 减 小 , 同 时 , d ( S + B ) / dS > 0 , ∴ S + B 会 增 加 ,
∴ U 2 ( S + B ) 会增加,因为(*)式, U 2 ( S + B ) 增加的幅度比 U1 ( I1 − S ) 减小的幅度大,所以
如果参与者推断自然选择左边博弈的概率23参与者2选l如果参与者推断自然选择左边博弈的概率23参与者2选l和选r无差异如果参与者推断自然选择左边博弈的概率23参与者2选r如果参与者推断自然选择左边博弈的概率23参与者2选l如果参与者推断自然选择左边博弈的概率23参与者2选l和选r无差异如果参与者推断自然选择左边博弈的概率23参与者2选r自然选择左边博弈时参与者1选t参与者2选l
由 一 阶 条 件 ∂π i / ∂qi = 0 , 可 得 : qi = (a − q− i − c) / 2 … … ( 1)
* *
( 1) 式 两 端 乘 以 2, 再 减 qi , 可 得 : qi = a − Q − c … … ( 2), 对 于 任 意 的 i 都 成 立 。
完全信息静态博弈及其纳什均衡解
第三章完全信息静态博弈及其纳什均衡解1. 完全信息静态博弈定义 3.1.完全信息静态博弈。
完全信息静态是指,博弈中的参与人同时采取行动,或者尽管参与人行动的采取有先后顺序,但后行动的人在行动时不知道先采取行动的人采取的是什么行动;同时博弈参与人的策略空间及策略组合下的支付是博弈中所有参与人的“公共知识”。
两个特点:(1)静态;(2)完全信息。
完全信息静态博弈例子。
例1:锤子-剪刀-布例2:交通行驶非“完全信息静态博弈”例子:英式拍卖——动态博弈;第一密封价格及第二密封价格拍卖——不完全信息博弈。
2. 纳什均衡及其判定定义3.2 纳什均衡。
在一个n人博弈的标准式G={S1,S2,…,Sn;u1,u2,…,un}中,一个策略组合{s1*,s2*,…,sn*},若满足ui(s1*,…,si*,…sn*)≥ui(s1*,…si,…,sn*)(i=1…n),则称这个策略组合为{s1*,s2*,…,sn*}为该博弈G的一个纳什均衡。
某策略组合是纳什均衡指的是,在该策略组合上任何一个参与人的收益在其他人策略不改变的情况下都至少是弱优的。
特点:(1)每个人没有单独改变策略的动机;(2)局部最优。
纳什均衡判定方法:用定义来判定:某点是均衡看它是否符合纳什均衡的定义。
求解纳什均衡的方法:(1)剔除严格被占优策略。
例3:囚徒困境甲不合作合作乙不合作2,2 1,4 合作4,1 3,3缺点:只有当仅有一个纯策略均衡点的时候,该方法才是有效的。
(2)用定义来求解(3)对于策略空间为连续的博弈,用求极值的方法来求得。
3. 纳什均衡存在定理:(纳什)定理3.1.在一个n人博弈的标准式G={S1,S2,…,Sn; u1,u2,…,un}中,如果n是有限的,且对每个i, Si是有限的,则博弈至少存在一个纳什均衡。
这里的均衡可能包含混合策略均衡。
证明:略例子3:囚徒困境的均衡例1:“锤子-剪刀-布”的均衡?4. 混合策略与混合策略的均衡纯策略与混合策略概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1:如果开金矿博弈中第三阶段乙选择打官司后的结果尚不能肯定,即下图中a 、b 数值不确定。
试讨论本博弈有哪几种可能的结果。
如果本博弈中的“威胁”和“承诺”是可信的,a 或b 应满足什么条件?①0a <,不借—不分—不打;②01a <<,且2b >,借—不分—打; ③1a >,且2b >,借—不分—打(,)a b ; ④0a >,且2b <,借—分—(2,2)问题2:三寡头市场需求函数Q P -=100,其中Q 是三个厂商的产量之和,并且已知三个厂商都有常数边际成本2而无固定成本。
如果厂商1和厂商2同时决定产量,厂商3根据厂商1和厂商2的产量决策,问它们各自的产量和利润是多少?1123111231(100)2(98)q q q q q q q q q π=----=---2123221232(100)2(98)q q q q q q q q q π=----=---(a ,b )(0,4)3123331233(100)2(98)q q q q q q q q q π=----=--- 331230,(98)/2q q q q π∂=⇒=--∂代入,11212122(98)/2,(98)/2q q q q q q ππ=--=--12120,0q q ππ∂∂==∂∂,得***12398/3,49/3q q q === ***1234802/9,2401/9πππ===。
问题3:设两个博弈方之间的三阶段动态博弈如下图所示。
(1)若a 和b 分别等于100和150,该博弈的子博弈完美纳什均衡是什么?(2)T N L --是否可能成为该博弈的子博弈完美纳什均衡路径,为什么?(3)在什么情况下博弈方2会获得300单位或更高的得益?(1)博弈方1在第一阶段选择R ,在第三阶段选择S ,博弈方2在第二阶段选择M 。
(a ,b )50,300(2)不可能。
T N L --带来的利益50明显小于博弈方1在第一阶段R 的得益300;无论a 和b 是什么数值,该路径都不能构成Nash 均衡,不能成为子博弈完美Nash 均衡。
(3)由于T N L --不是本博弈的子博弈完美Nash 均衡,因此博弈方2不可能通过该路径实现300单位的得益,唯一有可能实现300单位及以上的得益的路径为L N S --,要使该路径成为子博弈完美Nash 均衡而且博弈方2得到300单位及以上的得益必须300,300a b >≥。
问题4:企业甲和企业乙都是彩电制造商,都可以选择生产低档产品或高档产品,每个企业在四种不同的情况下的利润如以下得益矩阵所示。
如果企业甲先于企业乙进行产品选择并投入生产,即企业乙在决定产品时已经知道企业甲的选择,而且这一点双方都清楚。
(1)用扩展型表示这一博弈。
(2)这一博弈的子博弈完美纳什均衡是什么?扩展型表示的博弈若甲选择高档,乙选择低档,甲得1000元,乙得700元;若甲选择低档,乙选择高档,那么甲得700元,乙得1000元,所以:甲的策略为:选择生产高档产品;乙的策略是:若甲选择高档,乙选择低档;若甲选择低档,乙选择高档。
本博弈的子博弈Nash均衡是:甲选择生产高档彩电,乙选择生产低档彩电。
问题5:乙向甲索要1000元,并且威胁甲如果不给就与他同归于尽。
当然甲不一定相信乙的威胁。
请用扩展型表示该博弈,并找出纯策略纳什均衡和子博弈完美纳什均衡。
两个纯策略Nash均衡:(给,实施),(不给,不实施)实施的威胁不可信,甲在第一阶段选择不给,乙在第二阶段不实施(生命诚可贵);这是子博弈完美纳什均衡;另一个(给,实施)不可信。
问题6:两个寡头企业进行价格竞争博弈,企业1的利润函数是q c aq p ++--=21)(π,企业2的利润函数是p b q +--=22)(π,其中p 是企业1的价格,q 是企业2的价格。
求:(1)两个企业同时决策的纯策略纳什均衡; (2)企业1先决策的子博弈完美纳什均衡; (3)企业2先决策的子博弈完美纳什均衡; (4)是否存在参数c b a ,,的特定值或范围,使两个企业都希望自己先决策? 解:(1)122()02()0p aq c pq b qππ∂=--+=∂∂=--=∂,解得:,p ab c q c =-=12,b ab c ππ==-(2)22()0q b qπ∂=--=∂,代入得到21)p ab c b π=--++(,12)0p ab c pπ∂=--+=∂(,得p ab c =-,企业1的子博弈完美纳什均衡企业1的定价p ab c =-,企业2的定价q b =,利润也与(1)相同。
与同时选择无异。
-1000,1000)(3)将p aq c =-代入222))q b p q b aq c π=--+=--+-(( 22)0q b a qπ∂=--+=∂(,解得2aq b =+,代入得22a p abc =+-*12a b b π=+>,2*24a ab c ab c π=+->- (4)只有先决策的利润大于后决策时的利润时才有激励。
①当24a ab c ab c +->-0a ⇒≠,企业2希望先决策;②当2ab b >+时,企业1希望先决策,只要0a <都希望自己先决策。
20,0,0,024a ab b abc ab c >+>->+->,因此当0,2aa b <>-和c ab <时都能满足,这样才参数范围都希望自己先决策。
问题7:三寡头市场有倒转的需求函数为Q a Q P -=)(,其中321q q q Q ++=,i q 是厂商i 的产量。
每一个厂商生产的边际成本为常数c ,没有固定成本。
如果厂商1先选择产量1q ,厂商2和厂商3观察到1q 后同时选择2q 和3q ,问它们各自的产量和利润是多少?解:[]123()()1,2,3i i a c q q q q i π=----=21232312332020a c q q q q a c q q q q ππ∂=----=∂∂=----=∂2311()3q q a c q ==--,代入得1111()3a c q q π=--令*11110,()2d q a c dq π==-,代入得:**231()6q q a c ==-*2*2*2123111(),(),()123636a c a c a c πππ=-=-=-问题8:考虑如下的双寡头市场战略投资模型:企业1和企业2目前情况下的生产成本都是2=c 。
企业1可以引进一项新技术使单位成本降低到1=c ,该项技术需要投资f 。
在企业1作出是否投资的决策(企业2可以观察到)后,两个企业同时选择产量。
假设市场需求函数为q q p -=14)(,其中p 是市场价格,q 是两个企业的总产量。
问上述投资额f 处于什么水平时,企业1会选择引进新技术?解:以未引进技术为基准1121121222(14)2(14)2q q q q q q q q ππ=---=---,令12120q q ππ∂∂==∂∂,得12124,16q q ππ==⇒==如果引进技术,1121121222(14)(14)2q q q q fq q q q ππ=----=---令12120q q ππ∂∂==∂∂,得1211411196,,339q q f π'==⇒=- 只有引进技术后得到的利润大于未引进技术的总利润时,即196169f ->,即196521699f <-=时企业1才会引进新技术。
问题9:如果学生在考试之前全面复习,考好的概率为90%,如果学生只复习一部分重点,则有50%的概率考好。
全面复习花费的时间1001=t 小时,重点复习只需要花费202=t 小时。
学生的效用函数为:e W U 2-=,其中W 是考试成绩,有高低两种分数h W 和l W ,e 为努力学习的时间。
问老师如何才能促使学生全面复习?解:学生全面复习的期望得益10.9(200)0.1(200)0.90.1200h l h l u w w w w =⨯-+⨯-=+-学生重点复习的期望得益20.5(40)0.5(40)0.50.540h l h l u w w w w =⨯-+⨯-=+-根据激励相容的条件,12u u ≥,所以有0.90.12000.50.540h l h l w w w w +-≥+-所以:0.4()160h l w w -≥故:400h l w w -≥奖学金与学习成绩全面挂钩,才能激励学生的学习;单靠成绩没有这么大的力度。
问题10:某人正在打一场官司,不请律师肯定会输,请律师后的结果与律师的努力程度有关。
假设当律师努力工作(100小时)时有50%的概率能赢,律师不努力工作(10小时)则只有15%的概率能赢。
如果诉讼获胜可得到250万元赔偿,失败则没有赔偿。
因为委托方无法监督律师的工作,因此双方约定根据结果付费,赢官司律师可获赔偿金额的10%,失败则律师一分钱也得不到。
如果律师的效用函数为e m 05.0.-,其中m 是报酬,e 是努力小时数,且律师有机会成本5万元。
求这个博弈的均衡。
解:第三阶段,律师努力的期望得益:0.5200.557.5⨯-⨯=不努力的期望得益:0.1524.50.850.5 3.25⨯-⨯= 满足激励相容约束第二阶段:7.5 3.25&7.55>> 接受委托并努力工作第一阶段:委托,接受委托,代理人努力工作,那么0.52250.50112.50⨯+⨯=>委托是必然的选择。
打官司的人提出委托,律师接受委托并努力工作。
(225,20)(0,-5)(225,24.5)(0,-0.5)。